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Risk Assessment in Regulatory Context

Key Concept:  Regulatory decisions are context 
dependent; therefore, risk assessments are varied.

TSCA
FIFRA
Clean Air
Clean Water
Superfund
Endangered Species Act
Food Quality Protection 
Act

OSHA
ATSDR
IARC
WHO
EPA
FDA
ECHA
State governments

Occupational
Acute
Chronic
Susceptible populations
Endpoint specific
Food/pharmaceuticals
Ecological

Regulatory Drivers Regulators Regulations
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Regulatory Contexts at the EPA

• Chemical assessments are “fit-for-
purpose”
– Prioritization (e.g., EDSP, PMN, SNUR)

– Screening-level values (eg., CCL, 
GreenChem)

– Provisional Peer-Reviewed Toxicity Values 
(PPRTVs)

– Pesticide Tolerances, Drinking Water Health 
Advisories, Integrated Risk Information 
System (IRIS),

– Integrated Science Assessments (ISA) 
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Amount of Information/Cost

• Only about 550 total IRIS assessments.

• Each takes an average of 6 to 8 years.

• Typical data includes in vivo toxicity studies
• 6 published ISAs

• Include substantial human data

• Used in Superfund program for contaminated 
sites

• Contain less data than a full IRIS assessment, 
but more than (Q)SAR due to need for legal 
defensibility

• EPA receives ~1000 – 2000 
“Premanufacturing Notices” per year.

• Law requires a decision in 90 days.

• Typical data used in decision is (Q)SAR

• Drinking Water Health Advisories (MCLs) 
~10/yr

• Requires extensive data on hazard and 
exposure 

• May be based on technology 
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Regulatory Risk Assessments

Cost-benefit analyses

Risk assessments focus on a single chemical 
or a small group of related chemicals.

Key 
concept

Science is a component of the 
regulatory decision process.

Key 
concept

Chemical nomination

Hazard identification (causal relationship)

Exposure assessment

Dose-response

Risk characterization

Regulatory decision
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Typical Data use in Human Health 
Assessments

Key concept: Epidemiology and in vivo 
toxicity data prioritized over in vitro data.5

Risk Assessment Human 
data

In vivo 
mammalian tox 
data

In vitro or Alternative 
Species data

Hazard Identification yes yes Mechanistic plausibility or 
susceptible populations

Exposure Assessment yes no no

Dose-response yes yes Informs uncertainty and 
shape of D-R curve

Risk Characterization yes no no
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Challenge for regulatory toxicologists

Production

Use

Disposal

Emissions to 
air and water
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Modified from Judson, et al EHP (2010)
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How much do we know?  Not enough
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$1,000

$10,000

$100,000

$1,000,000

$10,000,000
Co

st

Economic cost to generate data

Key concept: Expensive and time 
consuming to collect data traditionally 
used for risk assessment.8
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High-Throughput Approaches for Toxicology

9
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Mandates for new technology

10

2007 NRC Report
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Computational Approaches
to Hazard Identification

Key concept:  Rapid collection of 
more data on more chemicals

High throughput
biology and 
chemistry

Thousands of 
chemicals

Predictive toxicology

Bioinformatics/
machine Learning
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• Deepwater Horizon Oil Exploration 
Platform Explodes - estimated 4.9 
million crude oil released 

• 1.8 million gallons of dispersant used; 

EPA Administrator calls for less toxic 
alternative

• In ~ 6 weeks, dispersants tested for 
bioactivity (including endocrine activity 
and cytotoxicity)

Responsiveness: Deepwater 
Horizon Accident
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Tox21 Consortium - Collaborative 
and Complementary Approaches

Chemicals Assays Endpoints

ToxCast Phase I 293 ~600 ~1100

ToxCast Phase II 767 ~600 ~1100

ToxCast Phase IIIa 1001 ~100 ~100

E1K (endocrine) 880 ~50 ~120

Tox21 8,193 ~25 ~50

Chemicals

As
sa

ys

~600

~8,2000
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Assay Data and Bioactivity

