

In Vitro Testing of Engineered Nanomaterials in the EPA's ToxCast Program

Keith Houck National Center for Computational Toxicology

WC9 Prague 27 August 2014

Many Nanomaterials and Little Bioactivity/Toxicity Data

- Over 2,800 pristine nanomaterials (NMs)¹ and numerous nanoproducts are already on the market
- We have toxicity data for only a small number of them
- Traditional mammalian tox testing for all NM is not practical
 - Estimated \$249 million to \$1.18 billion for NM already on the market in 2009²

http://nrc.ien.gatech.edu/sites/default/files/NanoProductsPostercopy.jpg

Nanowerk. Nanomaterial Database Search. Available at: http://www.nanowerk.com/phpscripts/n_dbsearch.php. (Accessed July 26 2012)

Choi J-Y, Ramachandran G, Kandlikar M. The impact of toxicity testing costs on nanomaterial regulation. *Environ Sci Technol* 2009, 43:3030-3034.

ToxCast - Toxicity Forecaster

- Part of EPA's computational toxicology research
- Initial goal is chemical prioritization
- Find correlations of in vitro bioactivity signatures and in vivo toxicity endpoints

Chemical Prioritization Models

Historical Animal Toxicity Test Data

Automated, Rapid Toxicity Data

High-throughput screening (HTS)

Predictive Model of Reproductive Toxicity

Prioritize Chemicals in most need of further testing

Office of Research National Center for

NM Testing in ToxCast

Goals:

- Evaluate ToxCast HTS assays for screening NMs
 - Compatibility of assays
 - Suitability of endpoints
- Prioritize NMs for further research/hazard identification
- Identify key nanomaterial physicochemical characteristics influencing activities

>1000 chemicals; \sim 60 NMs (Ag, Au, TiO_2 , SeO_2 , ZnO, SiO_2 , Cu, etc)

Physical chemical properties of NM

Current ToxCast Nano Data

- HTS of bioactivity completed for 67 samples (62 unique materials)
 - 6 to 10 concentrations
 - Mammalian cellular assays
 - Zebrafish embryo development assay
- Characterization/analysis of NM physicochemical properties in progress

	nano	micro	ion
Ag	5+2*	1	1
Asbestos		3	
Au	1		
SWCNT MWCNT	8		
CeO2	4	1	1
Cu	4+2#	2+1#	2
SiO ₂	5	1	
TiO ₂	9	4	
ZnO	2	1	1

^{*} IAT NP and IAT NP infused with Ag ion # purified sample with no/low ions Not listed: Dispersant of one of the nano-Ag

Consistent Handling Protocol: Stock Preparation as an Example

Adapted from Keld Astrup Jensen developed in FP7 ENPRA (www.enpra.eu)

Testing Concentrations: Based on

Reported potential occupational inhalation exposure

Gangwal et al. Environ Health Perspect 119:1539-46, 2011.

Characterization Data Coverage

As rec	eived	(Re)suspended			
Dry	Sus-	In stock	In 4 testing		
material	pension	(H ₂ O+serum)	mediums, 2 conc		

Characterization Data Coverage

11 11 1 12 1	Method (by CEINT, unless specified)		As received		(Re)suspended		
Endpoints		Samples	Dry material	Sus- pension	In stock (H ₂ O+serum)	In 4 testing mediums, 2 conc	
size distribution and shape	TEM, SEM, DLS	nano and micro	v	V	√	√ (2 time points)	
surface area	BET (by NIOSH and NIST), calculate from DLS	nano and micro	٧		٧	V (3)	
chemical composition	XRD, TOC	all samples	٧	√			
crystal form	XRD	applicable samples	√	٧			
impurity	XPS	CNT	٧				
total metal concentration		metallic samples			٧	V (1)	
total non-metal concentration		non-metallic samples			V		
<mark>ion concentration</mark>	ICP-MS and others	applicable			V	V (3)	
zeta potential, surface charge	zetasizer	nano and micro			√		

United S Environr Agency

Example TEMs

CNTs Have Different Impurities

Weight percent of impurities in CNTs, measured by XPS

	С	Fe	Со	Ni	
N010					
N011	97.46	1.09	1.44	0.00	
N012	99.31	0.69	0.00	0.00	
N013	99.03	0.97	0.00	0.00	
N014	99.46	0.00	0.54	0.00	
N015	100.00	0.00	0.00	0.00	
N016					
N017					

