

The EPA CompTox Chemistry Dashboard - a centralized hub for integrating data for the environmental sciences

Antony Williams

National Center for Computational Toxicology

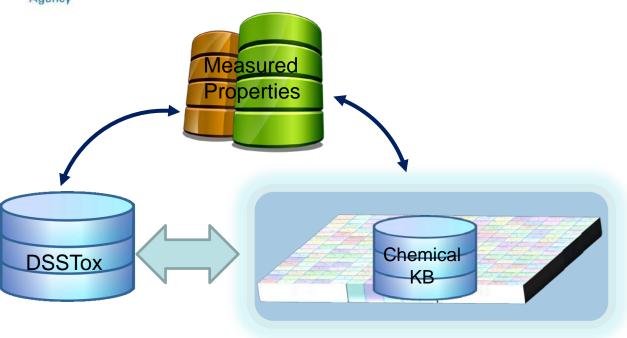
July 27th, 2017

What we are out to achieve...

- Tens of thousands of chemicals are of interest to a broad spectrum of stakeholders and the Agency.
- The National Center for Computational Toxicology is looking to integrate and share our data to support computational toxicology
- Chemical structures and data are required to develop prediction models
- Data should be accessible and Open

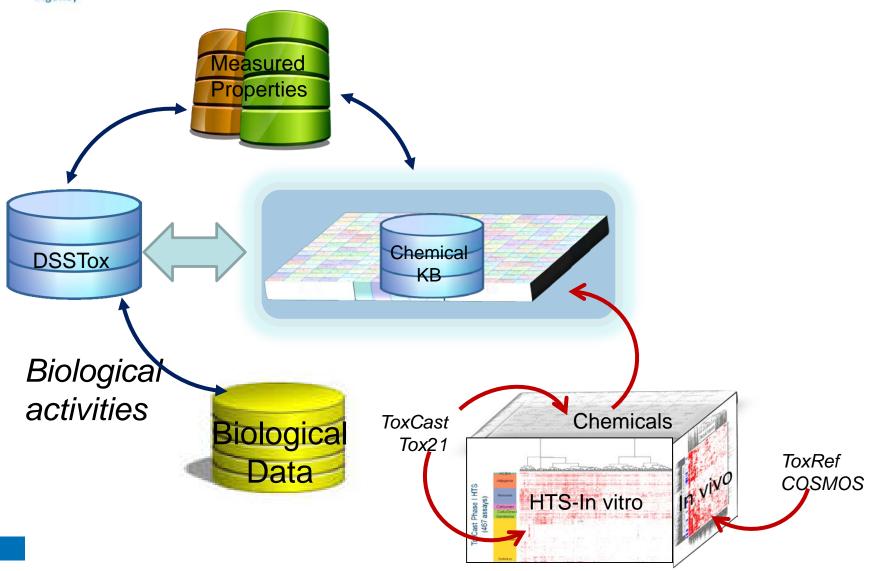
How we are getting there...

- Develop a publicly accessible web-based application
- Provide access to integrated data for ~750,000 chemicals – structures, properties, models, links to other agency resources
- Deliver search results to support different research needs

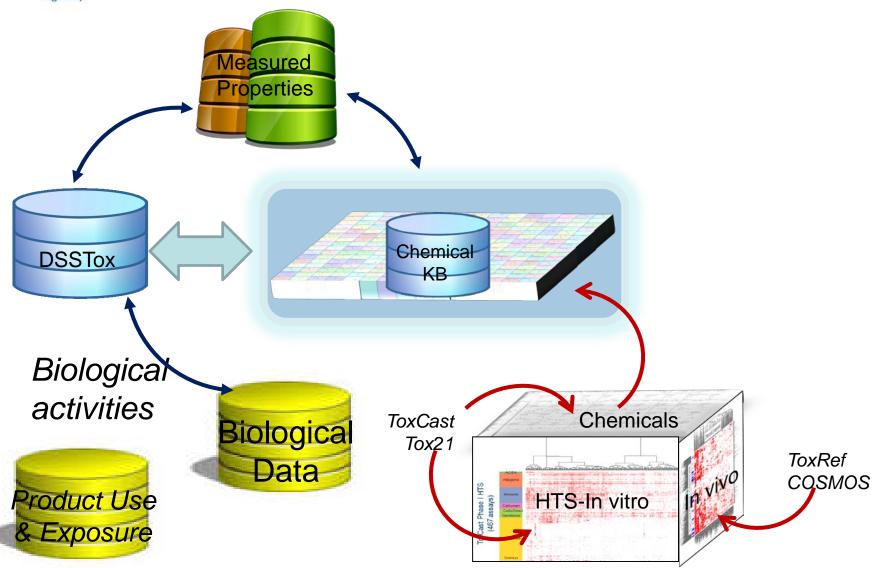


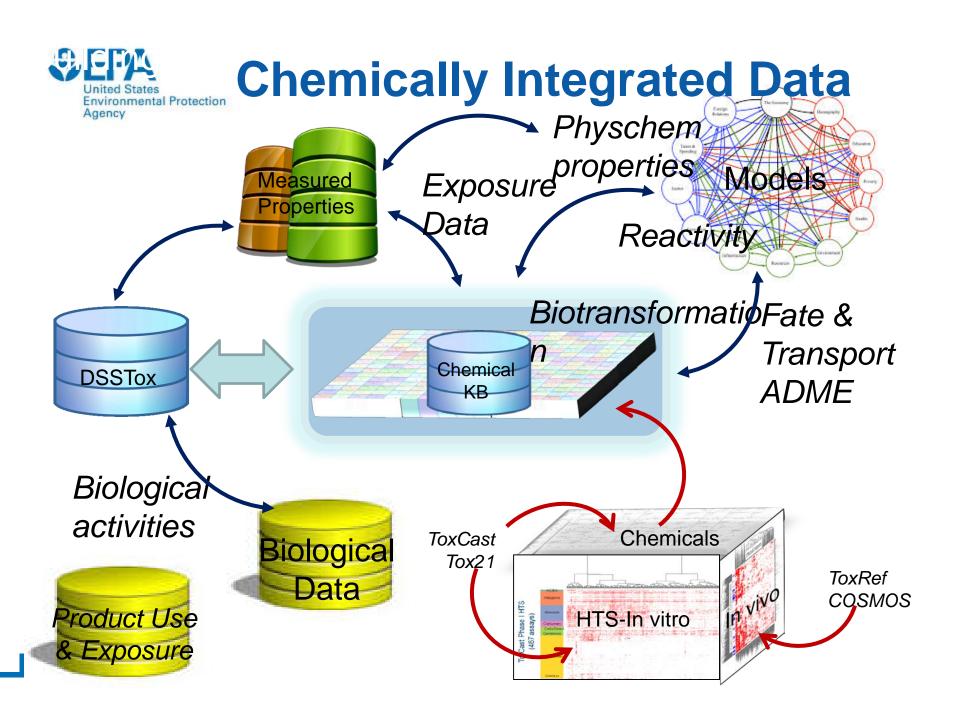
What we get as an outcome...