14

AC50

Key concept:  HT data provides bioactivity
information, not toxicity data

Maximum
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HT Assay Endpoints and 
biological space

15

Species
human

rat
mouse

zebrafish
sheep
boar

rabbit
cattle

guinea pig

Cell Format
cell free 
cell lines

primary cells
complex cultures

free embryos

Detection Technology
qNPA and ELISA

Fluorescence & Luminescence
Alamar Blue Reduction 
Arrayscan / Microscopy

Reporter gene activation
Spectrophotometry 

Radioactivity
HPLC and HPEC

TR-FRET

Readout Type
single

multiplexed
multiparametric

Assay Provider
ACEA

Apredica
Attagene

BioReliance
BioSeek
CeeTox

CellzDirect
Tox21/NCATS
NHEERL MESC

NHEERL Zebrafish
NovaScreen (Perkin Elmer)

Odyssey Thera
Vala Sciences

Assay Design
viability reporter

morphology reporter
conformation reporter

enzyme reporter
membrane potential reporter

binding reporter
inducible reporter

Biological Response
cell proliferation and death

cell differentiation
enzymatic activity

mitochondrial depolarization
protein stabilization

oxidative phosphorylation
reporter gene activation
gene expression (qNPA)

receptor binding
receptor activity
steroidogenesis

Tissue Source
Lung              Breast
Liver           Vascular
Skin              Kidney
Cervix             Testis
Uterus            Brain

Intestinal        Spleen
Bladder             Ovary
Pancreas        Prostate
Inflammatory     Bone

Target Family
response Element

transporter
cytokines
kinases

nuclear receptor
CYP450 / ADME
cholinesterase
phosphatases

proteases
XME metabolism

GPCRs
ion channels
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Interpreting HT data for Hazard ID: Using AOPs

14

True Positive 26 (25)

True Negative 11 (11)

False Positive 1 (0)

False Negative 2 (2)

Accuracy 0.93 (0.95)

Sensitivity 0.93 (0.93)

Specificity 0.92 (1.0)

In Vitro Reference Chemicals

ER Receptor 
Binding
(Agonist)

Dimerization

Cofactor
Recruitment

DNA 
Binding

RNA 
Transcription

Protein 
Production

ER-induced
Proliferation

R3

R1

R5

R7

R8

R6

N1

N2

N3

N4

N5

N6

A1

A2

A3

A4

A5

A6

A7

A8

A9

A10

A12

A13

A14

A15

A16

ε3

A11

Receptor (Direct 
Molecular Interaction)

Intermediate Process

Assay

ER agonist pathway

Interference pathway

Noise Process

ER antagonist pathway

R2

N7

ER Receptor 
Binding

(Antagonist)

A17

A18

Dimerization

N8

N9DNA 
Binding

Cofactor
Recruitment

N10
Antagonist
Transcription
Suppression

R4

R9

18 In Vitro Assays Measure ER-Related Activity

Judson et al., Tox Sci. , Browne et al., ES&T. 2015, Kleinstreuer et al., EHP
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Interpreting HT data for Hazard ID: Using 
Bioactivity Profiles

• group chemicals 
based on similarities 
in bioactivity profile 
across assays

• compare with 
reference chemicals 
associated with 
adverse outcomes

• Ciclopirox – inhibitor of Na+ K+ ATPase
• Toxicity of silver is associated with 

inhibition of Na+K+ATPase

NanoAg Ciclopirox
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Interpreting HT data for Hazard ID: 
Using Read Across

• Organize chemicals based 
upon chemical similarity

• Use to predict bioactivity in 
assays and/or adverse 
outcomes based on reference 
chemicals



Office of Research and Development
National Center for Computational Toxicology

Near-term challenges for HT Toxicity Testing

- Need to identify reference compounds and AOPs
- Volatile chemicals
- Metabolism
- Biological space – assay development
- Reproducing complex biology using reductionist approaches

18

Model Simulations of Dev Vascular 
Disruption

Knudsen et al., unpublished
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Hazard vs Risk

Key Concept:  Risk = f (Hazard x Exposure)