HTS Assay Coverage

	L	Main type of result by assay platform	# of endpoint measured	# of direction (time points)	# of potential LEC/AC50 per NM per conc.
	NA	• Transcription factor activation	48	NA	48
RI	NA				
Pro	tein	Protein biomarker	87	2	174
Fun	ction/	• Cell growth kinetics	1	1	1
	otype	Toxicity phenotype	19	NA (2)	38
11		• Developmental malformation	Aggregated to 2	NA	2

> 260

Total

Assay Platforms

Selected endpoints

- Effects on transcription factors in human cell lines (Attagene)
- Human cell growth kinetics (ACEA Biosciences)
- Protein expression profiles in complex primary human cell culture models (BioSeek)

C & Washington (Carlot Carlot Carlot

- Toxicity phenotype effects (DNA, mitochondria, lysosomes etc.) in human and rat liver cells through high-content screening/ fluorescent imaging (Apredica)
- Developmental effects in zebrafish embryos

Screening Logistics

- Samples from international sources to EPA
- Samples prepped at Duke University CEINT
- Samples shipped to testing labs: NC (2), CA (3), MA (1)
- Data sent back to EPA
- Physicochemical characterization at CEINT simulating testing conditions

Cell Growth Kinetics in Human Lung Carcinoma Cell Line (A549) (ACEA Biosciences)

Principle Component Analysis (PCA) of Transcription Factor Activity (Attagene)

Principle component analysis (PCA) mapping of all transcription factor in Cis assay

Principle component #1: 12 (out of 53) observed variables account for 39% variations

Pax6 **HSE** Heat shock **Associated EGR** Sp1 with Xbp1 general NRF1 Metal cellular Oct-MLP **MRE** response stress and CRE C/EBP death Oxidative Sox NRF2/ARE stress

*EPA Oxidative stress vs. Metal response

Technology Platform: High-Content United States Environmental Protection Cellular Imaging Toxicity Phenotypes

Description

- HepG2 human hepatoma cell line
- Rat primary hepatocytes
- Cellular toxicity phenotypes
- Apredica

Endpoints (20)

- Cytotoxicity
- Oxidative stress
- DNA damage
- Mitochondrial function
- Apoptosis
- Steatosis
- Cell cycle

Result Summary:

- Cell-selective cytotoxicity (Ag, ZnO, Cu, SiO2)
- Steatosis (Ag, ZnO, SiO2)
- Apoptosis (Ag, ZnO, SiO2, Cu)
- DNA Damage (Ag, ZnO, SiO2, Cu)
- AC50 > 1ug/ml (except Ag and HepG2 cytotoxicity)
- Soluble ion and nano effects. generally similar

HCS Images

Steatosis Steatosis

Apoptosis

H2AX/Oxidative Stress

Primary Human Cell Systems (BioSeek)

