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Introduction

• The timely characterization of the 
human and ecological risk posed by 
thousands of existing and emerging 
commercial chemicals is a critical 
challenge facing EPA in its mission to 
protect public health and the 
environment

• Tools developed by EPA Exposure 
Forecasting “ExpoCast” project (co-
leads Kristin Isaacs and John 
Wambaugh) inform chemical priority 
setting

November 29, 2014
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Scale of the Problem

Endocrine Disruptor Screening Program 
(EDSP) Chemical List

Number of
Compounds

Conventional Active Ingredients 838

Antimicrobial Active Ingredients 324

Biological Pesticide Active Ingredients 287

Non Food Use Inert Ingredients 2,211

Food Use Inert Ingredients 1,536

Fragrances used as Inert Ingredients 1,529

Safe Drinking Water Act Chemicals 3,616

TOTAL 10,341

EDSP 
Chemical 
Universe
10,000

chemicals
(FIFRA & 
SDWA)

EDSP List 2 
(2013)

107
Chemicals

EDSP List 1 
(2009)

67 
Chemicals

So far 67 chemicals have completed testing and an 
additional 107 are being tested

December, 2014 Panel: “Scientific Issues Associated with Integrated 
Endocrine Bioactivity and Exposure-Based Prioritization and Screening“ 
DOCKET NUMBER: EPA–HQ–OPP–2014–0614 

• Park et al. (2012): At least 3221 chemicals in humans, many appear to be exogenous
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New NAS Report

January 5, 2017

“Translation of high-throughput data into risk-based rankings is an important application 
of exposure data for chemical priority-setting. Recent advances in high-throughput 
toxicity assessment, notably the ToxCast and Tox21 programs (see Chapter 1), and in high-
throughput computational exposure assessment (Wambaugh et al. 2013, 2014) have 
enabled first-tier risk-based rankings of chemicals on the basis of margins of exposure”
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High-Throughput 
Bioactivity Screening

 Tox21:  Examining >10,000 chemicals using 
~50 assays intended to identify 
interactions with biological pathways 
(Schmidt, 2009)

 ToxCast : For a subset (>1000) of Tox21 
chemicals ran >500 additional assays 
(Judson et al., 2010)

 Most assays conducted in dose-response 
format (identify 50% activity concentration 
– AC50 – and efficacy if data described by a 
Hill function, Filer et al., 2016)

 All data is public: http://actor.epa.gov/ 



Office of Research and Development6 of 33

High Throughput Risk 
Prioritization

• High throughput risk prioritization 
needs:

1. high throughput hazard 
characterization (e.g., ToxCast, 
Tox21)

2. high throughput exposure
forecasts

3. high throughput toxicokinetics
(i.e., dosimetry)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro
with Reverse 

Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk
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• We need high throughput exposure models

Available Data for Exposure 
Estimations
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• We need high throughput toxicokinetics (HTTK)
• Studies like Wetmore et al. (2012,2015), address the 

need for TK data using in vitro methods

The Need for In Vitro 
Toxicokinetics
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Examined
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Traditional in vivo TK
Chemicals with High
Throughput TK
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ToxCast-derived 
Receptor Bioactivity 
Converted to 
mg/kg/day with HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

High Throughput Risk 
Prioritization in Practice

Near Field
Far Field

December, 2014 Panel:
“Scientific Issues Associated with Integrated 
Endocrine Bioactivity and Exposure-Based 
Prioritization and Screening“

• July and December EPA FIFRA Scientific Advisory Panels reviewed ExpoCast research as 
it applies to the Endocrine Disruptor Screening Program
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Chemical Manufacture
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Media Samples

Ecological
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Figure from Kristin Isaacs

Thinking About Exposure
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Wambaugh et al. (2014), 
Env. Sci. & Tech.

Chemical Use Identifies 
Relevant Pathways

Chemical Manufacture
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…and some pathways have much higher average 
exposures!