Risk =  probability of effect from hazard under given exposure

Increasing Risk 
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Chemical 
Monitoring 

Computational Approaches to 
Predicting Chemical Exposure

Biological 
Monitoring

NHANES

CDC

Predicted 
ExposuresUse

Production 
Volume

Inferred 
Exposures

“Reverse” Toxicokinetics

Exposure and PBPK models

Estimate 
uncertainty
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Oral Equivalent Dose (O𝐸𝐸𝐸𝐸) =

Fixed dose ×
AC50

𝐶𝐶𝑠𝑠𝑠𝑠 from fixed dose

• Using biomonitoring data to 
estimate oral exposure

• Assume first-order 
metabolism

• Work with steady-state 
plasma concentration (Css)

Estimating Chemical Exposure -
Reverse Toxicokinetics

Key concept: RTK assumes long-term, 
ambient exposures.
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Estimating Chemical Exposure:  Consumer 
Products and Use

Product Uses

C
hem

icals

• Analyzed Materials Safety Data Sheets (MSDS) for 
~20,000 products sold my a major U.S. retailer
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Estimating Chemical Exposure 
through Consumer Product Use

Number of Chemicals

Heuristic Description

Inferred NHANES 
Chemical Exposures

(106)

Full Chemical 
Library ( 7784)

“Consumer use & 
Chemical/Industrial Process 

use”

Chemical substances in consumer products (e.g., toys, personal 
care products, clothes, furniture, and home-care products) that 
are also used in industrial manufacturing processes. Does not 
include food or pharmaceuticals.

37 683

“Chemical/Industrial Process 
use with no Consumer use”

Chemical substances and products in industrial manufacturing 
processes that are not used in consumer products. Does not 
include food or pharmaceuticals

14 282

“Pesticide Inert use” Secondary (i.e., non-active) ingredients in a pesticide which 
serve a purpose other than repelling pests. Pesticide use of 
these ingredients is known due to more stringent reporting 
standards for pesticide ingredients, but many of these 
chemicals appear to be also used in consumer products

16 816

“Pesticide Active use” Active ingredients in products designed to prevent, destroy, 
repel, or reduce pests (e.g., insect repellants, weed killers, and 
disinfectants).

76 877

TSCA IUR 2006 Total 
Production Volume

Sum total (kg/year) of production of the chemical from all sites 
that produced the chemical in quantities of 25,000 pounds or 
more per year. If information for a chemical is not available, it 
is assumed to be produced at <25,000 pounds per year.

106 7784
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Estimating Chemical Exposure: Non-
targeted sampling 

Liang, Strynar, Sobus, Rager (NERL, EPA)

Each peak corresponds 
to a chemical with an 
accurate mass and 
predicted formula:

C17H19NO3
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Chemical 
Monitoring 

Uncertainty in Estimated Chemical 
Exposures

Biological 
Monitoring

NHANES

CDC

Use

Production 
Volume

“Reverse” Toxicokinetics

Exposure Models

Estimate 
uncertainty

In
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Predicted Exposure
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Near-term challenges for estimating 
chemical exposures

• Additional chemical use data, including:
• key physical-chemical properties
• chemical emissions from consumer products used indoors
• chemical occurrence in products, environmental, and biological 

media 
• Additional biomonitoring data, preferably using non-targeted approach
• Evaluating PBPK model for estimating chemical exposure
• Developing methods to address population variability in exposure 

estimates

Same chemical 
dose

5th 50th 95th
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Dose-response analysis – Selecting a POD
Sy

st
em

 S
ta

te
s

Assay Endpoints
No RecoveryRecovery

Tipping point

Partial Recovery

Key concept: Adaptive vs 
adverse transition point 
as potential POD.
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Dose-response analysis: In vitro to 
in vivo extrapolation (IVIVE)

• Steady-state IVIVE models for hundreds of 
chemicals based on limited high-
throughput in vitro assays

• Structure-based methods to estimate 
tissue partitioning

• HT-Physiologically-Based Pharmacokinetic 
(HT-PBPK) models for hundreds of 
chemicals

