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• Tox21/ToxCast:  Examining thousands 
of  chemicals using high throughput 
screening assays to identify in vitro 
concentrations that perturb 
biological pathways (Schmidt, 2009)

• In Wetmore et al. (2012), High 
throughput toxicokinetic in vitro
methods are used to approximately 
convert in vitro bioactive 
concentrations (µM) into daily doses 
needed to produce similar levels in a 
human (mg/kg BW/day)

• These doses can then be directly 
compared with exposure rates, 
where available

e.g. Judson et al., (2011)
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In Vitro Bioactivity, In Vivo 
Toxicokinetics, and Exposure

• Studies like Wetmore et al. (2012),addressed 
the need for toxicokinetic data
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data for providing context to HTS data

In Vitro Bioactivity, In Vitro 
Toxicokinetics, and Exposure
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Goals for High Throughput 
Exposure

• Incorporate multiple models into consensus predictions 
for 1000s of chemicals

• Evaluate/calibrate predictions with available 
measurement data across many chemical classes

• Empirically estimate uncertainty in predictions
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Exposure Space
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Systematic Empirical 
Evaluation of Models
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Noisy data and the danger of over-fitting

Over-fitting

Linear
function

Y

X

High Throughput Descriptors 
for Exposure

Yes / No 
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Physico-chemical 
Properties
(EPI Suite)

• The average relative AIC 
(smaller is better) for models 
made with different numbers 
of parameters for explaining 
1500 different combinations of 
chemical exposures
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Not All Descriptors Are Useful

• The average relative AIC 
(smaller is better) for models 
made with different numbers 
of parameters for explaining 
1500 different combinations of 
chemical exposures

• The predictors involved in the 
optimal model with higher 
frequencies are represented 
by darker circles, and those 
with lower frequencies by 
lighter circles

• As a sanity check, two random 
variables generated from 
binomial distribution with 
probability 50% and 10% of 
obtaining 1, are not selected 
as optimal descriptors in the 
five factor model

13
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Predicting NHANES exposure rates

R2 ≈ 0.5 indicates 
that we can predict 
50% of the 
chemical to 
chemical variability 
in mean NHANES 
exposure rates

Same five 
predictors work for 
all NHANES 
demographic 
groups analyzed –
stratified by age, 
sex, and body-
mass index



Office of Research and Development1515

Number of Chemicals

Heuristic Description

Inferred NHANES 
Chemical Exposures

(106)

Full Chemical 
Library ( 7784)

ACToR “Consumer use & 
Chemical/Industrial Process 

use”

Chemical substances in consumer products (e.g., toys, personal 
care products, clothes, furniture, and home-care products) that 
are also used in industrial manufacturing processes. Does not 
include food or pharmaceuticals.

37 683

ACToR “Chemical/Industrial 
Process use with no 

Consumer use”

Chemical substances and products in industrial manufacturing 
processes that are not used in consumer products. Does not 
include food or pharmaceuticals

14 282

ACToR UseDB “Pesticide 
Inert use”

Secondary (i.e., non-active) ingredients in a pesticide which 
serve a purpose other than repelling pests. Pesticide use of 
these ingredients is known due to more stringent reporting 
standards for pesticide ingredients, but many of these 
chemicals appear to be also used in consumer products

16 816

ACToR “Pesticide Active use” Active ingredients in products designed to prevent, destroy, 
repel, or reduce pests (e.g., insect repellants, weed killers, and 
disinfectants).

76 877

TSCA IUR 2006 Total 
Production Volume

Sum total (kg/year) of production of the chemical from all sites 
that produced the chemical in quantities of 25,000 pounds or 
more per year. If information for a chemical is not available, it 
is assumed to be produced at <25,000 pounds per year.

106 7784

High-throughput exposure 
heuristics

15
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Calibrated Exposure Predictions 
for 7968 Chemicals
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• We focus on the median and upper 95% predictions because the lower 95% 
is below the NHANES limits of detection (LoD)

• Dotted lines indicate 25%, median, and 75% of the LoD distribution

Upper 95%
Prediction

Median
Prediction

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals
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• Chemicals currently monitored by NHANES are distributed throughput the 
predictions

• Chemicals with the first and ninth highest 95% limit are monitored by 
NHANES

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals
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• The grey stripes indicate the 4182 chemicals with no use indicated by ACToR
UseDB for any of the four use category heuristics

NHANES
LoD

Calibrated Exposure Predictions 
for 7968 Chemicals
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High Throughput Risk 
Prioritization

ToxCast Bioactivity 
Converted to 
mg/kg/day with HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals
CSS Rapid Exposure and Dosimetry

Prioritization as in 
Wetmore et al. 

(2012) Bioactivity, 
Dosimetry, and 

Exposure Paper  
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Conclusions

• We identify those HTE factors that correlate with the NHANES data 
and estimate uncertainty

• The calibrated meta-model can estimate relative levels of chemical 
exposures for 7968 chemicals

– This includes thousands of chemicals with no other data on human exposure
– Same factors are predictive (R2 ~ 0.5) across demographics characterized by 

NHANES

• Different demographics have different mean (overall) exposures: 
– There are demographic-specific aspects not currently described by available HTE 

factors

• Upcoming analysis:
– Replace heuristics with calibrations of new mechanistic HT models for exposure 

from consumer use and indoor environment (e.g., SHEDS-HT)
– Develop new data sources with additional chemical descriptors (e.g., CPcatDB)
– Should help decrease uncertainties and increase confidence in extrapolation
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