
Office of Research and Development

Alternative Approaches to 
Chemical Risk Assessment: 
Assays, Databases, Models
Richard Judson
U.S. EPA, National Center for Computational Toxicology
Office of Research and Development

The views expressed in this presentation are those of the author and do not 
necessarily reflect the views or policies of the U.S. EPA

Michigan State Dept. of Pharmacology and Toxicology

29 March 2017



Office of Research and Development
National Center for Computational Toxicology 2

If I seem unduly clear to you, you must have 
misunderstood what I said 

Alan Greenspan 
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National Center for Computational 
Toxicology

• National Center for Computational 
Toxicology established in 2005 to integrate
– High-throughput and high-content 

technologies
– Modern molecular biology
– Data mining and statistical modeling
– Computational biology and chemistry

• Currently staffed by ~60 employees
• Exists within the EPA’s Office of Research 

and Development
• Home of the ToxCast and ExpoCast

research efforts
• Key partner in U.S. Tox21 federal consortium
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Typical Problem #1

• At SuperFund site, EPA has 
identified 600 unique chemicals

• 300 of these have “good” reference 
doses / concentration (RfD / RfC), 
but 300 do not

• Can we determine “good enough” 
RfD/RfC to aid in cleanup planning? 

• Can we do in it a few months?
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Typical Problem #2

• Office of Pesticide Programs (OPP) 
has been petitioned to perform risk 
assessments on hundreds of 
pesticidal “inert ingredients”

• Companies have not typically been 
required to submit in vivo data on 
individual inerts

• Can we prioritize which of these 
chemicals should be the focus of 
detailed risk assessments?

6
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Typical Problem #3
• The Endocrine Disruptor Screening 
Program (EDSP) is required to test 
an unknown number of chemicals as 
potential endocrine disruptors

• The EDSP Tier 1 screening battery 
costs ~$1M per chemical and has a 
throughput of 100 chemicals every 
few years

• Can we define the chemical 
universe subject to EDSP? (yes: 
~10,000 chemicals)

• Can we develop approaches to 
prioritize chemicals and streamline 
Tier 1?

7
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Common Themes

• Many chemicals (100s to 1000s)
• Many of these are data poor
• People, fish frogs, … are currently exposed

• Decision-makers need tools they can use today
–They have a willingness to try new approaches
–Evaluation of new methods can occur in real time on real-world 

problems
–Evaluation needs to account for uncertainties in both new and 

old tools 

8
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Computational Toxicology

• Identify biological pathways of toxicity (AOPs)

• Develop high-throughput in vitro assays

–Test “Human Exposure Universe” chemicals in the assays 

• Develop models that link in vitro to in vivo hazard

–Use pharmacokinetic models to predict activating doses 

• Develop exposure models

• Add uncertainty estimates

• Create high-throughput risk assessments
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Potential Exposure:
ExpoCast

mg/kg BW/day

Potential Hazard: 
In Vitro + HTTK

Low
Priority

Medium
Priority

High
Priority

Risk-based Approach
Hazard + Exposure

Semi-quantitative
In Vitro to In Vivo
Approach
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Tools / Models / Data needed

• Exposure information or model
–Quantify in mg/kg/day
– Include uncertainties

• Hazard information or model
–Start in vitro
–Quantify in uM required to trigger bioactivity
– Include uncertainties

• Toxicokinetics
–Use to convert between external dose and internal 

concentration
– Include uncertainties

11



Office of Research and Development
National Center for Computational Toxicology12

Population and Exposure Modeling

(Bio) 
Monitoring

Dataset 1

Dataset 2
…

e.g., CDC 
NHANES 
study

Wambaugh et al., 2014

Predicted 
Exposures

…

Use

Production 
Volume

Inferred 
Exposures

Pharmacokinetic 
Models

Estimate 
Uncertainty

Calibrate 
models
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Estimating Exposure and Associated Uncertainty with Limited Data
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Toxicokinetics Modeling
Incorporating Dosimetry and Uncertainty into In Vitro Screening 

Wambaugh et al., 2015Wetmore et al.
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The “Minimal Hazard Battery”



Office of Research and Development
National Center for Computational Toxicology

The “Minimal Hazard Battery”

• Tier 1 provides 
– in vitro LOAEC / NOAEC
–Survey of perturbed pathways 
–Concentrations where cell stress may interfere with assays 

giving false positive signals
– If expected doses overlap with cell-stress concentrations, then 

the chemical is probably dangerous
• Tier 2

–Confirmation of pathways perturbed
• Tier 3

–More in vivo-like context around findings
• Still in exploratory stage

15
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First test: Can the battery predict in vivo POD?

16
Wetmore et al., Tox Sci., 2013
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•Start with battery of in vitro assays 
•Convert to dose with HT 
toxicokinetics

•94% of chemicals have a health-
protective prediction of POD

•But: How golden is the gold-
standard?
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How golden is the gold standard?