Population-Based  
IVIVE Model

ToxCast Chemicals

Plasma Protein 
Binding

Tissue Partition 
Coefficients

Population-Based  
PBPK Model

Dynamic Blood and Tissue 
Concentrations (Cmax, AUC)

Steady state plasma levels 
Among 100 Healthy 

Individuals of Both Sexes 
from 20 to 50 Yrs Old

Human Liver 
Metabolism

Key concept: Methods to use in 
vitro concentrations to determine 
relevant in vivo doses.
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• Selecting PODs – do tipping points reflect 
biology/AOPs?

• Large dose-range – log scale data vs narrow dose-
response range

• Characterizing uncertainty in IVIVE estimates –
comparing in vitro and in vivo data

Near-term challenges for dose-
response 
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Risk characterization – Prioritizing 
chemicals using computational estimates

Wetmore et al. (2012)

= hazardous 
dose

= exposure 
estimate

Risk = f (Hazard x Exposure)
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Identify biological pathways linked to adverse effects

Measure Biological Pathway Altering Concentration (BPAC) 
in vitro

Estimate in vivo Biological Pathway Altering Dose (BPAD) (PK modeling)

Incorporate uncertainty and population variability estimates

Calculate BPAD lower limit – Estimated health protective exposure limit

Risk characterization – Outline of HT 
data for risk assessment
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Risk characterization – utility of HT 
approaches

Key point: modular and customizable given the 
decision context and needs of the program partner
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Summary of Computational Toxicology 
approaches to Risk assessment

• Identify targets or pathways linked to toxicity (AOP focus)
• Develop high throughput assays for these targets or pathways
• Develop predictive systems models

– in vitro → in vivo

–in vitro → in silico

• Use predictive models (qualitative):
–Prioritize chemicals for targeted testing 
–Suggest / distinguish possible AOP / MOA for chemicals 

• High Throughput Exposure Predictions 
• High Throughput Risk Assessments (quantitative)
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Computational Toxicology – Future 
Challenges

• Mixtures
• Episodic exposures
• Biological plausibility and statistical significance
• Mechanisms of action and AOPs
• Differential susceptibility
• Human relevance of non-animal models
• Dose response analyses and quantifying 

uncertainty
• Regulatory acceptance
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Thanks!

31

• US EPA National Center 
for Computational 
Toxicology 
(www.usepa.gov/ncct)

• Risk Bites “A New Way to 
Evaluate Chemical Safety 
– TOX21”  (YouTube)

• cowden.john@epa.gov

http://www.usepa.gov/ncct
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Extra slides



Office of Research and Development
National Center for Computational Toxicology

• Characterizing the biological activity of ~2000 chemicals in over 700 
biochemical and cell-based assays.

• Additional assays being developed to fill data gaps in the high-throughput 
screens.

• Exposure estimates for over 7,000 chemicals based on production volume 
and chemical use

• Database of chemical-product categories (CPCat) that maps over 45,000 
chemicals to ~8,000 product uses or functions

• Steady-state IVIVE models for hundreds of chemicals based on high-
throughput in vitro assays

• Virtual tissue models are being constructed based on data collected from 
both high-throughput and “fit-for-purpose” assays and used to inform shape 
of the dose-response curve.

Accomplishments

38
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Cell-Based Assays for Developmental 
Neurotoxicity

In Vitro Assays
• Use cell cultures including 

human neural stem cells

• Assess changes in key 
neurodevelopmental processes

• High throughput: cells 
grown on multi-well plates

• High content: single image 
provides data on 
size/shape/location for 100’s 
of cells

High Content Imaging – automated microscopy provides data at level 
of individual cell

http://ibdev.com/Merchant2/merchant.mv?Screen=PROD&Product_Code=MP96&Category_Code=Multiwellplates&Store_Code=PS01
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An Example with a Cell-Based Assay for 
Synaptogenesis

High Content Image showing
identified neurites and synapses

Synaptogenesis  (formation of connections critical to a neural network)
• Primary neurons from rodent brain
• Stain for neurites (green) and synapses (red)