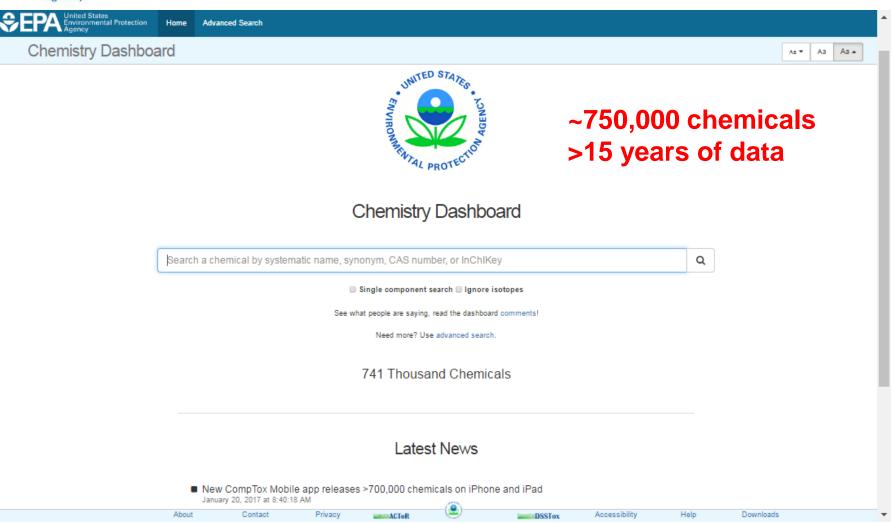
- Data are being used to:
 - Access toxicity data
 - Build prediction models
 - Speed chemical identification
 - Support additional software applications
- Open data allows for:
 - Integration via other public websites
 - Phone and tablet mobile applications

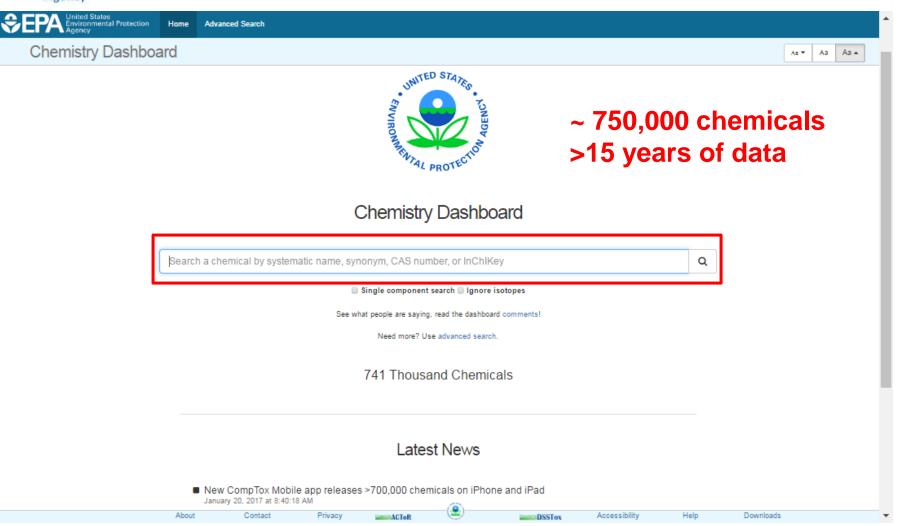


Chemically Integrated Data

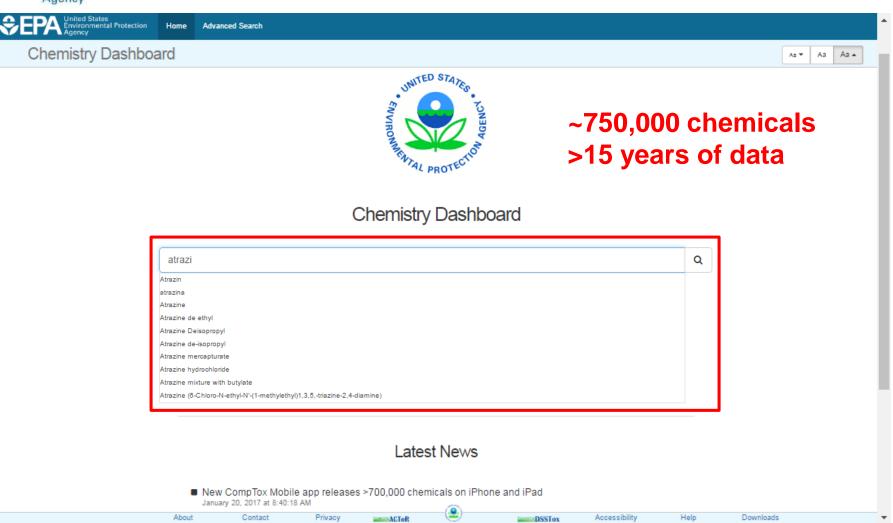



Chemically Integrated Data


Chemically Integrated Data



Comptox Chemistry Dashboard https://comptox.epa.gov



Comptox Chemistry Dashboard https://comptox.epa.gov

Comptox Chemistry Dashboard https://comptox.epa.gov

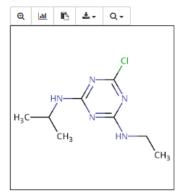
Chemical Page

Chemistry Dashboard

Submit Comment

Share +

Copy ≠


Aa ▼ Aa

Aa Aa 4

Atrazine

1912-24-9 | DTXSID9020112

@ Searched by Approved Name: Found 1 result for 'atrazine'.