PODs vary from one lab to the next

Median span from lowest to highest 
LOAEL is 0.3 to 1.0 log units

Data taken from EPA ToxValDB
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Immature Rat: BPA

Uterotrophic guideline study uncertainty
26% of chemicals tested multiple times in the uterotrophic 
assay gave discrepant results
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Kleinstreuer et al: “A Curated Database of Rodent Uterotrophic Bioactivity” EHP (2015) 
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Anemia concordance results

19

Species / 
study 1

Species / 
study 2 Concordant

Not 
Concordant

Fraction 
Concordant

rat SUB rat CHR 18 2 0.90
rat CHR dog CHR 13 2 0.87
rat CHR rat SUB 18 4 0.82
rat SUB rat SUB 16 4 0.80
rat SUB dog CHR 11 4 0.73
mouse CHR rat CHR 11 4 0.73
mouse CHR rat SUB 13 7 0.65
dog CHR rat SUB 11 6 0.65
dog CHR rat CHR 13 8 0.62
rat CHR mouse CHR 11 11 0.50
mouse CHR dog CHR 6 6 0.50
rat SUB mouse CHR 13 14 0.48
dog CHR mouse CHR 6 8 0.43
mouse CHR mouse CHR 2 3 0.40

Judson et al. Reg. Tox. Pharm (2017) “Retrospective Mining of Toxicology Data to 
Discover Multispecies and Chemical Class Effects: Anemia as a Case Study”. 
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Sources of Uncertainty / Variability In Vivo
• Experimental variability

–Species, strain, dose range, dose spacing 
• Statistical power issues

–Too few animals to see weak or rare effect
• Reporting bias

–Was an effect negative or not looked for?
• Observer bias

–Less severe phenotypes not reported when more severe ones 
are present

• Diagnostic terminology drift
• Data assimilation and analysis

–Typos, incomplete transcription

20
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Updated IVIVE, accounting for uncertainty

21

Larger set of chemicals with in 
vivo, in vitro, TK

~4% have in vitro POD 
consistently greater than in vivo 
values

Issue: what is the correct in vitro 
POD assay?
- Bioactivity vs. adversity

Unpublished
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In vitro assays also have false positives and negatives

Much of this “noise” is reproducible
- “assay interference”
- Result of interaction of chemical 

with complex biology in the assay

Chemical universe is structurally diverse
-Solvents
-Surfactants
-Intentionally cytotoxic compounds
-Metals
-Inorganics
-Pesticides
-Drugs

Assays cluster by technology,
suggesting technology-specific 

non-ER bioactivity

Judson et al: ToxSci (2015)
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Most chemicals display a “burst” of potentially non-
selective bioactivity near cytotoxity concentration

23
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Schematic explanation of the burst

24

Oxidative Stress
DNA Reactivity
Protein Reactivity
Mitochondrial stress

ER stress
Cell membrane disruption
Specific apoptosis
…

Specific Non-specific
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Heatmap of stress and cytotoxicity 
assays in 1000 chemicals

25

Judson et al. ToxSci (2016)Chemicals
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In Vitro Estrogen Receptor Model

26

• Use multiple assays per pathway
• Different technologies
• Different points in pathway

• No assay is perfect
• Assay Interference
• Noise

• Use model to integrate assays

• Evaluate model against reference chemicals

• Methodology being applied to other pathways

Judson et al: “Integrated Model of Chemical Perturbations of a Biological Pathway
Using 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor” (EHP 2015) 
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Example curves

30

True Agonist

Assay Interference Example “R3”
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In Vitro Reference 
Chemical Performance

By using battery of assays and 
model of noise, we can 
accurately predict activity
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Model predicts in vivo uterotrophic assay as well 
as uterotrophic predicts uterotrophic

 Plot
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Prioritization (Replacement) Example
Compare predicted exposure and hazard POD

33
Compare estrogen receptor assay battery 
and exposure model
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Moving Towards Regulatory Acceptance
From FIFRA SAP, December 2014

• Can the ER Model be used for prioritization?
– “… the ER AUC appears to be an appropriate tool for chemical prioritization for … 

the EDSP universe compounds.”

• Can the ER model substitute for the Tier 1 ER in vitro and uterotrophic 
assays?

– “… replacement of the Tier 1 in vitro ER endpoints …with the ER AUC model will 
likely be a more effective and sensitive measure for the occurrence of estrogenic 
activity …”

– “… the Panel did not recommend that the uterotrophic assay be substituted by 
the AUC model at this time. The Panel suggested that the EPA considers: 1) 
conducting limited uterotrophic and other Tier 1 in vivo assay testing, using the original 
Tier 1 Guidelines (and/or through literature curation)”

• Based on follow-up presented here (FR notice, June 18 2015) …
– “EPA concludes that ER Model data are sufficient to satisfy the Tier 1 ER 

binding, ERTA and uterotrophic assay requirements.”

34
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Zebrafish and Developmental Toxicology
• Goal: Use zebrafish as an in vivo model of vertebrate 
developmental toxicity

• Build in vitro to in vivo models using ~700 human assays
• ~1000 Chemicals 

–pharmaceuticals, pesticides, industrial chemicals, personal care 
product chemicals and food ingredients

• Can we combine with ToxCast to determine ZF MOA?

