

HTS Data and *In Silico* Models for High-Throughout Risk Assessment

Richard Judson U.S. EPA, National Center for Computational Toxicology Office of Research and Development

FutureTox, RTP NC January 2014

Outline

- Types of target activity "specific" vs. "non-specific"
- Focus on specific
 - -Gene-centric: the "Gene Score"
 - Pathway-centric: Estrogen Receptor Pathway
- Focus on non-specific
 - Using in vitro assay and PK data to predict MTD

Significance of In Vitro Effects

EDSP: A First, Real-World Application of Tox21 HTS

Prioritization for Endocrine Disruptor Screening Program ~5000 Chemicals are required to go through EDSP Tier 1 battery Throughput: ~100 Chemicals per year

Cost: ~\$1M per chemical

Fnv	ironmental	Protecti	on
			-

ID	Assay Name	Source	Gene	Species	Туре
1	NVS bovine ER	Novascreen	ESR1	Bos taurus	Receptor Binding
2	NVS human ER	Novascreen	ESR1	Homo sapiens	Receptor Binding
3	NVS mouse ERa	Novascreen	Esr1	Mus musculus	Receptor Binding
4	OT ERa-ERa (8 h)	Odyssey Thera	ESR1	Homo sapiens	Dimerization
5	OT ERa-ERa (24 h)	Odyssey Thera	ESR1	Homo sapiens	Dimerization
6	OT ERa-ERb (8 h)	Odyssey Thera	ESR1, ESR2	Homo sapiens	Dimerization
7	OT ERa-ERb (24 h)	Odyssey Thera	ESR1, ESR2	Homo sapiens	Dimerization
8	OT ERb-ERb (8 h)	Odyssey Thera	ESR2	Homo sapiens	Dimerization
9	OT ERb-ERb (24 h)	Odyssey Thera	ESR2	Homo sapiens	Dimerization
10	OT GFP ERa-ERE (2 h)	Odyssey Thera	ESR1, ERE	Homo sapiens	DNA Binding
11	OT GFP ERa-ERE (8 h)	Odyssey Thera	ESR1, ERE	Homo sapiens	DNA Binding
12	ATG ERa (TRANS)	Attagene	ESR1	Homo sapiens	RNA Reporter Gene
13	ATG ERE (CIS)	Attagene	ESR1	Homo sapiens	RNA Reporter Gene
14	Tox21 ERa BLA Agonist ratio	NCGC	ESR1	Homo sapiens	Reporter Gene
15	Tox21 ERa LUC BG1 Agonist	NCGC	ESR1	Homo sapiens	Reporter Gene
16	ACEA T47D (80 h)	ACEA	ESR1	Homo sapiens	Proliferation
17	Tox21 ERa BLA Antagonist ratio	NCGC	ESR1	Homo sapiens	Reporter Gene
18	Tox21 ERa LUC BG1 Antagonist	NCGC	ESR1	Homo sapiens	Reporter Gene

Major theme – all assays have false Environmental Protection positives and negative Agency

Assays cluster by technology, suggesting technology-specific non-ER activity

Much of this "noise" is reproducible, i.e. it is "assay interference"

Result of interaction of chemical with complex biology in the assay

Our chemical library is only partially "drug-like"

- -Solvents
- -Surfactants
- -Intentionally cytotoxic compounds
- -Metals
- -Inorganics

Computational Model

$$A_i = \sum_j F_{ij} R_j$$

 A_i is the efficacy of the assay at a given concentration R_i is the "true" efficacy which is unobservable F links receptors to assays

$$\varepsilon^{2} = \sum_{i} (A_{i}^{pred} - A_{i}^{meas})^{2} + penalty(\vec{R})$$

Solve a constrained least-squares problem to minimize difference between the measured and predicted assay values

$$A_i^{pred} \in [1,0]$$

$$penalty(\vec{R}) = \alpha \frac{SR^2}{SR^2 + SR_0^2}$$

 $penalty(\vec{R}) = \alpha \frac{SR^2}{SR^2 + SR_0^2}$ Penalty enforces physical assumption that chemical will not hit many targets simultaneously

$$AUC_{j} = \frac{1}{N_{conc}} \sum_{i=1}^{N_{conc}} sign(slope) \times R_{j}(conc_{i})$$

AUC Summarizes results

Example 1 – BPA – true agonist (AUC=0.66)

AUC "sign" feature will

discount this

cytotox AC50

Example curves

True Antagonist

Negative-Broad Assay Interference

Negative-Narrow Assay Interference

Reference Chemical Classification

AUC heat map for Reference chemicals

Office of Research and Development
National Center for Computational Toxicology

Example illustrating assay data

Concentration-response data for single gene (ESR1 / ER)

Histogram of AC50 Values

Most chemicals display a "burst" of activity at same concentration as cytotoxicity

Office of Research and Development National Center for Computational Toxicology Most chemicals cause activity in many assays near the cytotoxicity threshold

Cell-stress related assay interference

"Hit" (AC50) in burst region is less likely to result from specific activity (e.g. binding to receptor or enzyme)

Z-score: # of SD from burst center -High Z: more likely to be specific -Low Z: less likely to be specific

Examine Z-scores by assay

Cytotox / Cell Stress "True" activity

Gene Score Combine potency and specificity

- How to summarize 1000s of chemicals x 100s of assays?
- Potency: -log(AC50)
- Specificity: Z-score
- Gene score = Potency + Specificity
 - –average over assays for gene [-log(AC50) + Z-score]
- Can be used to get quick ranking of chemicals
- Gene Score > 7 are most interesting
 - -Z-score=2 and AC50=10 μM
 - -5670 chemical-gene combinations >7 (~1%)
 - -281 Genes (out of 330)
 - -1231 Chemicals (out of 1877)

Do Assays Detect Potent Reference Chemicals?