Synapses increase during development in vitro Chemical effect during critical period (DIV 9-15)

0

5 0

1 0 0

1 5 0

C O N 0 . 3 1 3 1 0 3 0

§

*
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P u n c t a  p e r  D e n d r i t e  L e n g t h

P u n c t a  p e r  C e l l  B o d y
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Developing a Cell-Based Assay for 
Neuronal Function

Primary cortical neurons are 
cultured in 48 well MEA plates

-100.0 -50.0 0.0 50.0 100.0

AldicarbBensulideCarbarylChlorpyrifosChlorpyrifos oxonAbamectinEmamectin benzoateMilbemectinChlordaneDieldrinEndosulfanFipronilHeptachlor epoxideLindaneMethoxychlorAcetamipridClothianidinImidaclopridNicotineThiaclopridThiamethoxamPharma 15,5-DiphenylhydantoinAllethrinBifenthrinCyfluthrinFenvaleratePermethrinEugenolp,p'-DDTp,p'-DDDp,p'-DDEHexaconazolePropiconazoleTetraconazoleFlusilazoleImazalilMyclobutanil1,2-Propylene glycol1,3-DiphenylguanidineAcetaminophenAmiodarone hydrochlorideCyazofamidDibutyl phthalateDiphenhydramine hydrochlorideEnadolineHaloperidolIsothiazolineManebMepiquat chloridePentamidine isethionateReserpineRotenoneSodium saccharin hydrateSpiroxamineThidiazuronTributyltin chlorideVolinanserinZamifenacinAcrylamideButachlorDiethyl butanedioateDifenzoquat metilsulfatePharma 2Pharma 3Pharma 4Pharma 5Pharma 6

-AChE Inhibition 
-GABA Modifier
-Nicotinic Agonist

Spontaneous activity

Determine firing rate in each well:
60 min control and treated
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% Change in Network Activity 
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Zebrafish Model Development

Strengths
• Rapid development
• Transparent embryo
• Zebrafish have orthologs for 70% of human genes    

and 86% of 1318 human drug targets
• Genome is easy to manipulate
• Translational model for human- and eco- toxicology
• Apical endpoints, including functional assessments
• Metabolic capability
• Have tested >1000 chemicals 

Weaknesses
• Difficult to assign causation 

without additional testing
• Internal dose of the chemical 

may not equal the waterborne 
dose

Airhart et al. (2007) Tal et al. FASEB (2012)
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Zebrafish Neurobehavioral Toxicity 
Assay

Behavior

Spatial and temporal aspects of nervous system 
development include:

• Functional assessments
• Sensory assessments
• Learning and memory

Elapsed Time (minutes)
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DarkDarkDark
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Using video tracking software, we measure the 
locomotion of 6 day old zebrafish larvae under 
different light and dark conditions. Zebrafish treated 
with neurotoxicants during development behave 
differently than control zebrafish.

“Brainbow” zebrafish
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Model ToxCast Application:
High-Throughput Risk Assessment (HTRA)

• Using HTS data for initial, rough risk assessment of data poor chemicals

• Risk assessment  approach
– Estimate upper dose that is still protective 
– In HTRA: BPAD (Biological Pathway Altering Dose)
– Analogous to RfD, BMD 
– Compare to estimated steady state exposure levels

• Contributions of high-throughput methods
– Focus on molecular pathways whose perturbation can lead to adversity
– Screen 100s to 1000s of chemicals in HTS assays for those pathways
– Estimate oral dose using High-Throughput pharmacokinetic modeling

• Incorporate population variability and uncertainty
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In collaboration with Hamner Institutes / Rusty Thomas

Experimental Assays for Characterizing 
Steady-State Pharmacokinetics

Human 
Hepatocytes

(10 donor pool)

Add Chemical
(1 and 10 µM)

Remove 
Aliquots at 15, 
30, 60, 120 min

Analytical 
Chemistry

-5
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-2
-1
0
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3

0 50 100 150

Ln
 C
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Hepatic 
Clearance

Human
Plasma

(6 donor pool)

Add Chemical
(1 and 10 µM)

Analytical 
Chemistry

Plasma Protein 
Binding

Equilibrium
Dialysis

Combine experimental data with PK Model to estimate 
dose-to-concentration scaling

“Reverse Toxicokinetics”
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values converted to human
in vivo daily dose

Actual Exposure (est. max.)