35

Padilla et al., 2015, 2016, in preparation
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Zebrafish Imaging and scoring

36

Deal et al. J Applied Tox.  2016
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Zebrafish Example Chemicals

37

LovastatinDES Permethrin

100% = death
<100% = malformations



Office of Research and Development
National Center for Computational Toxicology

Stress, logP and zebrafish toxicity are related

38
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Subset of chemicals are more potent than 
expected from stress or logP

39

Chemical showing “excess” toxicity



Office of Research and Development
National Center for Computational Toxicology

Proposed Mode of Action 

• Are target+ chemicals highly likely to be ZF+?
• Does target activity occur below cell stress and cytotoxicity?

40

∆

Estrogen 
Receptor
86% active
(30 / 35)

Retinoic Acid 
Receptor
83% active
(5 / 6)

Thyroid 
Hormone 
Receptor
90% active
(9 / 10)

TP53
77% active
(17 / 22)
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MOA with in vitro support

41

Target Description Target-

active 

chemicals

Zebrafish and 

Target active 

chemicals

Fraction 

positive

ADRB Beta adrenergic receptors 6 6 1.00 [*]

AR Androgen receptor 18 15 0.83 [**]

CYP1 CYP450, family 1 4 4 1.00 [*]

CYP2 CYP450, family 2 13 13 1.00 [***]

CYP3 CYP450, family 3 24 22 0.92 [***]

DRD Dopamine receptors 15 12 0.80 [*]

ER Estrogen receptors 35 30 0.86 [***]

mitochondria Mitochondria targeting 4 3 0.75

NR1I3 Constitutive androstane receptor (CAR) 13 12 0.92 [**]

PPARG Peroxisome proliferating receptor gamma 14 11 0.78 [*]

RAR Retinoic acid receptor 6 5 0.83

THR Thyroid hormone receptor 10 9 0.90 [**]

TP53 p53, apoptosis 22 17 0.77 [**]
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MOA from literature targets

42

Target Description Target-

active 

chemical

s

Zebrafish and 

Target active 

chemicals

Fraction 

positive

ACCase Plant Acetyl CoA Carboxylase (lipid synthesis inhibitors) 11 10 0.91[**]

ACHE Acetylcholinesterase 55 41 0.75 [***]

AR Androgen receptor 14 12 0.86 [**]

ER Estrogen receptor 29 25 0.86 [***]

HMGCR HMG-coA reductase 8 6 0.75 

HTR2A Serotonin receptor 2A 5 4 0.80 

ion channel General ion channels 33 27 0.82 [***]

ion channel (Na) Sodium ion channels 22 19 0.86 [***]

lipid synthesis Lipid synthesis targeting (includes sterol synthesis) 38 30 0.79 [***]

microtubule Microtubule-targeting 20 18 0.90 [**]

mitochondria Mitochondria targeting 21 21 1.00 [***]

PGR Progesterone receptor 5 4 0.80 

PPO Plant Protoporphyrinogen Oxidase (lipid membrane disruption) 13 11 0.85 [**]

sterol synthesis Sterol synthesis targeting 24 23 0.96 [***]

THR Thyroid hormone receptor 4 4 1.00 [*]

tubulin Tubulin (microtubule) targeting 7 7 1.00 [**]
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Common MOA Classes

43

• Endocrine Pathways
• Lipid synthesis (cell membrane) disruptors 

– HMGCR
– PPO inhibitors (disrupts plant cell membranes)

• ACHE
• Ion channel blockers
• Mitochondrial disruptors
• Microtubule disruptors
• Chemicals reacting with protein SH groups
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Efforts to Address Metabolism 
Challenge
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NCCT Software Architecture

Databases
DSSTox: Chemistry

PhysChemDB
ToxRefDB: Hazard Details

ToxValDB: Hazard Summary
InVitroDB: ToxCast

ScrubChem: PubChem
ExpoCastDB: Exposure

CPCat: Chemical Use
ACToR: Multiple Types

PKDB: Toxicokinetics
LitDB: Open Literature

Web Services

Models
Physchem
Exposure
Bioactivity
Pharmacokinetics

ACToR

CPCat/CPDat

EDSP21

ToxCast

RapidTox

Chemistry

Dashboards
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RapidTox Dashboard: Risk Assessment Tool
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• Technical limitations/obstacles associated with each technology (e.g., 
metabolism, volatiles, etc.)

• Moving from an apical to a molecular paradigm and defining adversity

• Predicting human safety vs. toxicity

• Combining new approaches to have adequate throughput and sufficiently 
capture higher levels of biological organization

• Systematically integrating multiple data streams from the new approaches in a 
risk-based, weight of evidence assessment

• Quantifying and incorporating uncertainty and variability

• Dealing with validation
• Defining a fit-for-purpose framework(s) that is time and resource efficient 
• Performance-based technology standards vs. traditional validation
• Role of in vivo rodent studies and understanding their inherent uncertainty

• Legal defensibility of new methods and assessment products

Ongoing Challenges
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National Center for Computational Toxicology
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