In particular, NHANES biomonitoring indicates 
exposures to consumer product chemicals are 
highest

SHEDS-HT (High Throughput 
Stochastic Human Exposure 
Dose Simulation Model) 
simulates human exposure in 
the indoor environment 
(Isaacs et al. (2014), Env. Sci. & Tech.)
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Functional Use
(FUse)

Dataset
14,000+ Chemicals 

200+ Functions

Allows for Modeling of
Function in Terms of Chemical 

Properties or Structures

Databases and Models for 
Predicting Function of Chemicals

Isaacs et al. (2016), Tox. Reports

>2000 chemicals with Material Safety Data Sheets (MSDS) in CPCPdb (Goldsmith et al. 
(2014), Food Chem. Tox.)
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Predicting Whether Chemicals 
Are in Consumer Products

 Unfortunately the 
available databases do not 
cover every chemical-
product combination 
(~2000 chemicals, but 
already >8000 in Tox21)

 We are now using 
machine learning to fill in 
the rest

 We can predict functional 
use and weight fraction 
for thousands of 
chemicals

Office of Research and Development

Isaacs et al. (2016), Tox. Reports
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Obtaining New Data

“I’m searching for my keys.”

 Emphasis on suspect screening and 
non-targeted analysis mass 
spectrometry

 Ongoing ExpoCast contract 
consumer product scanning and 
blood sample monitoring

 EPA has developed significant in 
house capabilities

• Published on analysis of house dust 
from American homes – can identify 
many of the most prevalent chemicals 
but only 2% overall, Rager et al. (2016)

 EPA is coordinating a comparison of non-targeted screening workflows 
used by leading academic and government groups using known chemical 
mixtures (ToxCast) and standardized environmental/biological samples (led 
by Jon Sobus and Elin Ulrich)
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Found >3500 chemicals in total across the 100 
products
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found in a cotton 
shirt
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Phillips et al. (in preparation)
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Suspect Screening and 
Non-Targeted Analytical Chemistry

M
as

s

Retention Time

947 Peaks in an American Health Homes Dust 
Sample

We are expanding our reference libraries using ToxCast chemicals to enable greater numbers 
and better accuracy of confirmed chemicals

Rager, et al. (2016), Environment International

Each peak corresponds to a 
chemical with an accurate mass 
and predicted formula:

Multiple chemicals can have the 
same mass and formula:

Is chemical A present, 
chemical B, both, or some 
other chemical (neither)?

C17H19NO3
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Application:
HT Exposure “Forensics”

Environmental or 
Biological Sample

Molecular Features 
Identified by Non-
Targeted Analyses

Fracking

Vapor 
Intrusion

Unique
Industrial
Sources

Smoking

New Forensic 
Analysis 

Tools/Models

Consumer
Products

Building
Materials

What sources 
are present?

What chemicals 
comprise the source 

fingerprint?

Household 
Articles

Chemical Use 
Databases

Chemical
Structure
Databases

Analyzed 
Sample Archives

Data Mining 
and Machine 

Learning

Mass Spectra 
Databases

Can we identify new 
sources?

Figure from Kristin Isaacs
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Exposure-Based Screening 
and Priority-Setting
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Hazard and Functional Use 
Prediction Allows Searches for 

Chemical Alternatives

Phillips et al. (2017), Green Chemistry

• Some chemicals 
with may have 
alternative uses 
and lesser 
bioactivity

• Dark green 
indicates a high 
probability of a 
chemical having 
a function

• The histogram 
above, indicates 
how many high-
probability 
predictions were 
made for each harmonized function
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High-Throughput 
Toxicokinetics

543 chemicals published to date
“httk” R Package publicly available
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In Vitro - In Vivo 
Extrapolation (IVIVE)

Definition: 
IVIVE is the utilization of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, reversible/ irreversible

• Both contribute to predict in vivo effects
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Evaluating In Vitro HTTK 
Predictions with In Vivo Data

 Collected in vitro HTTK 
data for rat

 Conducted in vivo rat 
TK studies or 26 
ToxCast compounds in 
rat

 Supplemented with 
published rat in vivo TK 
data (mostly 
pharmaceuticals)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