Atrazine is an herbicide of the triazine class. Atrazine is used to prevent pre- and postemergence broadleaf weeds in crops such as maize (com) and sugarcane and on turf, such as golf courses and residential lawns. It is one of the most widely used herbicides in US and Australian agriculture. It was banned in the European Union in 2004, when the EU found groundwater levels exceeding the limits set by regulators, and Syngenta could neither show that this could be prevented nor that these... Read more

Intrinsic Properties

Structural Identifiers

Related Compounds (Beta)

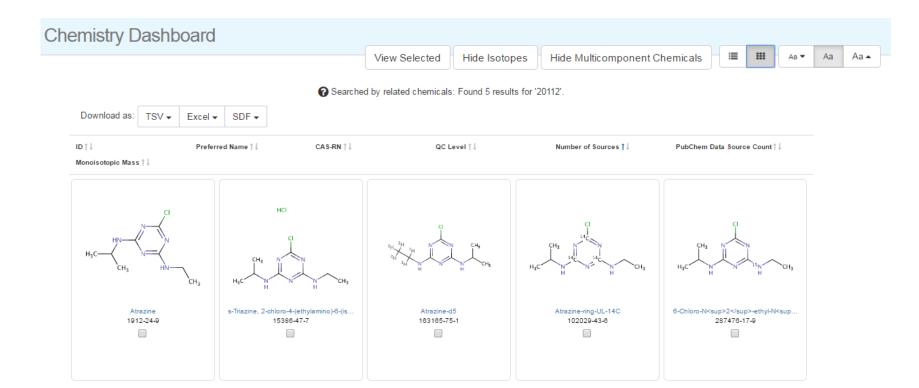
Presence in Lists

Record Information

Chemical Properties Env. Fate/Transport Synonyms External Links Toxicity Values (Beta) Exposure Bioassays Similar Molecules (Beta) Literature Comments

Chemical Page

Related Compounds (Beta)


Same Connectivity: 4 records (based on first layer of InChl)

Mixtures, Components, and Neutralized Forms: 5 records (based on QSAR ready mappings and with the compound as a component of a mixture)

Similar Compounds: 62 records (based on Tanimoto coefficient > 0.8)

Related Chemicals

Chemical Page "Is this a ToxCast Chemical?"

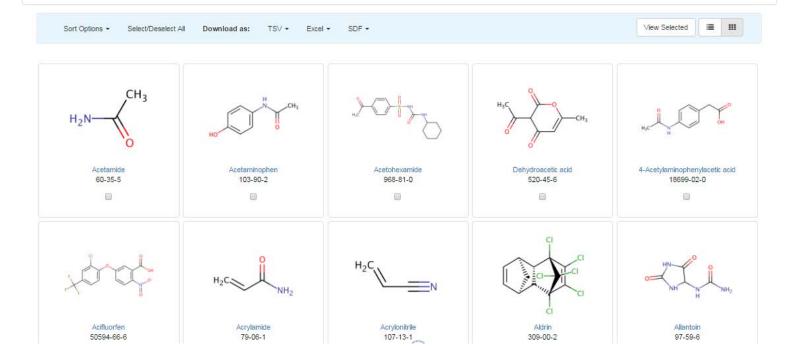
Chemical Page "What are ToxCast Chemicals?"

United States Environmental Protection Home Advanced Search Agency	Lists	Search Chemistry Dashboard	Q	Options →
Chemistry Dashboard			Aa ▼	Aa Aa▲

Select List

List Name	Number of Chemicals	
DNT Screening Library	1476	DNTSCREEN is a list of chemicals that is being used in medium- and high-throughput in vitro and zebrafish assays.
EPA Chemical Inventory for ToxCast	5231	CHEMINV is full list of unique DSSTox substances mapped to historical chemical inventory of physical samples registered by EPA's ToxCast Chemical Contractor (Evotec) since launch of ToxCast program in 2007.
EPA Toxcast Screening Library	4226	TOXCAST includes all EPA-provided chemicals for which screening data have been generated in the ToxCast research program since 2007.
Tox21 Screening Library	8948	TOX21SL is list of unique substances in Tox21 multi-federal agency screening library, contributed by the EPA, National Toxicology Program (NTP), and National Center for Advances in Translational Science (NCATS).

Chemical Page "What are ToxCast Chemicals?"


EPA Toxcast Screening Library

Search TOXCAST Chemicals	Q
--------------------------	---

List Details

Description: TOXCAST consists of the full list of unique DSSTox substance records (formerly denoted TOXCST) mapped to the historical and present chemical inventory of physical samples plated and screened in the ToxCast program from 2007 to the present. The list includes chemicals that are in current testing, including newly added chemicals as well as discontinued chemicals that have undergone only limited screening. The latter set includes chemicals that were depleted and could not be reprocured (cost, availability), as well as chemicals discontinued for other reasons (e.g., limited solubility, instability, volatility, stench). The TOXCAST inventory also includes EPA's full, plated contribution of nearly 4000 unique chemicals to the multi-federal agency Tox21 program (TOX21SL). The TOXCAST inventory is a complete subset of the CHEMINV physical sample inventory, with the exception of a small set of chemical samples shipped directly to EPA ToxCast vendors or partners or reference chemicals for which EPA ToxCast vendors or partners provided assay data, both of which are included in TOXCAST but not in CHEMINV. A publication detailing the construction and composition of the ToxCast inventory (Richard et al., Chem. Res. Toxicol, 2016), as of January 2016, can be freely downloaded from: http://pubs.acs.org/doi/abs/10.1021/acs.chemrestox.6b00135 For more information on EPA's ToxCast program, see: https://www.epa.gov/chemical-research/toxicity-forecasting To access the ToxCast HTS data within the EPA ToxCast Dashboard, see: https://www.epa.gov/chemical-research/toxicity-forecasting To access the ToxCast HTS data within the EPA ToxCast Dashboard, see: https://www.epa.gov/chemical-research/toxicity-forecasting To access the ToxCast HTS data within the EPA ToxCast Dashboard, see: https://www.epa.gov/chemical-research/toxicity-forecasting To access the ToxCast HTS data within the EPA ToxCast Dashboard, see: https://www.epa.gov/chemical-research/toxicity-forecasting ToxCast Dashboard.