		3C	4H	LPS	SAg	BE3C	CASM3C	HDF3CGF	KF3CT
Bi	ioMAP System	3	3	600			9		33
Primary	y Human Cell Types	Venular endothelial cells	Venular endothelial cells	Peripheral blood mononuclear cells + Endothelial cells	Peripheral blood mononuclear cells + Endothelial cells	Bronchial epithelial cells	Coronary artery smooth muscle cells	Fibroblasts	Keratinocytes + Fibroblasts
	Stimuli	L-1β + TNF-α + FN-γ	L-4+Histamine	TLR4	TCR	L-1β + TNF-α + FN-γ	L-1β + TNF-α + FN-γ	L-1β + TNF-α + FN-γ + EGF + bFGF + PDGF-BB	L-1β + TNF-α + FN-γ + TGF-β
#	of Endpoints	13	7	11	10	11	14	12	9
Endpoint Types	Acute Inflammation	E-selectin, IL-8		E-selectin, L-1α, L- 8, TNF-α, PGE2	L-8	L -1α	L-8, L-6, SAA	L-8	L -1α
	Chronic Inflammation	VCAM-1, ICAM-1, MCP-1, MIG	VCAM-1, Eotaxin- 3, MCP-1	VCAM-1, MCP-1	MCP-1, E-selectin, MIG	IP-10, MIG, HLA- DR	MCP-1, VCAM- 1,MIG, HLA-DR	VCAM-1, IP-10, MIG	MCP-1, ICAM-1, IP-10
	Immune Response	HLA-DR		CD40, M-CSF	CD38, CD40, CD69, PBMC Cytotox., T cell	HLA-DR	M-CSF	M-CSF	
	Tissue Remodeling					uPAR, MMP-1, PAI-1, TGFb1, SRB, tPA, uPA	uPAR,	Collagen III, EGFR, MMP-1, PAI-1, Fibroblast Proliferation, SRB, TIMP-1	MMP-9, SRB, TIMP-2, uPA, TGFb1
	Vascular Biology	TM, TF, uPAR, EC Proliferation, SRB, Vis	VEGFRIL, uPAR, P- selectin, SRB	Tissue Factor, SRB	SRB		TM, TF, LDLR, SMC Proliferation, SRB		
Disease	e / Tissue Relevance	Vascular Biology, Cardiovascular Disease, Chronic Inflammation	Asthma, Allergy, Oncology, Vascular Biology	Cardiovascular Disease, Chronic Inflammation, Infectious Disease	Autoimmune Disease, Chronic Inflammation, Immune Biology	COPD, Respiratory, Epithelial Biology	Vascular Biology, Cardiovascular Inflammation, Restenosis	Tissue Remodeling, Fibrosis, Wound Healing	Skin Biology,Psoriasis Dermatitis

Inferred Mechanism of Toxicity: nano Ag

- Ciclopirox inhibitor of Na+ K+ ATPase
- Toxicity of silver is associated with inhibition of Na+K+ATPase (PMID: 6240533)

Similarity of Asbestos Inflammation Profiles

R009 (micro amosite), R011 (micro tremolite) and R015 (micro amphibole) had highly similar profiles and were primarily active in epithelial cell-containing BioMAP systems (3C, 4H, LPS, SAg)

CNT and Asbestos Differences in Inflammatory Response Profiles

Similarity clustering (Pearson's correlation coefficient > 0.7)

- Asbestos at highest test concentrations had similar profiles
- Same CNT at different concentrations, had similar profiles
- CNT and asbestos did not appear similar in BioSeek assays

CNTs Showed Sample-Specific Response Profiles

Zebrafish Embryo Developmental

Assay

Exposure Concentration (mg/L)

- Malformation
- X Lethality

NM Screening Results

Proposed Nanomaterial Mechanisms of Toxicity

Nel et al., Acc. Chem. Res. 46, 607-621, 2013.

Summary of Screening

- Ag, Cu, Zn much more active than other materials
 - Primarily cell stress/oxidative stress and cytoxicity
 - Ion and nano had very similar behavior; micro generally lower activity
 - Supports ion shedding as mechanism of toxicity of these metal nanomaterials
- CNTs, SiO2, TiO2 had lower levels of activity
 - Wider range of individual sample variation
 - Primarily inflammatory endpoints upregulated
 - Low cytotoxicity
- Au, Ce, additional CNTs, SiO2, TiO2 had very low activity
 - Little to no cytotoxicity or cell stress markers induced
 - Few inflammatory markers induced

Summary of Challenges

- Characterization of NM physicochemical properties is limited by available technology and time
- Testing materials were not selected specific for testing structure-activity relationship
- Assay predicting power is unknown
 - For predicting chronic effects: most assays are 24 hr exposure
 - Assay model may not be appropriate: e.g. lung effects may depend on macrophages phagocytizing NMs
 - Very limited in vivo data available

United States Environmental Protection Agency

Conclusions

- HTS for profiling NMs is feasible
- Critical to couple physicochemical analysis to HTS testing (which may be rate-limiting)
- What is dose?
 - Aggregation
 - Sedimentation
 - Dissolution
 - Cell permeability
- Could design to address specific questions, e.g. SAR for ROS generation with modified experimental design
- Probably much more significant in vitro to in vivo extrapolation problems than soluble chemicals due to poor modeling of ADME in vitro
 - How to disperse?
 - Flow needed?
 - 3D and/or co-cultures needed?

ACKNOWLEDGEMENTS:

