

Fun with High Throughput Toxicokinetics

Webinar Presentation to CalEPA Office of Environmental Health Hazard Assessment

June 12, 2017

John Wambaugh National Center for Computational Toxicology Office of Research and Development U.S. Environmental Protection Agency wambaugh.john@epa.gov

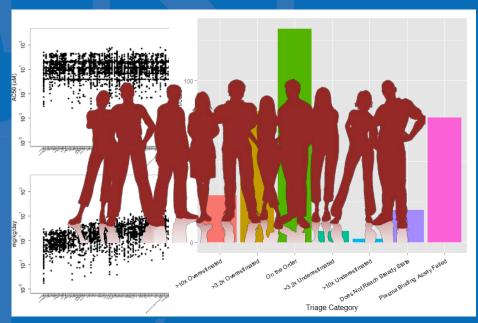
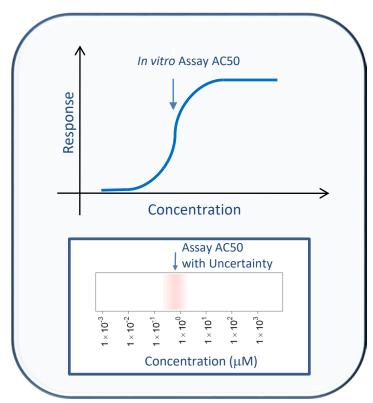


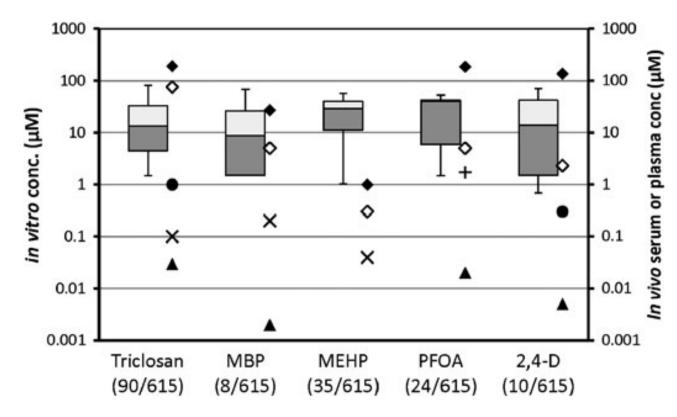
Figure includes image from Thinkstock
The views expressed in this presentation are those of the author
and do not necessarily reflect the views or policies of the U.S. EPA

ORCID: 0000-0002-4024-534X

Introduction


- Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by predicting tissue concentrations due to exposure
 - However traditional TK methods are resource intensive
- Relatively high throughput TK (HTTK) methods have been used by the pharmaceutical industry to determine range of efficacious doses and to prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; Wang, 2010)
 - A key application of HTTK has been "reverse dosimetry" (also called Reverse TK or RTK)
 - RTK can approximately convert *in vitro* HTS results to daily doses needed to produce similar levels in a human for comparison to exposure data (starting off with Rotroff, *et al.*, 2010)
- A new EPA open source R package ("httk") is freely available on CRAN allows
 RTK and other statistical analyses of 553 chemicals (more coming)

High-Throughput Bioactivity


- **Tox21**: Examining >8,000 chemicals using ~50 assays intended to identify interactions with biological pathways (Schmidt, 2009)
- **ToxCast**: For a subset (>2000) of Tox21 chemicals ran >1100 additional assays (Judson *et al.*, 2010)
- Most assays conducted in dose-response format (identify 50% activity concentration - AC50 - and efficacy if data described by a Hill function, Filer et al., 2016)
- All data is public: http://comptox.epa.gov/

in vitro - in vivo Concordance

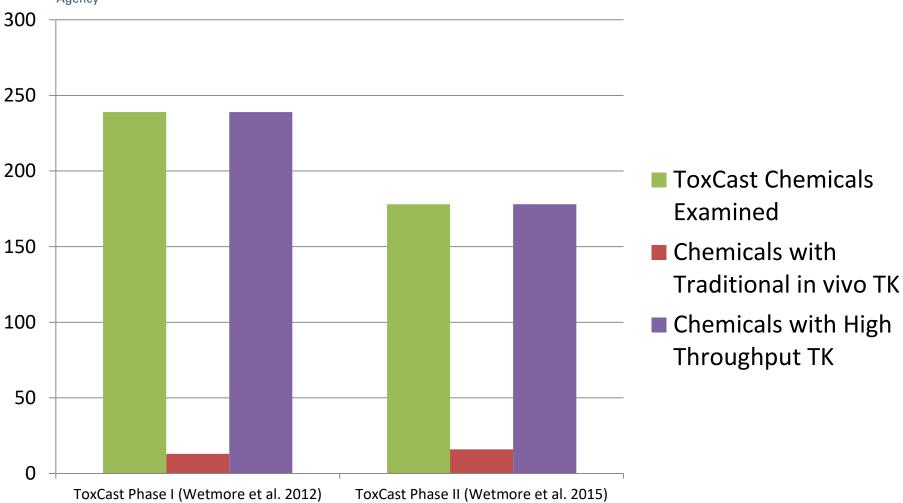
Aylward and Hays (2011)
Journal of Applied Toxicology **31** 741-751

- estimated or measured average concentrations associated with the LOAEL in animal studies
- NOAEL in animal studies
- Humans with chronic exposure reference values (solid circles)
- X Volunteers using products containing the chemical
- + Biomonitored occupational populations
- ▲ General populations

High Throughput Risk Prioritization

- High throughput risk prioritization relies on three components:
 - 1. high throughput **hazard** characterization
 - high throughput exposure forecasts
 - 3. high throughput **toxicokinetics** (*i.e.*, dosimetry)
- While advances have been made in toxicity and exposure screening, TK methods applicable to 100s of chemicals are needed

mg/kg BW/day Potential Hazard from in vitro with Reverse **Toxicokinetics** Potential Exposure from ExpoCast Lower Higher Medium Risk


Risk

see Wetmore et al. (2015)

Risk

The Need for *In Vitro*Toxicokinetics

Office of Research and Development

6 of 60

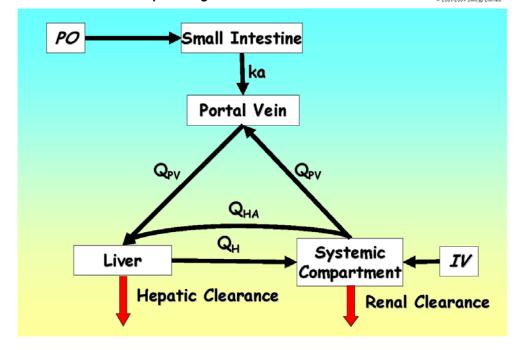
 Studies like Wetmore et al. (2012, 2015), address the need for TK data using in vitro methods

In Vitro - In Vivo Extrapolation (IVIVE)

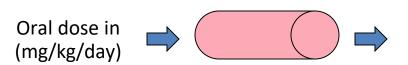
Definition:

IVIVE is the utilization of in vitro experimental data to predict phenomena in vivo

- IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics):
 - Fate of molecules/chemicals in body
 - Considers absorption, distribution, metabolism, excretion (ADME)
 - Uses empirical PK and physiologically-based (PBPK) modeling
- IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
 - Effect of molecules/chemicals at biological target in vivo
 - Assay design/selection important
 - Perturbation as adverse/therapeutic effect, reversible/irreversible
- Both contribute to predict *in vivo* effects


High Throughput Toxicokinetics (HTTK)

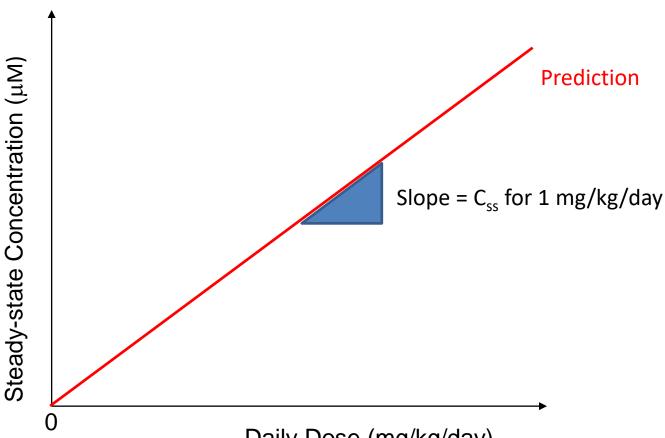
Jamei et al. (2009)


Minimal Model: Lumped Single Distribution Volume

sım#†CYP

- In vitro plasma protein binding and metabolic clearance assays allow approximate hepatic and renal clearances to be calculated
- At steady state this allows conversion from concentration to administered dose
- 100% bioavailability assumed

$$C_{ss} = \frac{\text{oral dose rate}}{\left(\text{GFR} * F_{ub}\right) + \left(Q_1 * F_{ub} * \frac{Cl_{int}}{Q_1 + F_{ub} * Cl_{int}}\right)}$$



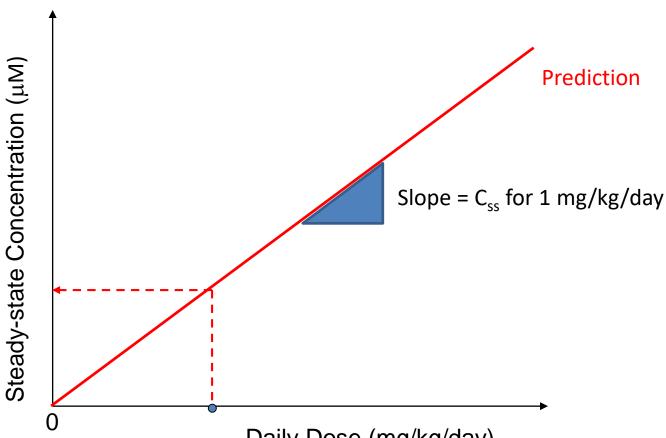
Sum of hepatic and renal clearance (mg/kg/day)

EPA—IVIVE in a High-Throughput Environment -Modeling In Vivo Pharmacokinetics **Environmental Protection** Agency Using In Vitro Assays Human Hepatic Hepatocytes Clearance (10 donor pool) In Vitro - In Vivo Extrapolation Steady State Blood Concentrations Human Plasma Protein Plasma **Binding** (6 donor pool)

Steady-State is Linear with Dose

$$C_{ss} = \frac{\text{oral dose rate}}{\left(\text{GFR * F}_{ub}\right) + \left(Q_1 * F_{ub} * \frac{Cl_{int}}{Q_1 + F_{ub} * Cl_{int}}\right)}$$

10 of 60 Office of Research and Development


Wetmore *et al.* (2012)

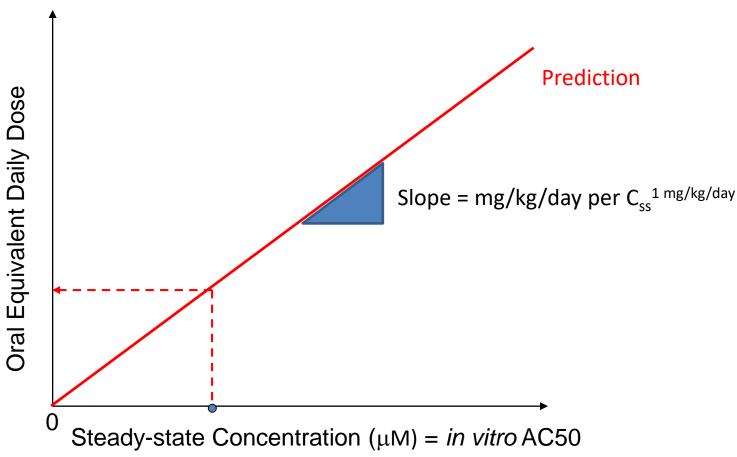
Daily Dose (mg/kg/day)

Can calculate predicted steady-state concentration (C_{ss}) for a 1 mg/kg/day dose and multiply to get concentrations for other doses

Steady-State is Linear with Dose

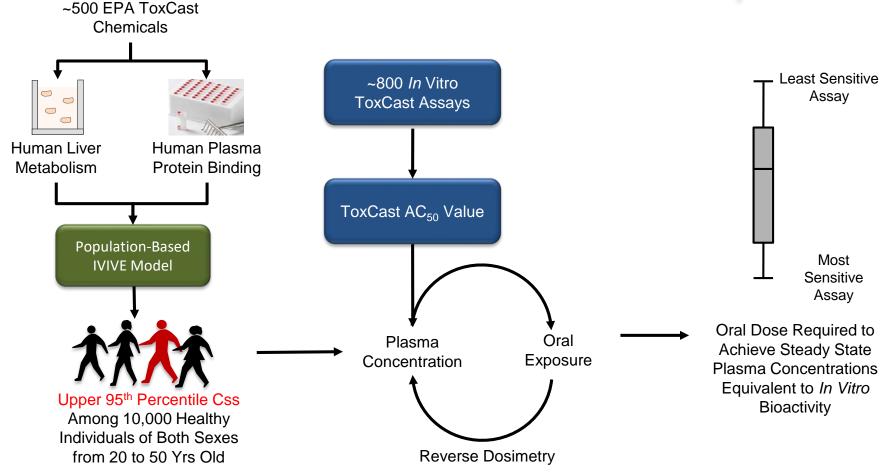
$$C_{ss} = \frac{\text{oral dose rate}}{\left(\text{GFR} * F_{ub}\right) + \left(Q_1 * F_{ub} * \frac{Cl_{int}}{Q_1 + F_{ub} * Cl_{int}}\right)}$$

Office of Research and Development


Wetmore et al. (2012)

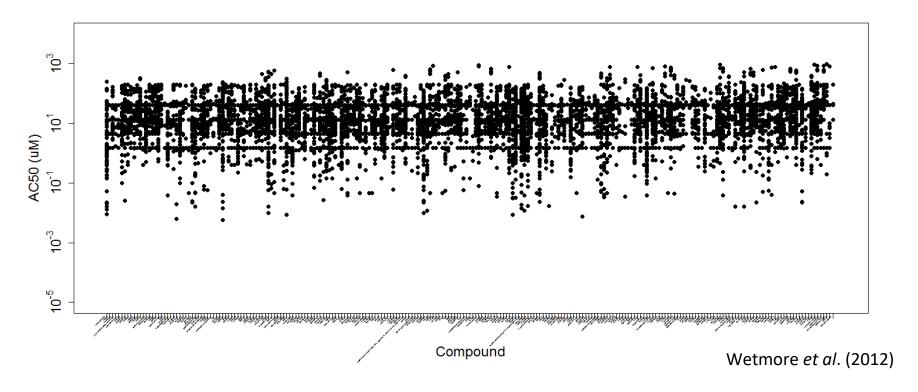
Daily Dose (mg/kg/day)

Can calculate predicted steady-state concentration (C_{ss}) for a 1 mg/kg/day dose and multiply to get concentrations for other doses

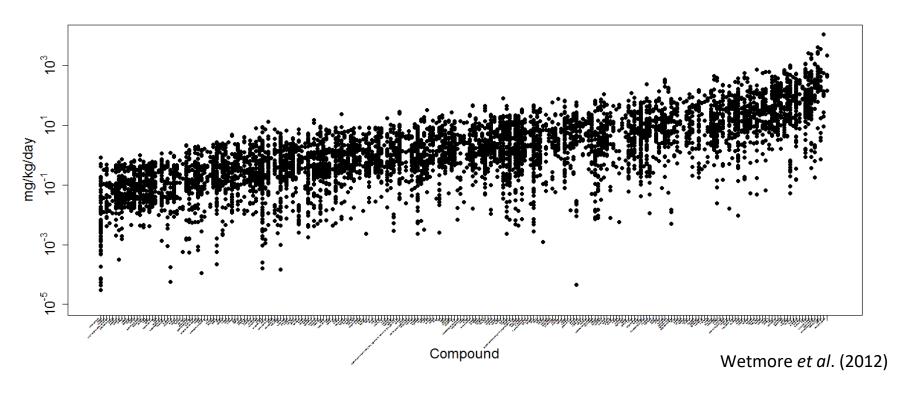

In Vitro-In Vivo Extrapolation (IVIVE)

- Swap the axes (this is the "reverse" part of reverse dosimetry)
- Can divide bioactive concentration by C_{ss} for for a 1 mg/kg/day dose to get oral equivalent dose

United States Environmental Protection Agency


Integrating Human Dosimetry and Exposure with ToxCast In Vitro Assays

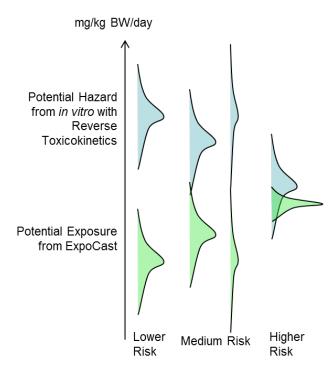
Rotroff et al., Tox Sci., 2010 Wetmore et al., Tox Sci., 2012 Wetmore et al., Tox Sci, 2015


ToxCast in vitro Bioactive Concentrations

It appears harder to prioritize on bioactive in vitro concentration without in vivo context

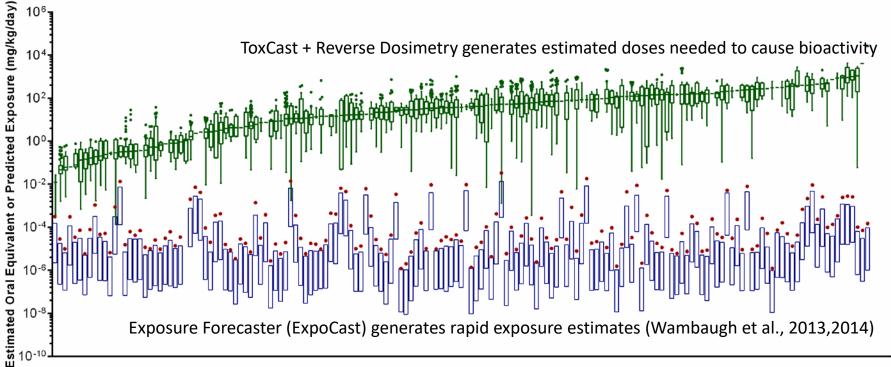
HTTK Oral Equivalents

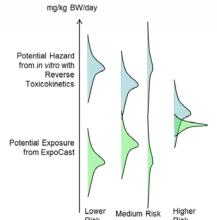
 Translation from in vitro to steady-state oral equivalent doses allow greater discrimination between effective chemical potencies


Activity-Exposure Ratio

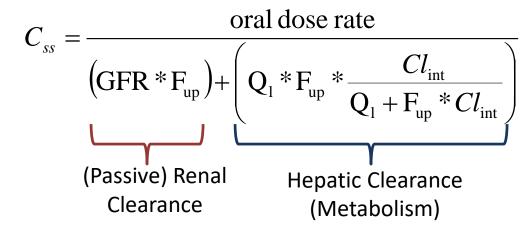
(Wetmore et al. 2012, 2014, 2015)

$$AER = \frac{Oral Equiv. Dose}{Estimated exposure}$$


AER <=1: Exposure potentially high enough to cause bioactivity

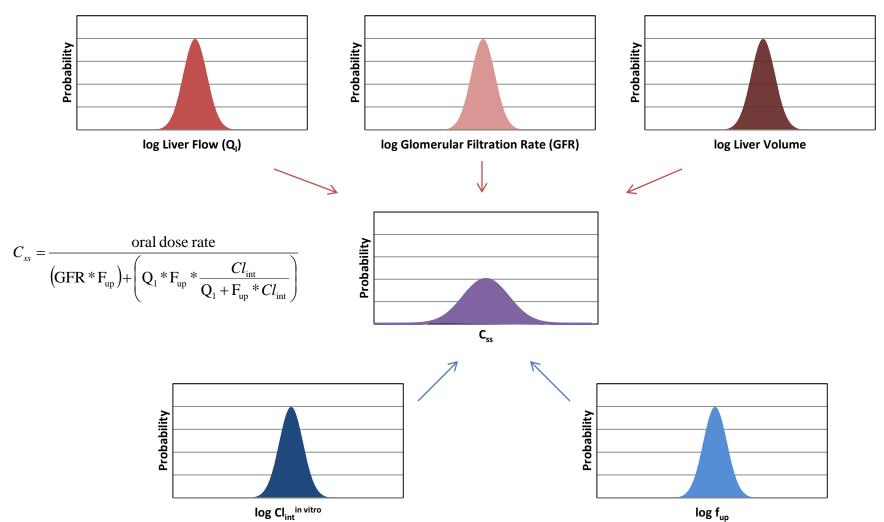

AER >> 1: Exposure less likely to be high enough to cause bioactivity

Incorporating Dosimetry-Adjusted ToxCast Bioactivity Data with Exposure

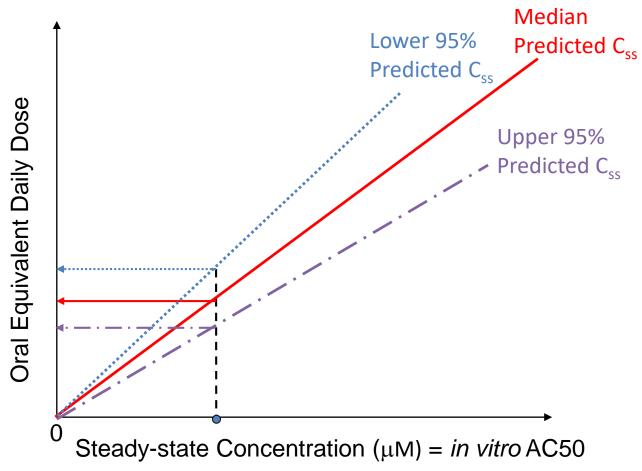


Variability in this Steady-State TK Model

Jamei *et al*. (2009)


sım##CYP Minimal Model: Lumped Single Distribution Volume Small Intestine PO Portal Vein Systemic Liver Compartment Hepatic Clearance Renal Clearance

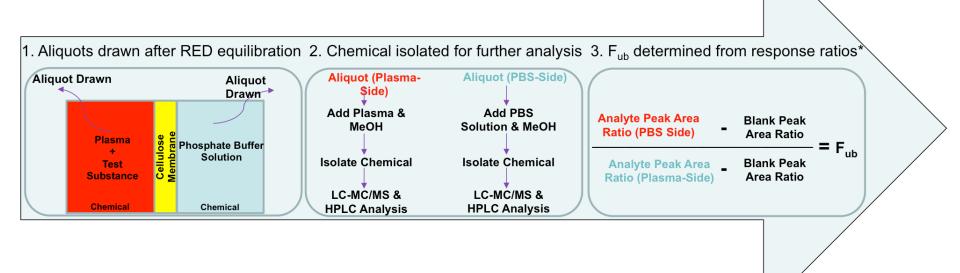
- In vitro clearance (µL/min/10⁶ hepatocytes) is scaled to a whole organ clearance using the density of hepatocytes per gram of liver and the volume of the liver (which varies between individuals)
- Glomerular filtration rate (GFR) and blood flow to the liver (Q₁) both vary from individual to individual
- Further assume that measured HTTK parameters have 30% coefficient of variation



Monte Carlo (MC) Approach to Variability

Steady-State In Vitro-In Vivo Extrapolation (IVIVE)

The higher the predicted C_{ss} , the lower the oral equivalent dose, so the upper 95% predicted C_{ss} from the MC has a lower oral equivalent dose

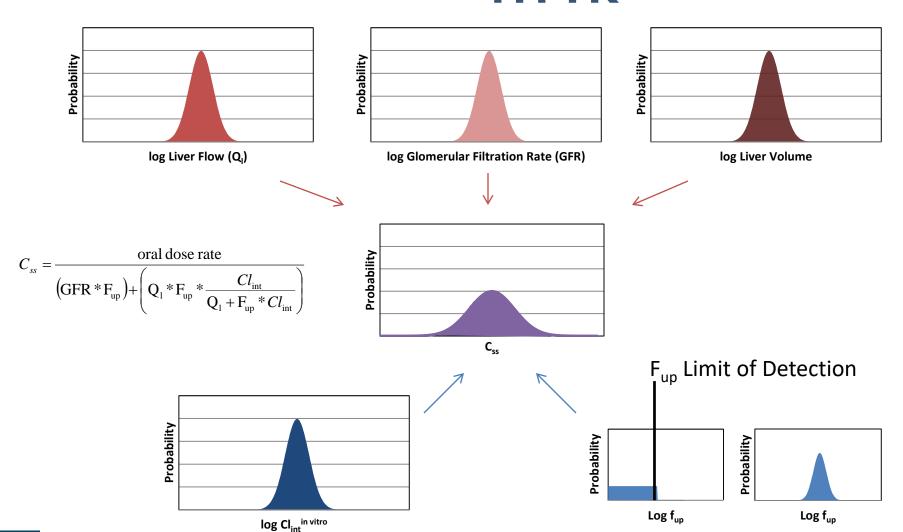

HTTK Limitations (from Ring et al., 2017)

- Oral absorption
 - 100% assumed, but may be very different
 - *In silico* models not necessarily appropriate for environmental chemicals
- Hepatic Clearance (CL_{int})
 - Ten donor pool in suspension for 2-4 h misses variability and low turnover compounds
 - Isozyme abundances and activity: varies with age, ethnicity (at least) (Yasuda et al. 2008, Howgate et al. 2006, Johnson et al. 2006)
 - Parent chemical depletion only
- Isozyme-specific data & modeling (Wetmore et al. 2014)
 - Isozyme-specific metabolism assays not HT
 - In silico predictions of isozyme-specific metabolism? Not easy!
 - Existing data is mostly for pharmaceuticals
- Plasma binding assay (F_{up})
 - Assay often fails due to analytical chemistry sensitivity (Wetmore et al., 2012)
 - Plasma protein concentration variability (Johnson et al. 2006, Israili et al. 2001)
 - Albumin or AAG binding? (Routledge 1986)

Plasma Protein Binding Assay is Limited by Analytical Chemistry

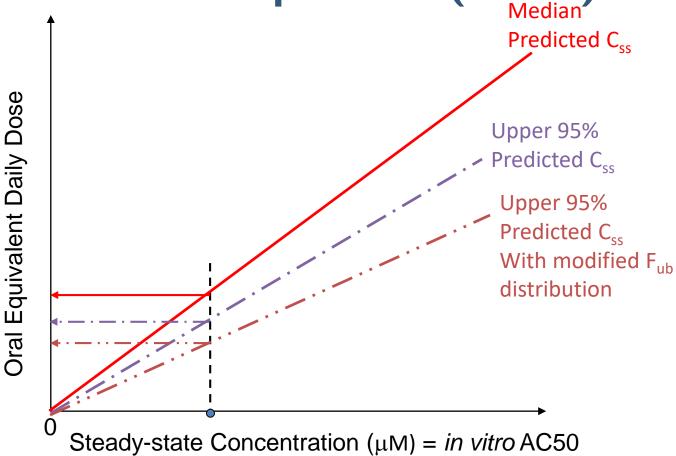
Rapid Equilibrium Dialysis (RED) Method: Waters et al. (2008)

Why Build Another PBTK Tool?

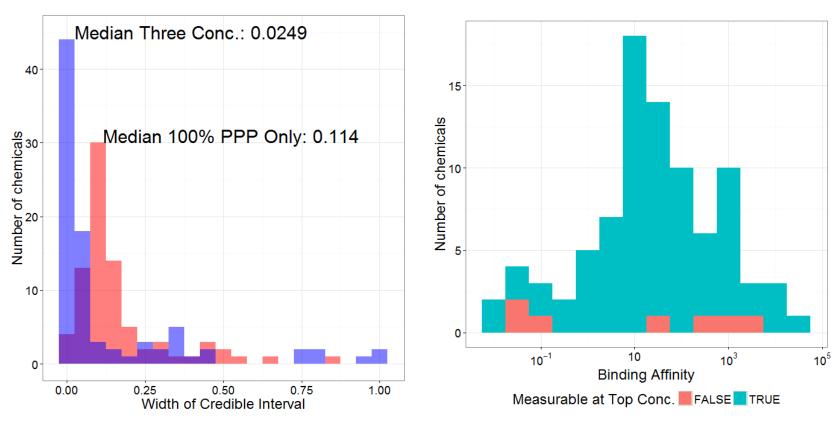

Adenty	SimCYP	ADMET Predictor / GastroPlus	MEGen	httk
Maker	SimCYP Consortium / Certara	Simulations Plus	UK Health and Safety Laboratory (Loizou)	US EPA
Availability	License, but inexpensive for research	License, but inexpensive for research	Free: http://xnet.hsl.gov.uk/mege n	Free: CRAN Repository
Population Variability Monte Carlo	Yes	No	No	Yes
Batch Mode	Yes	Yes	No	Yes
Physiological Data	Yes	Yes	Yes	Yes
Chemical-Specific Data Library	Clinical Drugs	No	No	Pharma and ToxCast Compounds: 443 PBTK, +100 steady-state only
Export Function	No	No	Matlab and AcslX	SBML and Jarnac
R Integration	No	No	No	Yes
Easy Reverse Dosimetry	Yes	Yes	No	Yes
Future Proof XML	No	No	Yes	No

Office of Research and Development

We want to do a statistical analysis (using R) for as many chemicals as possible



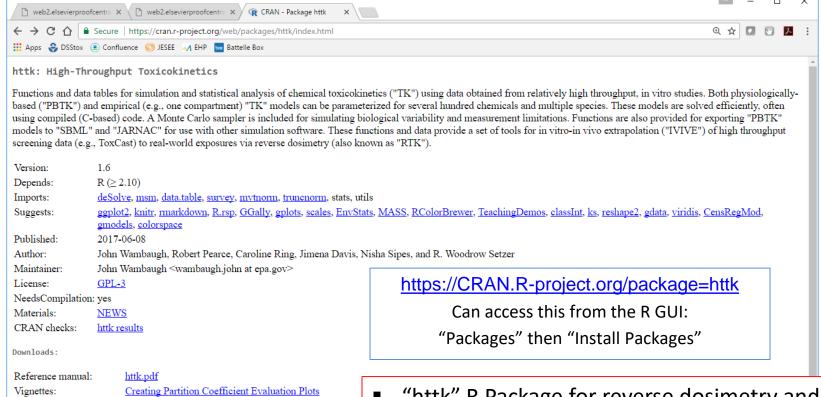
Modified f_{up} **Distribution for HTTK**


Steady-State In Vitro-In Vivo Extrapolation (IVIVE) Median

Taking into account the limit of detection issues does not change the median (or lower 95% C_{ss}) but does change the upper C_{ss} , causing lower oral equivalent dose predictions (greater sensitivity)

Improving Plasma Binding Measurement

- Using a Bayesian analysis via MCMC (in JAGS) to estimate 95% credible intervals
- New protocol uses three plasma protein concentrations (100%, 30%, and 10% of physiologic concentration)
- Can analyze data jointly using a binding affinity model



Goals for HTTK

- In order to address greater numbers of chemicals we collectin vitro, high throughput toxicokinetic (HTTK) data
- The goal of HTTK is to provide a human dose context for in vitro concentrations from HTS
 - This allows direct comparisons with exposure
- An R statistical package allows us to evaluate in vitro predictions two ways:
 - We compare in vitro predictions and in vivo measurements
 - We perform simulation studies to examine key assumptions

R Package "httk"

Age distributions

Global sensitivity analysis

Global sensitivity analysis plotting

Height and weight spline fits and residuals

Hematocrit spline fits and residuals

Plotting Css95

Serum creatinine spline fits and residuals

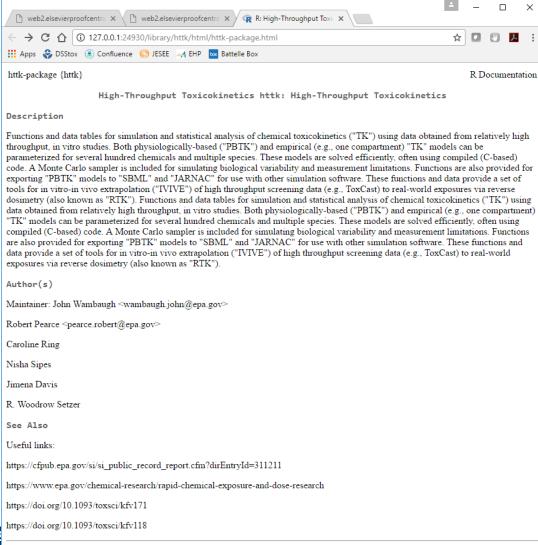
Generating subpopulations

Evaluating HTTK models for subpopulations

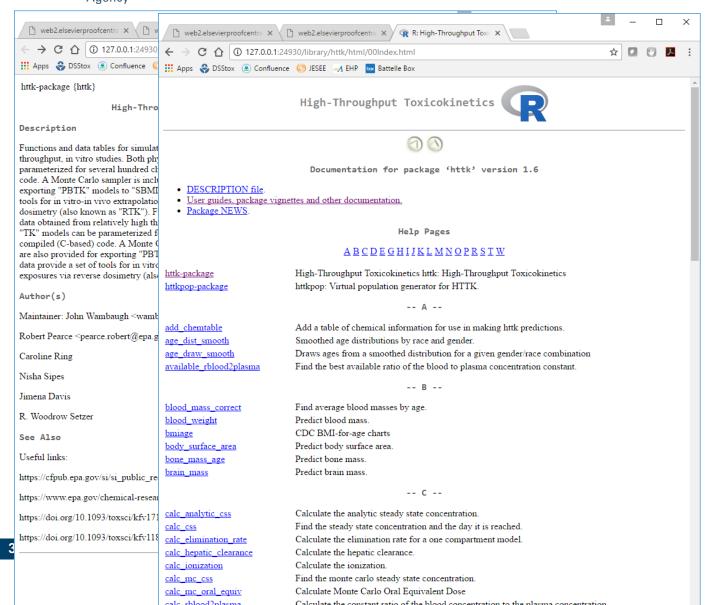
Generating Figure 2 Generating Figure 3

Plotting Howgate/Johnson data

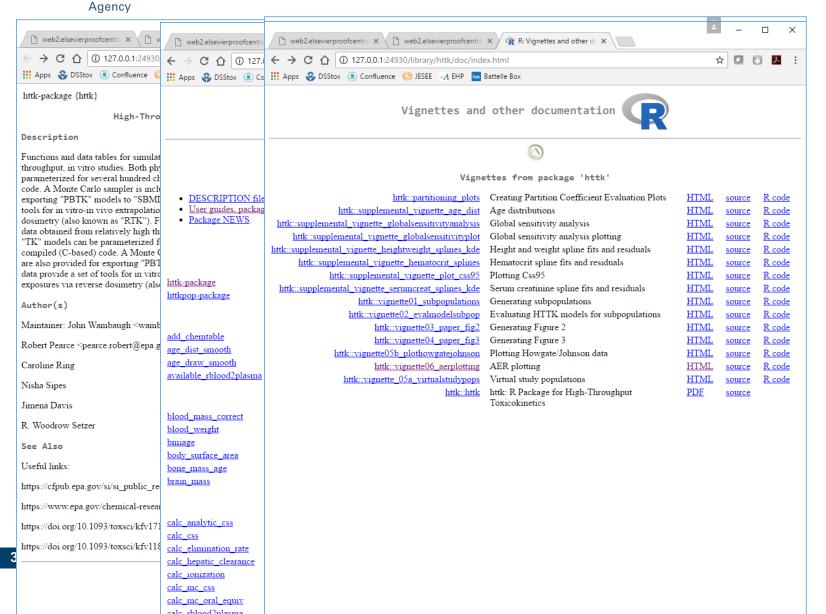
AER plotting


Virtual study populations

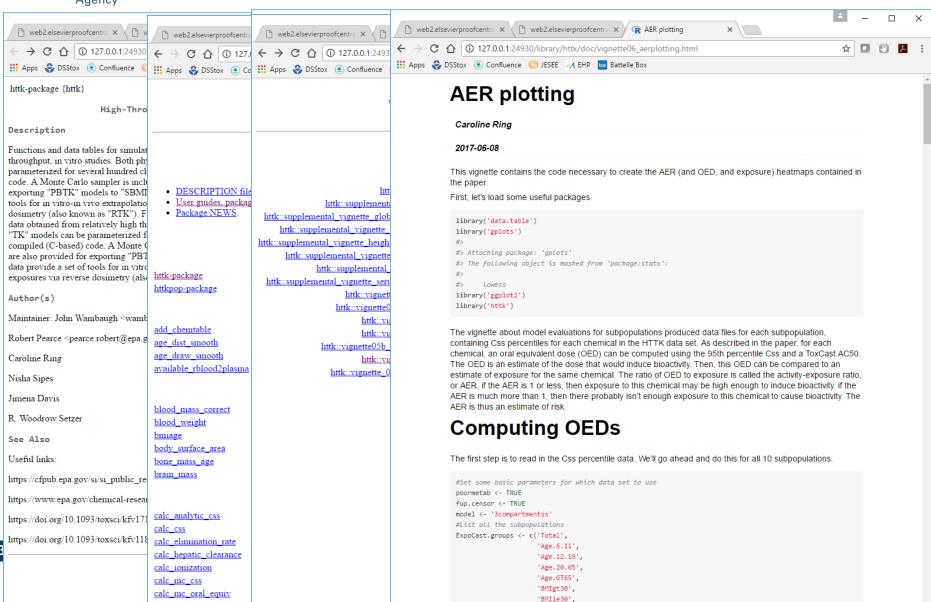
httk: R Package for High-Throughput Toxicokinetic


- "httk" R Package for reverse dosimetry and PBTK
- 553 chemicals to date
- 100's of additional chemicals being studied
- Pearce et al. documentation manuscript accepted at Journal of Statistical Software
- Vignettes provide examples of how to use many **functions**

28 of 60

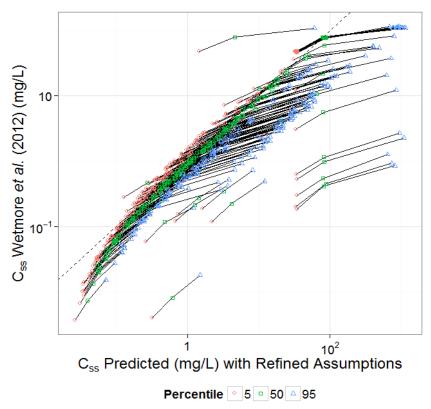


United States Environmental Protection Agency



United States Environmental Protection

anta ebtanduntase



What you can do with R Package "httk"

- Allows, one compartment, two-compartment, three-compartment, and PBTK modeling
- Allows conversion of *in vitro* concentration to *in vivo* doses
- Allows prediction of internal tissue concentrations from dose regimen (oral and intravenous)
- A peer-reviewed paper in the Journal of Statistical software provides a how-to guide (Pearce et al., in press)
- You can use the built in chemical library or add more chemical information (examples provided in JSS paper)
- You can load specific (older) versions of the package
- You can use specific demographics in the population simulator (v1.5 and later Ring et al., in press)
 - Gender, age, weight, ethnicity, renal function
- You can control the built in random number generator to reproduce the same random sequence

Comparison Between httk and SimCYP

- In the Rotroff et al. (2010) and Wetmore et al. (2012,2013,2014,2015) papers SimCYP was used to predict distributions of C_{ss} from in vitro data
 - We show that "httk" can reproduce the results from those publications for most chemicals using our implementation of Monte Carlo.
- Any one chemical's median and quantiles are connected by a dotted line.
- The RED assay for measuring protein binding fails in some cases because the amount of free chemical is below the limit of detection
 - A default value of 0.5% free was used
 - Now we use random draws from a uniform distribution from 0 to 1%.

Steady State Concentration Examples

library(httk)

```
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (published value):
calc mc css(chem.cas="34256-82-1")
# Should produce error:
calc mc css(chem.name="34256-82-1")
#Capitalization shouldn't matter:
calc mc css(chem.name="acetochlor"
calc mc css(chem.name="Acetochlor")
# What's going on?
help(calc mc css)
# What chemicals can I do?
get cheminfo()
```


Oral Equivalent Dose Examples

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, for Acetochlor (published value):

get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 quantile, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 0.95 quantile, for Acetochlor (published values):

get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 0.5, and 0.95 quantiles, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for rat, 0.95 quantile, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",species="Rat")

Interspecies Extrapolation **E**xamples

```
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (calculated value):
calc mc css(chem.cas="34256-82-1",method="dr"))
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (should produce errors since there is no
published value, 0.5 quantile only):
get wetmore css(chem.cas="34256-82-1",species="Rat")
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (calculated value):
calc mc css(chem.cas="34256-82-1",species="Rat")
#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (published value):
get wetmore css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)
#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (calculated value):
calc mc css(chem.cas="34256-82-1",species="Rat",which.guantile=0.5)
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (should produce error since there is no
published value, human and rat only):
get wetmore css(chem.cas="34256-82-1",species="Mouse")
#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (calculated value):
calc mc css(chem.cas="34256-82-1",species ="Mouse")
```


Help Files

Every function has a help file

help(add_chemtable)

Add a table of chemical information for use in making httk predictions.

Description

This function adds chemical-specific information to the table chem.physical_and_invitro.data. This table is queried by the model parameterization functions when attempting to parameterize a model, so adding sufficient data to this table allows additional chemicals to be modeled.

Usage

add_chemtable(new.table, data.list, current.table=NULL, reference=NULL,species=NULL, overwrite=F)

Arguments

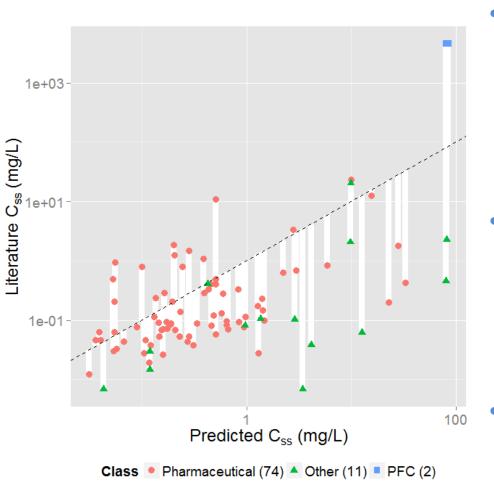
new.table Object of class data.frame containing one row per chemical, with each chemical minimally by described by a CAS

number.

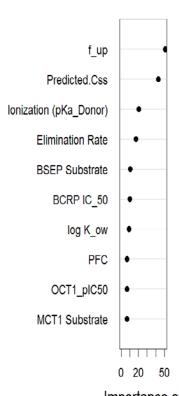
data.list This list identifies which properties are to be read from the table. Each item in the list should point to a column in

the table new.table. Valid names in the list are: 'Compound', 'CAS', 'DSSTox.GSID' 'SMILES.desalt', 'Reference', 'Species', 'MW', 'logP', 'pKa_Donor', 'pKa_Accept', 'logMA', 'Clint', 'Clint.pValue', 'Funbound.plasma', 'Fgutabs',

'Rblood2plasma'. Note that Rblood2plasma (Ratio blood to plasma) is currently not used.


Why Do Statistical Analysis?

- In vivo Predictive Ability and Domain of Applicability
- In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
- For environmental compounds, there will be no clinical trials
- Uncertainty must be well characterized ideally with rigorous statistical methodology
 - We will use direct comparison to in vivo data in order to get an empirical estimate of our uncertainty
 - Any approximations, omissions, or mistakes should work to increase the estimated uncertainty when evaluated systematically across chemicals



Using in vivo Data to Evaluate

- When we compare the C_{ss} predicted from *in* vitro HTTK with *in vivo* C_{ss} values determined from the literature we find limited correlation ($R^2 \sim 0.34$)
- The dashed line indicates the identity (perfect predictor) line:
 - Over-predict for 65
 - Under-predict for 22
- The white lines indicate the discrepancy between measured and predicted values (the residual)

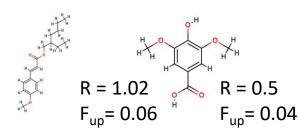
Importance of Descriptors

Predicting When RTK Will Work

- We can use computer algorithms to analyze chemical descriptors to try to predict when the residual will be small
- Factors included are:
 - Physico-chemical properties
 - Log(Kow), molecular weight, acid/base association constants (pKa), general pharmaceutical or perfluorinated compound classification
 - In vitro HTTK data
 - Plasma protein binding (F_{up}) and hepatic clearance
 - Active chemical transport
 - Use quantitative structure activity relationships (QSARs) to predict likelihood each compound is a substrate for 17 different transporters (From Alexander Sedykh and Alex Tropsha (UNC) and Sieto Bosgra (TNO))

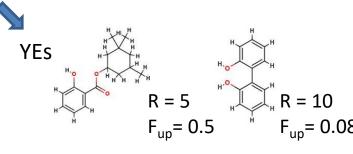
Predicting RTK Errors

- The higher the C_{ss}, the lower the oral equivalent dose
- Ideally the residuals (difference between the literature value and the prediction) are small or $R \equiv C_{ss}^{lit.}/C_{ss}^{pred.} \approx 1$
- If a residual is large, we would prefer to over-predict C_{ss} to be conservative, *i.e.* R < 1


$$R = 5$$
 $F_{up} = 0.5$

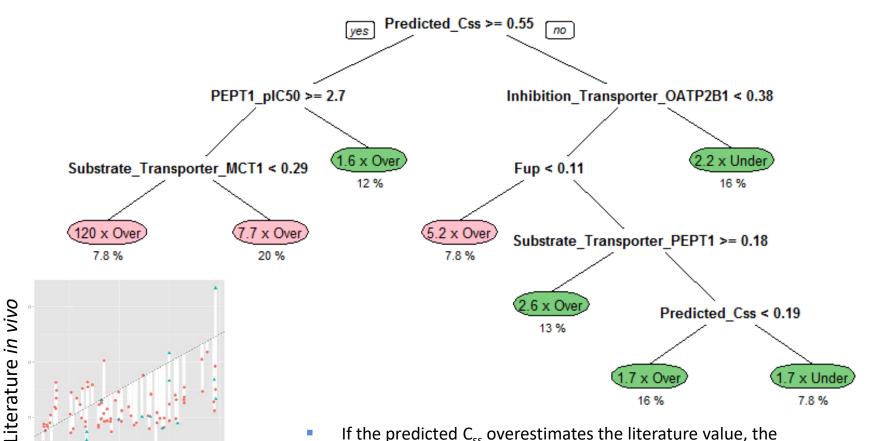
$$R = 1.02$$

 $F_{up} = 0.06$


$$R = 0.5$$
 $F_{up} = 0.04$

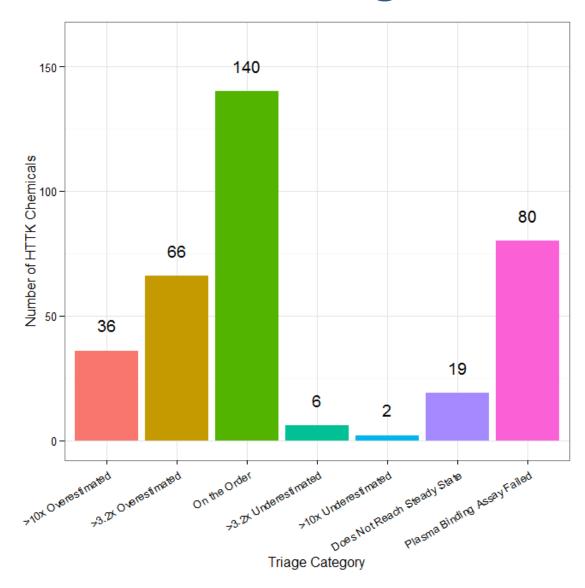
$$R = 0.9$$
 $F_{up} = 0.02$

$$F_{up} < 0.11$$

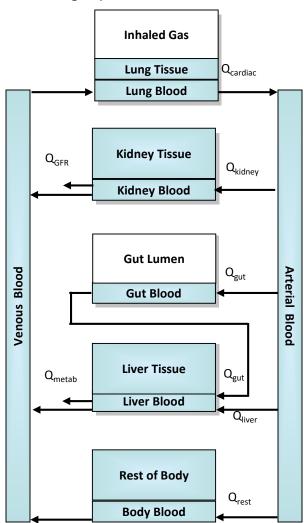


No
$$R = 0.9$$
 $F_{up} = 0.02$

Predicting HTTK Errors


- If the predicted C_{ss} overestimates the literature value, the necessary exposure (i.e., equivalent dose) predicted with RTK will be lower
 - This is a conservative error for reverse dosimetry
- Worry about cases where we significantly underestimate necessary exposure

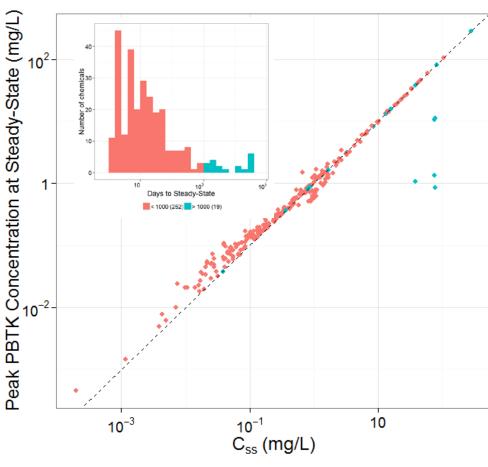
Predicted from in vitro


- Through comparison to *in* vivo data, a crossvalidated (random forest) predictor of success or failure of HTTK has been constructed
- Add categories for chemicals that do not reach steady-state or for which plasma binding assay fails
- All chemicals can be placed into one of seven confidence categories

Toxicokinetic Triage

A General Physiologically-based Toxicokinetic (PBTK) Model

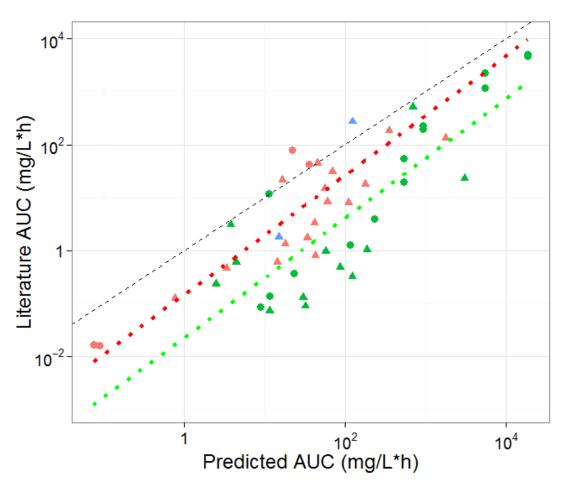
- "httk" also includes a generic PBTK model
- Some tissues (e.g. arterial blood) are simple compartments, while others (e.g. kidney) are compound compartments consisting of separate blood and tissue sections with constant partitioning (i.e., tissue specific partition coefficients)
- Exposures are absorbed from reservoirs (gut lumen)
- Some specific tissues (lung, kidney, gut, and liver) are modeled explicitly, others (e.g. fat, brain, bones) are lumped into the "Rest of Body" compartment.
- Blood flows move the chemical throughout the body.
 The total blood flow to all tissues equals the cardiac output.
- The only ways chemicals "leaves" the body are through metabolism (change into a metabolite) in the liver or excretion by glomerular filtration into the proximal tubules of the kidney (which filter into the lumen of the kidney).



Basic PK Statistics Examples

```
library(httk)
#A Function to get PK summary statistics from the PBPK model:
help(calc stats)
# 28 day human study (20 mg/kg/day) for Abamectin:
calc stats(days=28,chem.name="bisphenol a", dose=20)
     Human plasma concentrations returned in uM units.
     AUC is area under plasma concentration curve in uM * days units with Rblood2plasma = 0.79.
     SAUC
     [1] 44.82138
     $peak
     [1] 23.16455
     $mean
     [1] 1.600764
# Units default to \muM but can use mg/L:
calc stats(days=28,chem.name="bisphenol a", dose=20,output.units="mg/L")
# Same study in a mouse:
calc stats(days=28,chem.name="bisphenol a", dose=20,species="mouse")
```

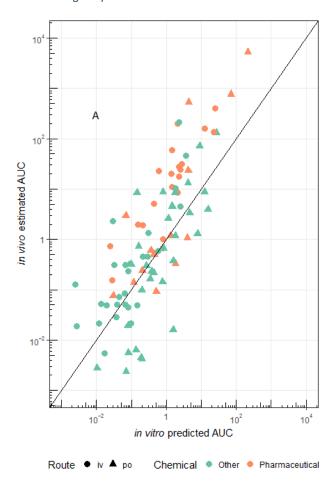

Peak Concentration vs. C_{ss}



Days to Steady-State < 1000 (252) > 1000 (19)

- Peak serum
 concentrations from the
 HTPBTK model are
 compared against the
 steady-state
 concentration predicted
 by the three
 compartment model for
 a constant infusion
 exposure (as in Wetmore
 et al. 2012)
- The dashed, identity (1:1) line indicates that for most compounds the peak concentrations are very similar to C_{ss}

Evaluating In Vitro PBTK Predictions with In Vivo Data



- PBTK predictions for the AUC (time integrated plasma concentration or Area Under the Curve)
- in vivo measurements from the literature for various treatments (dose and route) of rat.
- Predictions are generally conservative – *i.e.*, predicted AUC higher than measured
- Oral dose AUC ~6.4x higher than intravenous dose AUC

48 of 60


Analyzing New In Vivo Data (Rat)

- Oral and iv studies for 26 ToxCast compounds
 - Collaboration with NHEERL (Mike Hughes and Jane Ellen Simmons)
 - Additional work by Research Triangle Institute (Tim Fennell)
- Can estimate
 - Fraction absorbed
 - Absorption Rate
 - Elimination Rate
 - Volume of Distribution

Analyzing New In Vivo Data (Rat)

- Oral and iv studies for 26 ToxCast compounds
 - Collaboration with NHEERL (Mike Hughes and Jane Ellen Simmons)
 - Additional work by Research Triangle Institute (Tim Fennell)
- Can estimate
 - Fraction absorbed
 - **Absorption Rate**
 - **Elimination Rate**
 - Volume of Distribution

Cyprotex (ToxCast) is now measuring bioavailability (CACO2) for many HTTK chemicals

Population simulator for HTTK

Correlated Monte Carlo sampling of physiological model parameters

- Body weight
- Tissue masses
- Tissue blood flows
- GFR (kidney)
- Hepatocellularity

Source of data: CDC NHANES

Large, ongoing CDC survey of US population: demographic, body measures, medical exam, biomonitoring (health and exposure), ...

Designed to be representative of US population according to census data

Data sets publicly available
(http://www.cdc.gov/nchs/nhanes.htm)

Population simulator for HTTK

Sample
NHANES
quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature (+ residual marginal variability)

Predict
physiological
quantities

Tissue masses
Tissue blood flows
GFR (kidney
function)
Hepatocellularity

Generating demographic subgroups

User can specify	Default if not specified					
Age limits	0-79 years					
Sex (# males, # females)	NHANES proportions					
Race/ethnicity (5 NHANES categories)	NHANES proportions					
BMI/weight categories	NHANES proportions					

- NHANES quantities sampled from appropriate conditional distribution (given specifications)
 - Physiological parameters predicted accordingly

NHANES Demographic Examples

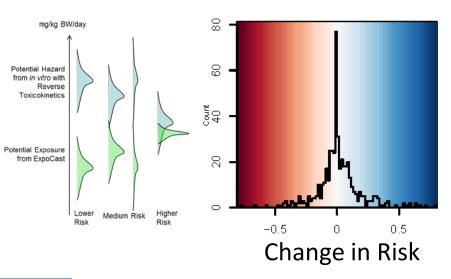
library(httk)

```
# Oral equivalent (mg/kg/day) for in vitro activity of 1 \muM for Acetochlor calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr")
```

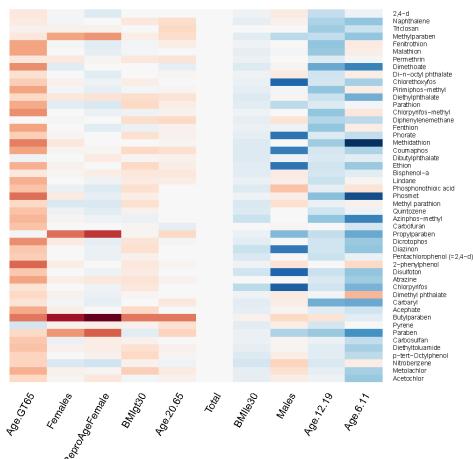
```
# Oral equivalent (mg/kg/day) for NHANES "Mexican American" Population calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr", reths = "Mexican American")
```

```
# Oral equivalent (mg/kg/day) for NHANES "Mexican American" Population aged 18-25 years calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="dr",agelim_years=c(18,25),reths = "Mexican American")
```

Probably too few individuals in NHANES for direct resampling ("dr") so use virtual individuals ("vi") resampling method:


```
calc_mc_oral_equiv(1,chem.cas="34256-82-1",method="vi",agelim_years=c(18,25),reths =
"Mexican American")
```

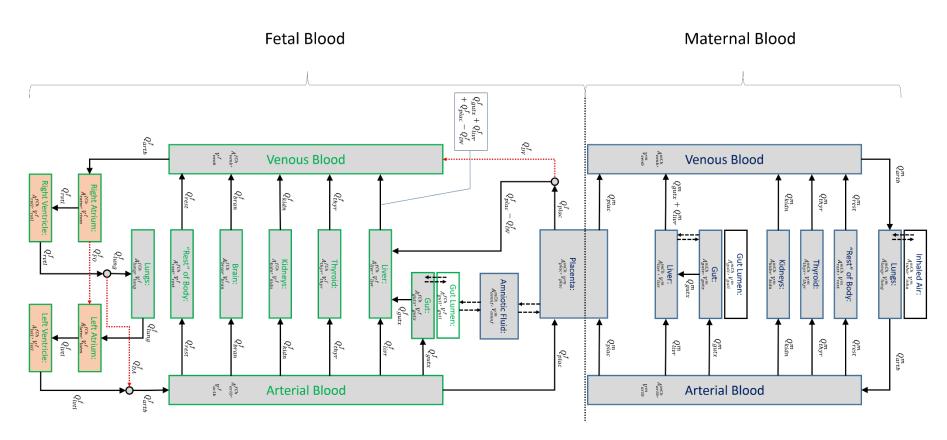
Can also specify gender, weight categories, and kidney function



Life-stage and Demographic Specific Predictions

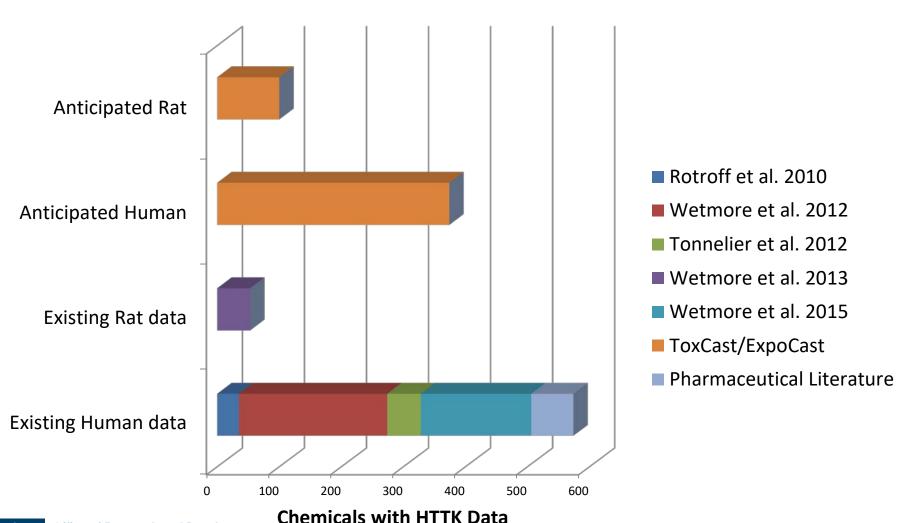
- Wambaugh et al. (2014) predictions of exposure rate (mg/kg/day) for various demographic groups
- Can use HTTK to calculate margin between bioactivity and exposure for specific populations

Change in Activity: Exposure Ratio


Version history for "httk"

The publicly available R package contains code and data that has been part of peer-reviewed publications (Old versions are archived)

- Version 1.1 accompanied "Toxicokinetic Triage for Environmental Chemicals" Wambaugh et al. (2015) Tox. Sci.
- Version 1.2 accompanied "httk: R Package for High-Throughput Toxicokinetics" Pearce et al.,
 Journal of Statistical Software (in press)
- Version 1.3 accompanied "Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted *In Vitro* Bioactivity to Inform Chemical Toxicity Testing" Wetmore et al., (2015) Tox. Sci.
- Version 1.4 addressed comments for acceptance of Pearce et al. (in press, J. Stat. Soft.)
- Version 1.5 accompanied "Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability," Ring et al. (in press, Env. International)
- Version 1.6 accompanied "Evaluation and Calibration of High-Throughput Predictions of Chemical Distribution to Tissues," Pearce et al. (submitted)
- Subsequent version numbers will be assigned as papers are accepted on:
 - Gestational model (Kapraun)
 - Inhalation exposure (Evans and Pearce)
 - New human data from Cyprotex (Wambaugh and Wetmore)
 - New rat data and revised IVIVE model (Honda)
 - More flexible PBPK model (Pearce)


Gestational Version of PBTK model Under Development

New httk package model that allows fetal tissue concentration predictions for all PBTK chemcials

Chemicals with HTTK Data

Does My Chemical Have HTTK Data?

Is a chemical available?

> "80-05-7" %in% get_cheminfo() [1] TRUE

- > library(httk)
- > get cheminfo()
- [1] "2971-36-0" "94-75-7" "94-82-6" "90-43-7" "1007-28-9"
- [6] "71751-41-2" "30560-19-1" "135410-20-7" "34256-82-1" "50594-66-6"
- [11] "15972-60-8" "116-06-3" "834-12-8" "33089-61-1" "101-05-3"
- [16] "1912-24-9" "86-50-0" "131860-33-8" "22781-23-3" "1861-40-1" ...
- > get cheminfo(info="all")

All data on chemicals A, B, C

subset(get cheminfo(info ="all"),Compound%in%c("A","B","C"))

			рКа Ассер			Human.Cli	Human.Cli	Human.Fu nbound.pl	DSSTox Su	Structure		
Compound	CAS	logP	t - ·	pKa_Donor		nt		asma	bstance_Id	_	Substance_	Туре
									DTXSID002	C8H6Cl2O		
2,4-d	94-75-7	2.8	1 <na></na>	2.81	221.03	C	0.149	0.04	0442	3	Single	Compound
									DTXSID702	C10H10Cl2		
2,4-db	94-82-6	3.5	3 <na></na>	4.5	249.09	C	0.104	0.01	4035	03	Single	Compound
2- phenylphe									DTXSID202			
	90-43-7	3.09	9 <na></na>	10.6	170.211	2.08	0.164	0.04	1151		Single	Compound
6- desisoprop									DTXSID003			
ylatrazine	1007-28-9	1.1	5 1.59	<na></na>	173.6	C	0.539	0.46	7495	C5H8CIN5	Single	Compoun

Summary

- Toxicokinetics (TK) provides a bridge between HTS and HTE by predicting tissue concentrations due to exposure
- High Throughput (HTTK) methods developed for pharmaceuticals have been adapted to environmental testing
- A primary application of HTTK is "Reverse Dosimetry" or RTK
 - Can infer daily doses that produce plasma concentrations equivalent to the bioactive concentrations,
 - But: We must consider "domain of applicability"
- New R package "httk" freely available on CRAN allows statistical analyses to identify strengths and weaknesses
 - All HTTK models and data made public upon peer-reviewed publication

Chemical Safety for Sustainability (CSS) Rapid Exposure and Dosimetry (RED) Project

NCCT

Chris Grulke
Greg Honda*

Richard Judson

Andrew McEachran*

Robert Pearce*

Ann Richard

Parichehr

Saranjampour*

Risa Sayre*

Woody Setzer

Rusty Thomas

John Wambaugh

Antony Williams

NRMRL

Yirui Liang* Xiaoyu Liu

NHEERL

Linda Adams Christopher Ecklund Marina Evans Mike Hughes Jane Ellen

*Trainees

Simmons

NERL

Craig Barber

Namdi Brandon*

Peter Egeghy

Jarod Grossman*

Hongtai Huang*

Brandall Ingle*

Kristin Isaacs

Sarah Laughlin-

Toth*

Seth Newton

Katherine Phillips

Paul Price

Jeanette Reyes*

Jon Sobus

John Streicher*

Mark Strynar

Mike Tornero-Velez

Elin Ulrich

Dan Vallero

Barbara Wetmore

Collaborators

Arnot Research and Consulting

Jon Arnot

Battelle Memorial Institute

Anne Louise Sumner

Anne Gregg

Chemical Computing Group

Rocky Goldsmith

National Institute for Environmental Health

Sciences (NIEHS) National Toxicology Program

Mike Devito

Steve Ferguson

Nisha Sipes

Netherlands Organisation for Applied Scientifi

Research (TNO)

Sieto Bosgra

Research Triangle Institute

Timothy Fennell

ScitoVation

Harvey Clewell Chantel Nicolas

Silent Spring Institute

Robin Dodson

Southwest Research Institute

Alice Yau

Kristin Favela

Summit Toxicology

Lesa Aylward

Tox Strategies

Caroline Ring

University of California, Davis

Deborah Bennett

Hyeong-Moo Shin

University of Michigan

Olivier Jolliet

University of North Carolina, Chapel Hill

Alex Tropsha

Lead CSS Matrix Interface:

John Kenneke (NERL)

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

References

- Bosgra, S., et al. "An improved model to predict physiologically based model parameters and their interindividual variability from anthropometry." Critical reviews in toxicology 2012;42:751-767
- Filer, Dayne L., et al. "tcpl: The ToxCast Pipeline for High-Throughput Screening Data." Bioinformatics (2016): btw680.
- Howgate, E., et al. "Prediction of in vivo drug clearance from in vitro data. I: impact of inter-individual variability" Xenobiotica 2006;36:473-497
- Israili and Dayton "Human Alpha-1-Glycoprotein and Its Interactions with Drugs" Drug metabolism reviews 2001;33:161-235
- Jamei, et al. "The Simcyp® population-based ADME simulator." Expert opinion on drug metabolism & toxicology 2009b;5:211-223
- Johnson, et al. "Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children." Clinical pharmacokinetics (2006)
- Judson, R. S., et al., (2010) "In Vitro Screening of Environmental Chemicals for Targeted Testing Prioritization: The ToxCast Project. Environmental Health Perspectives 118(4), 485-492.
- Judson, R. S., et al., (2011). Estimating Toxicity-Related Biological Pathway Altering Doses for High-Throughput Chemical Risk Assessment. Chemical Research in Toxicology 24(4), 451-462
- McNally, et al., "PopGen: a virtual human population generator." Toxicology 2014
- Park, Youngja, H., et al. "High-performance metabolic profiling of plasma from seven mammalian species for simultaneous environmental chemical surveillance and bioeffect monitoring." Toxicology 295:47-55 (2012)

- Pearce, Robert, et al. "httk: R Package for High -Throughput Toxicokinetics." Journal of Statistical Software, in press.
- Price et al., "Instructions for Use of Software Physiological Parameters for PBPK Modeling Version 1.3 (P3MTM 1.3)." 2003
- Ring, Caroline, et al., "Identifying populations sensitive to environmental chemicals by simulating toxicokinetic variability", Environment International, in press
- Rotroff, Daniel, et al., (2010) "Incorporating human dosimetry and exposure into high-throughput in vitro toxicity screening." Tox. Sciences 117(2), 348-58
- Routledge, P., "The plasma protein binding of basic drugs.
 British journal of clinical pharmacology 1986;22:499-506
- Schmidt, Charles W. "TOX 21: new dimensions of toxicity testing." Environ Health Perspect 117.8 (2009): A348-A353.
- Shibata, et al., (2002). Prediction of Hepatic Clearance and Availability by Cryopreserved Human Hepatocytes: An Application of Serum Incubation Method. Drug Metabolism and Disposition 30(8), 892-896
- Strope, Cory L., et al., "High-Throughput in-silico prediction of ionization equilibria for pharmacokinetic modeling", in ORD clearance.
- Wambaugh, John F., et al. "Dosimetric anchoring of in vivo and in vitro studies for perfluorooctanoate and perfluorooctanesulfonate." Toxi. Sciences (2013)
- Wambaugh, John F., et al. "High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals." Env. science & technology (2014).
- Wambaugh, John F., et al. "Toxicokinetic triage for environmental chemicals." Toxicological Sciences (2015): kfv118.

- Wang, Y.-H. (2010). "Confidence Assessment of the Simcyp Time-Based Approach and a Static Mathematical Model in Predicting Clinical Drug-Drug Interactions for Mechanism-Based CYP3A Inhibitors." Drug Metabolism and Disposition 38(7), 1094-1104
- Waters, N. J., et al. (2008). "Validation of a rapid equilibrium dialysis approach for the measurement of plasma protein binding." Journal of Pharmaceutical Sciences 97(10), 4586-4595
- Wetmore, Barbara A., et al. "Integration of dosimetry, exposure and high-throughput screening data in chemical toxicity assessment." Tox. Sciences (2012)
- Wetmore, Barbara A., et al. "Relative Impact of Incorporating Pharmacokinetics on Predicting In Vivo Hazard and Mode of Action from High-Throughput In Vitro Toxicity Assays." Toxicological Sciences 132(2), 327-346
- Wetmore, Barbara A., et al., "Incorporating population variability and susceptible subpopulations into dosimetry for high-throughput toxicity testing. Toxicological sciences 2014;142:210-224
- Wetmore, Barbara A., et al. "Incorporating High-Throughput Exposure Predictions with Dosimetry-Adjusted In Vitro Bioactivity to Inform Chemical Toxicity Testing." Toxicological Sciences 148.1 (2015): 121-136.
- Yasuda, et al., "The role of ethnicity in variability in response to drugs: focus on clinical pharmacology studies." Clinical Pharmacology & Therapeutics 2008;84:417-423
- Yoon, M., et al. (2014). "Evaluation of simple in vitro to in vivo extrapolation approaches for environmental compounds." Toxicology in Vitro 28(2), 164-170,