- * =Reference chemicals
- These chemicals should be near the right of the gene score distribution
- Most assays show reference chemicals to be potent and specific
- Gives confidence that novel chemicals active in the assay are perturbing that pathway

Chemicals with highest Gene Score are often those designed to be bioactive (75%)

Most promiscuous targets (>10% hit) after cytotox / non-specific filtering

gene	Name	Intended Target	Use Category
COL3A1	Cariporide mesylate	Ion channel Na	Pharmaceutical
SAA1	YM218	AVPR1A	Pharmaceutical
PTGER2	PharmaGSID 47261	HIV nucleocapsid protein	Pharmaceutical
MMP13	CP-544439	ADAMx MMPx [MMP2 MMP3 MMP13]	Pharmaceutical
MMP2	CP-544439	ADAMx MMPx [MMP2 MMP3 MMP13]	Pharmaceutical
HTR2A	Volinanserin	HTR2A	Pharmaceutical
CHRNA7	PHA-00543613	CHRNA7	Pharmaceutical
PGR	Melengestrol acetate	NR3C1	Pharmaceutical
GABRA5	CP-457920	GABARx [GABAR1 GABRA5 GABRA6]	Pharmaceutical
CYP3A5	Malathion	ACHE	Insecticide
CYP2C19	Malathion	ACHE	Insecticide
OPRK1	PharmaGSID_47258	OPRK1	Pharmaceutical
CHRM1	PharmaGSID_48509		Pharmaceutical
CHRM2	PharmaGSID_48509		Pharmaceutical
CHRM3	PharmaGSID_48509		Pharmaceutical
CHRM4	PharmaGSID_48509		Pharmaceutical
EDNRA	MK-547	EDN1	Pharmaceutical
EDNRB	MK-547	EDN1	Pharmaceutical
HRH2	Piragliatin	GCK	Pharmaceutical
PDE4A	FR140423	Opiod receptors	Pharmaceutical
PTPRB	2-Bromo-4-hydroxyacetophenone		microbiocide
THBD	Triamcinolone	NR3C1	Pharmaceutical
CYP2B1	Bromuconazole	Sterol synthesis	Fungicide
H2AFX	Sorbic acid		Fungicide/antimicrobial
CYP19A1	Fadrozole hydrochloride	CYP19A1	Pharmaceutical
HRH1	Diphenhydramine hydrochloride	HRH1	Pharmaceutical
CYP2C6	Malathion	ACHE	Insecticide
SIGMAR1	Volinanserin	HTR2A	Pharmaceutical
CYP4F12	Flufenpyr-ethyl		
PTGS1	Indomethacin	PTGS2	Green: Gene is intended
CYP2A2	Metconazole	Sterol synthesis	target of the chemical
HTR3A	ddI; Didanosine	HIV Reverse Transcriptase	r narmaceaticar 18
HDAC6	Acetamide		Solvent/plasticizer
TSPO	C.I. Acid Red 114		Dye

Promiscuity measures

Calculate the number of genes hit with Gene Score>7

"Hottest" – Most Specific Hits

Category	Nchem	Mean(Hit Ratio)	SD (Hit Ratio)	p-hot
conazole (triazoles)	13	0.045	0.0205	3.19E-06
Pharma Class 4.86	10	0.0484	0.0234	2.39E-05
Pharma Class 4.58	11	0.0555	0.0374	4.65E-05
organometallic	5	0.0576	0.0247	0.00134
Pharma Class 3.292	5	0.0555	0.0405	0.00619

"Coldest" – Fewest Specific Hits

Category	Nchem	mean_HitRatio	SD_HitRatio	p-cold
phthalate	17	0.0061	0.00665	0.000131
alcohol pri	10	0.00447	0.00362	0.000835
carboxylic acid	10	0.00584	0.0056	0.00335
carboxylate	7	0.0044	0.00473	0.00356
carboxylate di	15	0.0078	0.00655	0.00594

Learning from "non-specific hits"

- Hypothesis: In vivo, if a chemical reaches concentrations where cell stress or cytotoxicity occurs, animals will be ill
- Corollary: the cell stress / cytotoxicity level in vivo will be ~ maximum tolerated dose (MTD)
- Testing the hypothesis:
 - Use Reverse Toxicokinetics (RTK) to convert cytotoxicity concentrations (burst region) to dose
 - Compare with MTD

United States Environmental Protection Agency

Adding Pharmacokinetics Reverse ToxicoKinetics (rTK)

Combine experimental data w/ PK Model to estimate dose / concentration scaling

RatCast: Same experiment, but with rat hepatocytes and plasma

Collaboration with Thomas et al., Hamner Institutes Publications: Rotroff et al, ToxSci 2010, Wetmore et al, ToxSci 2012

Comparing Burst to MTD

40 chemicals have rat RTK and Rat MTD data (Use MTD from 2-year Chronic/cancer studies)

4 are dose limited due to neurological effects

28/36 have MTD in burst region (78%)

- 3 show significant deviation RTK is suspicious
- -Pyriproxyfen
- -Troglitazone
- -Spiroxmine
- 4 have MTD lower than burst
- -Linuron
- -Cyproconazole
- -Dazomet
- -Flusilazole

ToxCast / Tox21 Overall Strategy

- Identify targets or pathways linked to toxicity (AOP focus)
- Develop high throughput assays for these targets or pathways
- Develop predictive systems models
 - in vitro \rightarrow in vivo
 - $-in \ vitro \rightarrow in \ silico$
- Use predictive models:
 - -Prioritize chemicals for targeted testing
 - -Suggest / distinguish possible AOP / MOA for chemicals
- High Throughput Risk Assessments
- High Throughput Exposure Predictions