Number of Chemicals: 4226

Chemical Page One button click download...

	A	В	С	D	E	F	G	Н	1	J	K	L	
1	DTXSID	CAS RN	PREFERRED NAME	IUPAC NAI	MOLECUL!	MONOISO1	AVERAGE	SMILES	INCHI KEY				
2	DTXSID905	205939-58-8	Dimethenamid ESA	2-[(1-Metho	C11H17NO!	307.05481	307.38	COCC(C)N(UZRVVVZN	SBSGHK-	UHFFFAOY	'SA-N	
3	DTXSID005	35045-02-4	Metribuzin-DA	6-tert-Butyl	-C8H13N3O	199.07793	199.27	CSC1=NN=	MIWRSUQX	SCLDNV-	UHFFFAOY	'SA-N	
4	DTXSID505	140939-17-9	Alachlor sec-oxanilic acid sodium salt	Sodium (2,	C12H14NNa	243.08714	243.23801	[Na+].CCC1	NQSPCUFT	RBYYOS-	UHFFFAO\	/SA-M	
5	DTXSID005	140939-15-7	Alachlor ESA, sodium salt	Sodium 2-[C14H20NNa	337.09599	337.37	[Na+].CCC1	DXLRATMH	MHJKHK-l	JHFFFAOY	SA-M	
6	DTXSID005	64436-13-1	Arsenobetaine	(Trimethyla	C5H11AsO2	177.9975	178.063	C[As+](C)(0	SPTHHTGL	GVZZRH-L	JHFFFAOY:	SA-N	
7	DTXSID505	52663-68-0	2,2',3,4',5,5',6-Heptachloro-1,1'-biphenyl	2,2',3,4',5,5	C12H3CI7	391.80544	395.31	CIC1=CC(C	UDMZPLRO	ONOSEF-	UHFFFAO'	YSA-N	
8	DTXSID605	1207-12-1	4,6-Dimethyldibenzothiophene	1,8-Dimethy	C14H12S	212.06597	212.31	CC1=CC2=	KMPJENUV	VHPZRGZ-	UHFFFAO'	YSA-N	
9	DTXSID705	93-52-7	1,2-dibromo(phenyl)ethane	(1,2-Dibrom	C8H8Br2	261.89928	263.95999	BrCC(Br)C1	SHKKTLSD	GJRCTR-L	JHFFFAOY:	SA-N	
1	0 DTXSID805	6174-86-3	3-Chloro-7-hydroxy-4-methyl-2-benzopyrone	3-Chloro-7-I	C10H7CIO3	210.00837	210.61	CC1=C(CI)C	ODZHLDRQ	CZXQFQ-l	JHFFFAOY	SA-N	
1	1 DTXSID505	10482-56-1	(L)-alpha-Terpineol	2-[(1S)-4-M	C10H18O	154.13577	154.25301	CC1=CC[C(WUOACPN	HFRMFPN	I-SECBINFI	ISA-N	
1	2 DTXSID705	98-02-2	2-Furylmethanethiol	(Furan-2-yl)	C5H6OS	114.01394	114.16	SCC1=CC=	ZFFTZDQKI	XPDAF-UH	IFFFAOYS.	A-N	
1	3 DTXSID705	97-89-2	Citronellyl isobutyrate	3,7-Dimethy	C14H26O2	226.19328	226.36	CC(CCOC(=	ZGPPERKN	IXSGYRK-	UHFFFAO'	YSA-N	
1	4 DTXSID305	96-54-8	1-Methylpyrrole	1-Methyl-1h	C5H7N	81.057849	81.117996	CN1C=CC=	OXHNLMTV	IGZXSG-U	HFFFAOYS	SA-N	
1	5 DTXSID805	95-56-7	2-Bromophenol	2-Bromophe	C6H5BrO	171.95238	173.009	OC1=C(Br)(VADKRMSI	MGWJZCF	-UHFFFAO	YSA-N	
1	6 DTXSID005	93-53-8	Hydratropaldehyde	2-Phenylpro	C9H10O	134.07316	134.178	CC(C=0)C1	IQVAERDLE	AZARL-U	HFFFAOYS	SA-N	
1	7 DTXSID005	93-16-3	4-Prop-1-enylveratrole	1,2-Dimetho	C11H14O2	178.09938	178.231	COC1=C(O	NNWHUJCU	JHAELCL-	UHFFFAOY	'SA-N	
1	8 DTXSID505	93-02-7	2,5-Dimethoxybenzaldehyde	2,5-Dimetho	C9H10O3	166.06299	166.17599	COC1=CC=	AFUKNJHP	ZAVHGQ-I	JHFFFAOY	SA-N	
1	9 DTXSID605	92-91-1	4'-Acetylbiphenyl	1-([1,1'-Bipl	C14H12O	196.08882	196.24899	CC(=O)C1=	QCZZSANN	LWPGEA-	UHFFFAO'	YSA-N	
2	0 DTXSID105		N,N-Diethyl-m-toluidine	N,N-Diethyl	C11H17N	163.1361	163.26401	CCN(CC)C1	CIPVVROJE	KLHJI-UH	FFFAOYSA	A-N	
2	1 DTXSID205	91-10-1	2 6-Dimethoxyphenol	2 6-Dimeth	C8H10O3	154 06299	154 16499	COC1=CC=	KLIDCXVFH	GNTTM-U	HFFFAOYS	SA-N	

ummary	Download as:	TSV Excel	SDF					
ogP: Octanol-Wa	Property	Av	erage	Me	dian	R	ange	Unit
Vater Solubility		Experimental	Predicted	Experimental	Predicted	Experimental	Predicted	
)ensity	LogP: Octanol	2.61 (1)	2.66 (4)	2.61 to 2.61	2.66	2.61	2.50 to 2.82	-
Density	Water Solubility	1.30e-04 (1)	1.46e-02 (4)	1.30e-04 to 1	1.46e-02	1.30e-04	1.50e-04 to 5	mol/L
Melting Point	Density	-	1.27 (1)	-	1.27	-	-	g/cm^3
Pailing Daint	Melting Point	174 (6)	151 (3)	173 to 177	151	173 to 177	114 to 187	°C
Boiling Point	Boiling Point	-	312 (3)	-	312	-	284 to 339	°C
Surface Tension	Surface Tension	-	53.8 (1)	-	53.8	-	-	dyn/cm
	√apor Pressure	7.21e-11 (1)	4.47e-06 (3)	7.21e-11 to 7	4.47e-06	7.21e-11	2.03e-07 to 1	mmHg
/apor Pressure	Soil Adsorp. C	174 (1)	173 (2)	174 to 174	173	174	144 to 202	L/kg
Soil Adsorp. Coeff.	LogKoa: Octa	-	8.40 (1)	-	8.40	-	-	-
	Henry's Law	-	4.20e-10 (1)	-	4.20e-10	-	-	atm-m3/mole
ogKoa: Octanol-Air	Atmos. Hydrox	-	1.7 <u>1</u> e-11 (<u>1</u>)	-	1.71e-11	- ##		cm3/molecule*

		Experimental	
Source	Result		
PhysPropNCCT	2.61		
		Predicted	
Source	Result	Calculation Details	QMRF
EPISUITE	2.82	Not Available	Not Available
OPERA	3.05	OPERA Model Report	Available
NICEATM	2.50	Not Available	Available
ACD/Labs	2.67	Not Available	Not Available

Workflow Details and Data

SAR and QSAR in Environmental Research >

Volume 27, 2016 - Issue 11: 17th International Conference on QSAR in Environmental and Health Sciences (QSAR 2016) - Part II. Guest Editors: C.G. Barber and G.J. Myatt

Enter keywords, authors, DOI etc.

258

Views

4

CrossRef citations

16

Altmetric

Articles

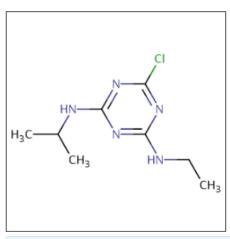
An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling \$

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

Pages 911-937 | Received 03 Sep 2016, Accepted 24 Oct 2016, Published online: 25 Nov 2016

66 Download citation

http://dx.doi.org/10.1080/1062936X.2016.1253611


Check for updates

OPERA Models: https://github.com/kmansouri/OPERA

Atrazine

1912-24-9 | DTXSID9020112

Model Results

Predicted value: 3.05

Global applicability domain: Inside @

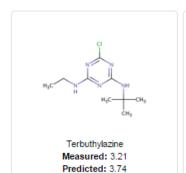
Local applicability domain index: 0.56 @

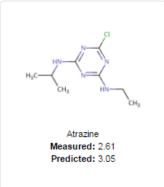
Confidence level: 0.77 @

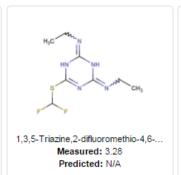
Model Performance

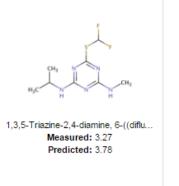
Weighted KNN model

QMRF

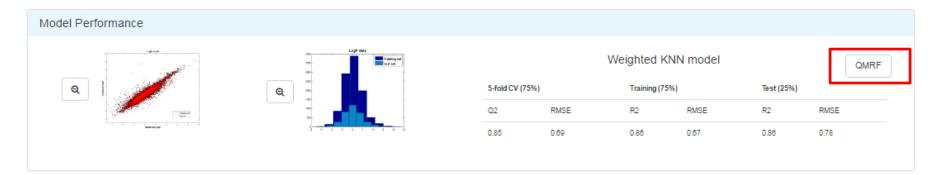

5-fold CV (75%)		Training (75%)		Test (25%)		
Q2	RMSE	R2	RMSE	R2	RMSE	
0.85	0.69	0.88	0.87	0.86	0.78	

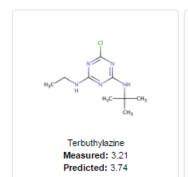


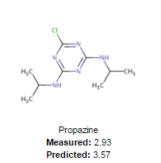


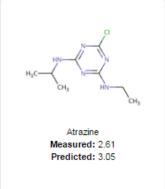


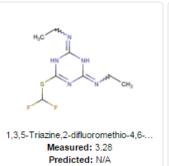
Nearest Neighbors from the Training Set

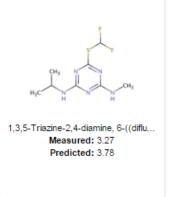


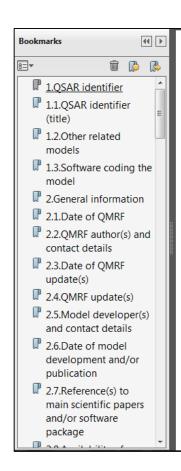









Nearest Neighbors from the Training Set



QMRF identifier (JRC Inventory): To be entered by JRC

QMRF Title:LogP: Octanol-water partition coefficient prediction from the OPERA (OPEn saR App) models.

Printing Date: Dec 5, 2016

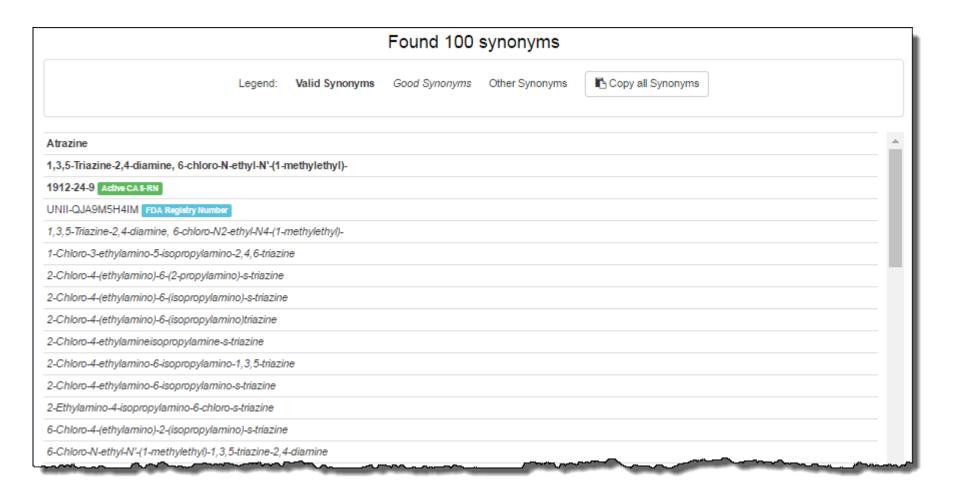
1.QSAR identifier

1.1.QSAR identifier (title):

LogP: Octanol-water partition coefficient prediction from the OPERA (OPEn saR App) models.

1.2.Other related models:

No related models


1.3. Software coding the model:

OPERA V1.02

OPERA (OPEn (quantitative) structure-activity Relationship Application) is a standalone free and open source command line application. It provides a suite of QSAR models to predict physicochemical properties and environmental fate of organic chemicals based on PaDEL descriptors. It is available for download in Matlab, C and C++ languages from github under MIT license.

Names and Identifiers

Links to Other Resources

General Publications Toxicology Analytical EPA Substance Re... Toxline Q National Environme... ACToR Environmental Heal... NIST NIST Chemistry W... → DrugPortal MONA: MassBank ... Tox21 Analytical Data Household Product... CCRIS NIEHS PubChem ChemView National Toxicology... RSC Analytical Abs... Chemspider CTD CTD Google Books FOR-IDENT CPCat The Office of the Federal Register (OFR) of the National Archives and Records Administration (NARA), and the U.S. Government Printing Office DrugBank (GPO) jointly administer the FederalRegister.gov website. Amp HMDB M HSDB Q Federal Register w Wikipedia ToxCast Dashboar... Q Regulations.gov Q MSDS Lookup ChEMBL LactMed Springer Materials Q Chemical Vendors - ACToR PDF Report BioCaddie DataMed Consumer Product... International Toxicit... RSC Publications

Chemical Weight F...

Product Use Categ...

Download as:

TSV

Excel

Chemical Function...

Monitoring Data

Exposure Predictions

Chemical Weight Fractions

Product Name	Specific/ Generic	Product Use Category	Reported Functional Use $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	Minimum Weight Fraction	Maximum Weight Fraction \$	<u>Data Type</u>
bonus s max + fire	Specific	pesticides: insecti	-	0.0	0.01069	MSDS
bonus s max 10m 1	Specific	landscape/yard: la	-	0.0	0.01089	MSDS
bonus s max 5m 1	Specific	landscape/yard: la	-	-	-	MSDS
expert gardener s	Specific	landscape/yard: g	-	0.0125	0.0125	MSDS
expert gardener s	Specific	landscape/yard: g	-	0.0125	0.0125	MSDS
scotts bonus s ma	Specific	pesticides: insecti	-	-	-	MSDS
scotts bonus s 29	Specific	landscape/yard: la	-	0.0111	0.0111	MSDS
scotts bonus s ma	Specific	pesticides: insecti	-	0.01352	0.01352	MSDS
scotts bonus s, 53	Specific	landscape/yard: la	-	0.01293	0.01293	MSDS
spectracide weed	Specific	landscape/yard: h		0.04	0.04	MSDS

Bioassays

Excel

Chemical Weight F... Product Use Cate... Chemical Function... Monitoring Data Exposure Predictions

Download as:

TSV

Product Use Categories (PUCs)

Product Use Category	Product Name	<u>Source</u>	Product Date
pesticides: insecticide	bonus s max + fireant killer 12m 1	Retail Product Categories/Walmart	-
landscape/yard: lawn fertilizer	bonus s max 10m 1	Retail Product Categories/Walmart	-
landscape/yard: lawn fertilizer	bonus s max 5m 1	Retail Product Categories/Walmart	-
landscape/yard: garden fertilizer	expert gardener st augustine wee	Retail Product Categories/Walmart	2006-06-22
landscape/yard: garden fertilizer	expert gardener st. augustine we	Retail Product Categories/Walmart	-
pesticides: insecticide	scotts bonus s max with fire ant ki	Retail Product Categories/Walmart	-
landscape/yard: lawn fertilizer	scotts bonus s 29-3-4 1	Retail Product Categories/Walmart	-
pesticides: insecticide	scotts bonus s max w/fireant klr, 5	Retail Product Categories/Walmart	-
landscape/yard: lawn fertilizer	scotts bonus s, 538-18 1	Retail Product Categories/Walmart	-
landscape/yard: herbicide	spectracide weed stop concentrat	Retail Product Categories/Walmart	-

28

Chemical Weight F...

Product Use Categ...

Chemical Function...