25

with Mike Hughes, Jane-Ellen 
Simmons, Carolin Ring, Tim Fennell 
(RTI, and Rusty Thomas
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Evaluating In Vitro HTTK 
Predictions with In Vivo Data

26

 Collected in vitro HTTK 
data for rat

 Conducted in vivo rat 
TK studies or 26 
ToxCast compounds in 
rat

 Supplemented with 
published rat in vivo TK 
data (mostly 
pharmaceuticals)

 Can estimate
• Fraction absorbed
• Absorption Rate
• Elimination Rate
• Volume of Distribution

Now measuring bioavailability (CACO2) for all HTTK chemicals
with Mike Hughes, Jane-Ellen 
Simmons, Carolin Ring, Tim Fennell 
(RTI, and Rusty Thomas
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Using in vivo Data to 
Evaluate RTK

Wambaugh et al. (2015), 
Tox. Sci.

• When we compare the steady-state 
concentrations (Css) predicted from in 
vitro HTTK with in vivo Css values 
determined from the literature we 
find limited correlation (R2 ~0.34)

• The dashed line indicates the identity 
(perfect predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured and 
predicted values (the residual)
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Toxicokinetic Triage

Office of Research and Development30 of 45 

 Through comparison to in 
vivo data, a cross-
validated (random forest) 
predictor of success or 
failure of HTTK has been 
constructed

 Add categories for 
chemicals that do not 
reach steady-state or for 
which plasma binding 
assay fails

 All chemicals can be 
placed into one of seven 
confidence categories

Wambaugh et al. (2015), 
Tox. Sci.
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High Throughput Risk 
Prioritization in Practice

ExpoCast
Predicted 
Exposure 
Rates
(mg/kg/day)

ToxCast-derived 
in vitro
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

CDC NHANES Compounds

To
ta

l U
.S

. P
op

ul
at

io
n 

(m
g/

kg
/d

ay
)

10-7

10-3

10

Ring et al., submitted
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Predict
physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney 
function)
Hepatocellularity

Sample NHANES 
quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Monte Carlo Population 
simulator for HTTK

Ring et al., submitted

Correlated sampling of 
physiological model 
parameters



Office of Research and Development31 of 33

Life-stage and Demographic 
Specific Predictions

• Wambaugh et al. (2014) predictions 
of exposure rate (mg/kg/day) for 
various demographic groups

• Can use HTTK to calculate margin 
between bioactivity and exposure for 
specific populations

Change in Risk

Change in Activity:Exposure Ratio

Ring et al., submitted



Office of Research and Development32 of 33

httk: An Public, Open Source Tool

https://cran.r-project.org/web/packages/httk/
Can access this from the R GUI: “Packages” then “Install Packages”

Ongoing refinements:
High log P, ionization 
(Pearce et al., in preparation)

 “httk” R Package for reverse dosimetry and PBTK
 543 Chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. package documentation manuscript accepted at 

Journal of Statistical Software

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood
Gut Lumen

QGFR
Kidney Tissue

Liver Blood
Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  BloodVe
no

us
  B
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Old versions are archived

https://cran.r-project.org/web/packages/httk/
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Conclusion

 We would like to know more about the risk posed by thousands of 
chemicals in the environment – which are most worthy of further study?
• High throughput screening (HTS) provides a path forward for identifying 

potential hazard
• Exposure and dosimetry provide real world context to hazards indicated by 

HTS

 Using in vitro methods developed for pharmaceuticals, we can relatively 
efficiently predict TK for large numbers of chemicals, but we are limited by 
analytical chemistry

 Using high throughput exposure approaches we can make coarse 
predictions of exposure
• We are actively refining these predictions with new models and data
• In some cases, upper confidence limit on current predictions is already many 

times lower than predicted hazard,
The views expressed in this presentation are 
those of the author and do not necessarily 
reflect the views or policies of the U.S. EPA
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