Safety margin

Combining in vitro activity and dosimetry
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Hill Model Formulation

Response is given by

where x is the log of the 
concentration considered.

Parameter vector q = [T, c, α] specifies…
• maximal response (T)
• half-maximal activity concentration (c)
• Hill slope (α)

T

c

α ~ slope
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HTRA Summary
1. Select toxicity-related pathways
2. Develop assays to probe them
3. Estimate concentration at which pathway is “altered” (PD)
4. Estimate in vitro to in vivo PK scaling
5. Estimate PK and PD uncertainty and variability
6. Combine to get BPAD distribution and health protective 

exposure limit estimate (BPADL)

• Many (better) variants can be developed for each step (1-6)
• Use for analysis and prioritization of data-poor chemicals
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HTTK: High-throughput TK 
models

• Open-source R package httk, available on CRAN (Pearce et al., 
submitted to J Stat Soft)

• General TK models can be parameterized for many chemicals using HT in 
vitro assays
– At present, 554 chemicals

• General TK models:
– 1-compartment
– 3-compartment
– PBTK (physiologically-based TK)
– 3-compartment steady-state
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HTTK parameters

Chemical-specific parameters
Fraction unbound in plasma (Fub) Measured in HT in vitro assays (Wetmore et 

al. 2012, 2014, 2015)Intrinsic clearance rate (CLint)
Tissue-plasma partition coefficients Predicted from phys-chem properties; not 

included in 3-compartment steady-state 
model

Physiological parameters
Body weight

By default: “average” human values
Tissue volumes & blood flows
Glomerular filtration rate (GFR)
Hematocrit
Hepatocellularity
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Most chemicals display a “burst” of activity at 
same concentration as cytotoxicity

51

Most chemicals cause activity in many 
assays near the cytotoxicity threshold

Cell-stress related assay interference

“Hit” (AC50) in burst region is less likely 
to result from specific activity 
(e.g. binding to receptor or enzyme)

Z-score: # of SD from burst center
-High Z: more likely to be specific
-Low Z: less likely to be specific
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Most chemicals display a “burst” of potentially 
non-selective bioactivity: 
Caused by cell-stress /  cytotoxity 
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Example of burst 
bioactivity by chemical

Cytotoxicity assays
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Weight-of-Evidence (WOE) Approach

• All data is noisy

• All assays have false positives / negatives

• Using multiple assays can solve the positive / negative quandary
– Qualitative uncertainty decreases
– Quantitative (potency) uncertainty may increase

54
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Estimating Variability in Chemical 
Exposure

Same dose
of a given chemical Varying Css

5th 50th 95th

HTTK model parameters
representing each individual

Css95 = 
conservative OED
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Wetmore et al., Tox Sci., 2012

Reverse Dosimetry

Oral 
Exposure

Plasma 
Concentration

AC50 Value

Oral Dose Required to 
Achieve Steady State 

Plasma Concentrations 
Equivalent to In Vitro

Bioactivity

Human Liver 
Metabolism

Human Plasma 
Protein Binding

Population-Based  
IVIVE Model

Upper 95th Percentile Css
Among 100 Healthy 

Individuals of Both Sexes 
from 20 to 50 Yrs Old

Chemicals

Dose-response: Extrapolating in 
vitro dose to in vivo  analysis

IVIVE
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~80% with < 3-fold ratio
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Thomas et al., Tox Sci., 2013

Selectively Activated 
In Vitro Assays

Selective Chemical

Define
Mode-of-Action

Confirm Human 
Relevance and Derive 

Point-of-Departure

Key Events

Bioactivity

Nonselective Ch

Define Point
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Risk characterization – utility of HT 
approaches
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