Monitoring Data

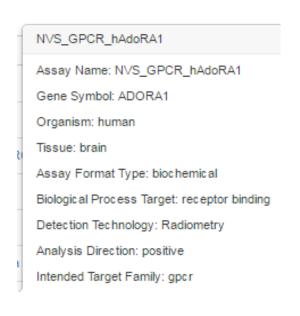
Exposure Predictions

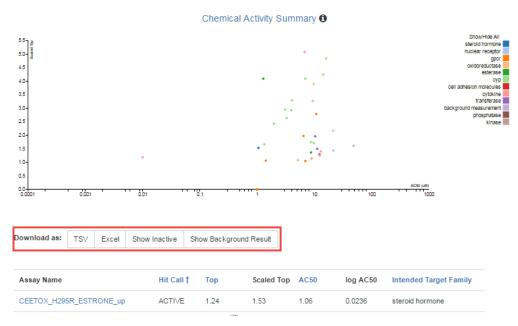
Download as: TSV Excel

1 National Health and Nutrition Examination Survey (NHANES) Inferences (mg/kg-bw/day)

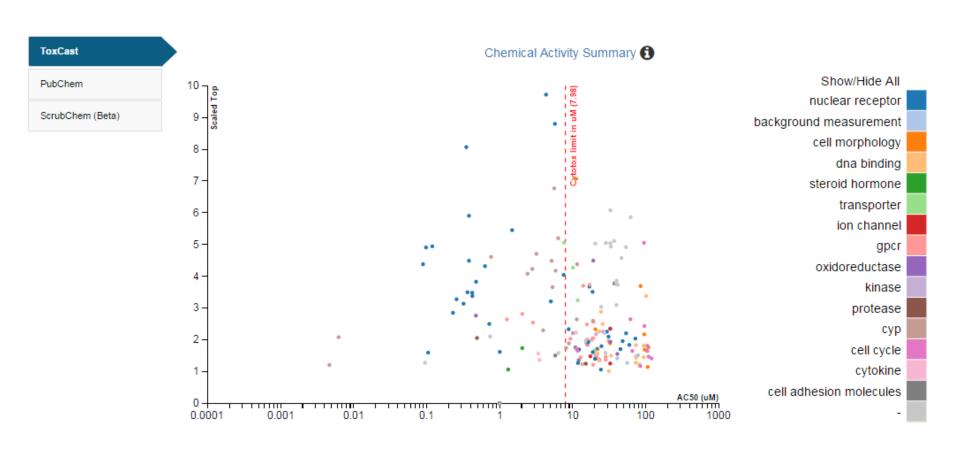
	Ages 6-11	Ages 12-19	Ages 20-65	Ages 65+	BMI > 30	BMI < 30	Repro. Age Females	Females	Males	Total
Lower 95th Limit	3.21e-09	1.84e-09	5.53e-09	2.42e-09	3.56e-09	3.70e-09	3.96e-09	4.30e-09	1.71e-09	2.81e-09
Upper 95th Limit	4.23e-07	4.70e-07	4.38e-07	4.97e-07	4.01e-07	4.63e-07	5.39e-07	4.34e-07	3.75e-07	3.81e-07
Median	4.79e-08	5.21e-08	7.79e-08	6.93e-08	6.19e-08	5.98e-08	8.17e-08	7.04e-08	4.20e-08	5.76e-08

Bioassays


In the 2014 publication "High Throughput Heuristics for Prioritizing Human Exposure to Environmental Chemicals" (link) EPA scientists studied exposure rates for 106 chemicals that could be determined from urine samples collected by NHANES. They found five factors that correlated with the average (geometric mean) exposure rate (mg/kg bodyweight/day) for ten different demographic groups. Here we report a median and upper 95th percent estimate for the average exposure rate for each group. Based on the 2014 analysis, we are 50% confident that the exposure for the chemical is below the median, and we are 95% confident that the exposure rate is below the upper 95th percent estimate.


 Navigation aids, including these hovers, are being added to make navigation and understanding easier. Movies are in development.

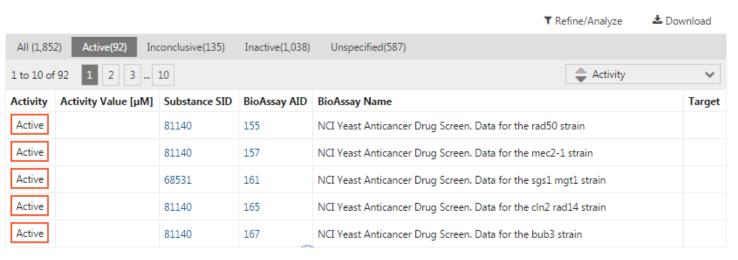
In vitro Bioassay Data


- In vitro bioassays are used to determine the biological activity of a substance – Toxcast project
- A decade of measurements, and millions of dollars of data integrated into the dashboard

ToxCast and Tox21 Bioassays

ToxCast and Tox21 Bioassays

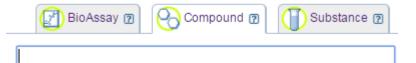
Download as: TSV Excel Show:	Inactive	Background				
Assay Name	Hit Call	Тор	Scaled Top	AC50	log AC50↓	Intended Target Family
APR_Hepat_CellLoss_48hr_dn	ACTIVE	1.41	1.41	120	2.08	cell cycle
APR_HepG2_MitoMass_24h_dn	ACTIVE	0.874	1.76	109	2.04	cell morphology
APR_HepG2_OxidativeStress_24h_up	ACTIVE	1.20	1.47	110	2.04	cell cycle
APR_Hepat_DNADamage_48hr_up	ACTIVE	1.84	1.14	107	2.03	cell morphology
APR_HepG2_CellLoss_24h_dn	ACTIVE	1.20	1.81	106	2.02	cell cycle
APR_HepG2_OxidativeStress_72h_up	ACTIVE	1.80	1.65	106	2.02	cell cycle
ATG_HSE_CIS_up	ACTIVE	1.59	3.38	102	2.01	dna binding


PubChem Bioassay Data Integration

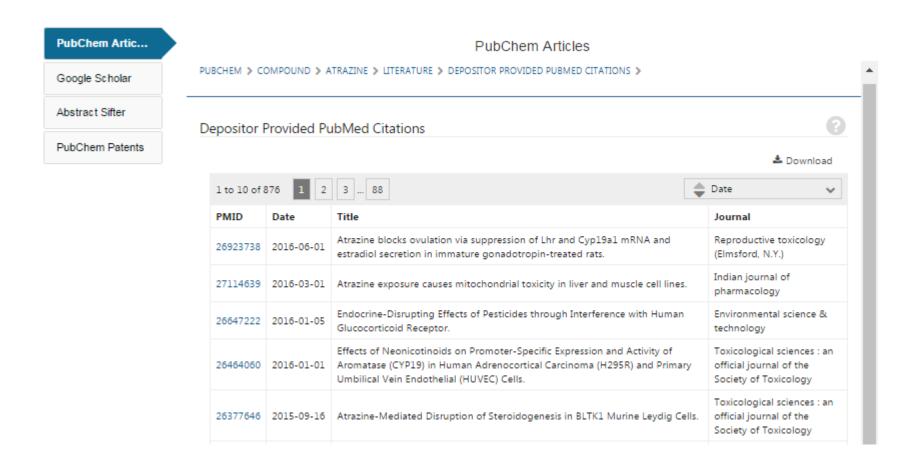
PubChem Biological Activities

PUBCHEM > COMPOUND > BISPHENOL A > BIOLOGICAL TEST RESULTS > BIOASSAY RESULTS >

BioAssay Results



Integrated Literature Searching


atrazine

PubMed

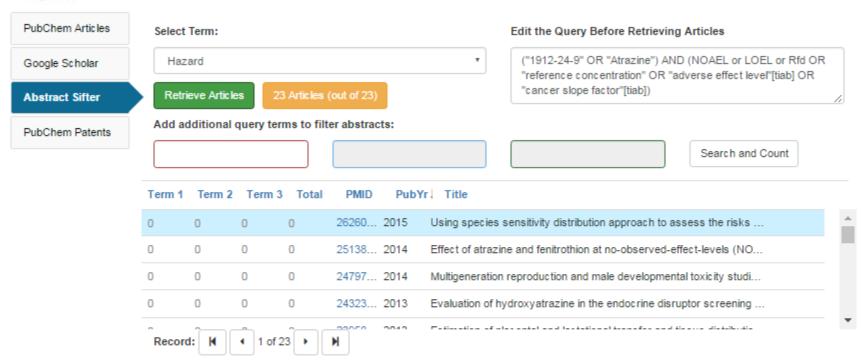
PubMed comprises more than 26 million citations for biomedical literature from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed Central and publisher web sites.

Comments

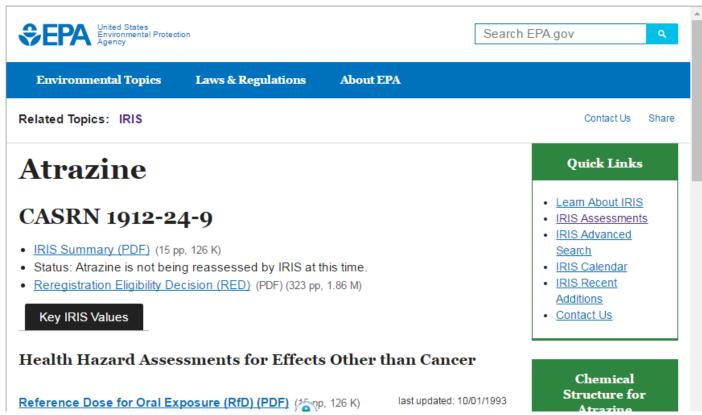
Bioassays

PubChem Articles	Select Term:	Environmental	₩ AN	D	Non-targeted Analysis	, AND	. •
Google Scholar	Edit the Query	Before Querying (73	Characters)				
Abstract Sifter	"Non-targete	d Analysis" AND "Envir	onmental" AND "1	912-24-9" (OR "Atrazine"		
PubChem Patents							
							//
	Submit						

PubChem Articles Select Term: AND AND Environmental. Non-targeted Analysis Google Scholar Edit the Query Before Querying (73 Characters) Abstract Sifter "Non-targeted Analysis" AND "Environmental" AND "1912-24-9" OR "Atrazine" PubChem Patents Google "Non-targeted Analysis" AND "Environmental" AND "1912-24-9" OR "Atrazir Scholar My Citations About 30 results (0.14 sec) Environmental metabolomics: a critical review and future perspectives rppri academia.edu Articles JG Bundy, MP Davey, MR Viant - Metabolomics, 2009 - Springer ... Hence, several steps must now to taken to move environmental metabolomics forward, as Case law discussed below, including issues related to ... And for a relatively rapid, quantitative and non-targeted analysis of the most abundant metabolites one could select the well-established ... My library Cited by 306 Related articles All 9 versions Cite Save New trends in the analytical determination of emerging contaminants and their rppFi researchgate.net Any time transformation products in **environmental** waters Since 2017 A Agüera, MJM Bueno, AR Fernández-Alba - Environmental Science and ..., 2013 - Springer Since 2016 ... Take survey. Download PDF. Environmental Science and Pollution Research. Environmental Since 2013 Science and Pollution Research. ... New trends in the analytical determination of emerging Custom range... contaminants and their transformation products in environmental waters, ... Cited by 51 Related articles All 10 versions Cite Save Sort by relevance Coupling passive sampling and time of flight mass spectrometry for a better Sort by date estimation of polar pesticide freshwater contamination; simultaneous target quantification ... R Guibal, S Lissalde, A Charriau, G Poulier ... - ... of Chromatography A, 2015 - Elsevier include patents ... The proposed quantification method was validated for 43 compounds with variation of calibration include citations slopes below 10% in environmental matrix. For the unvalidated compound DIA (atrazinedesisopropyl: an atrazine metabolite), interference increased the error of concentration ... Cited by 12 Related articles All 5 versions Cite Save Create alert



Bioassays


Title: Using species sensitivity distribution approach to assess the risks of commonly detected agricultural pesticides to Australia's tropical freshwater ecosystems.

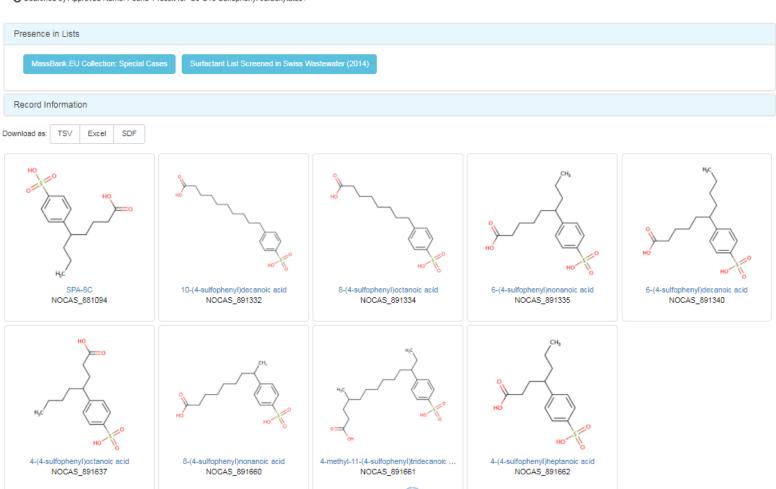
Abstract: To assess the potential impacts of agricultural pesticides on tropical freshwater ecosystems, the present study developed temperature-specific, freshwater species protection concentrations (i.e., ecotoxicity threshold values) for 8 pesticides commonly detected in Australia's tropical freshwaters. Because relevant toxicity data for native tropical freshwater species to assess the ecological risks were mostly absent, scientifically robust toxicity data obtained at ≥20 °C were used for ecologically relevant taxonomic groups representing primary producers and consumers. Species sensitivity distribution (SSD) curves were subsequently generated for predicted chronic exposure using Burrlioz 2.0 software with mixed chronic and converted acute data relevant to exposure conditions at ≥20 °C. Ecotoxicity threshold values for tropical freshwater ecosystem

Integrated Literature



Crowdsourced Data Curation

- Maintaining high-quality data is a challenge
- Every user can contribute to improving the data!


Submit Comment

"UVCBs" - Unknown or Variable Composition, Complex Reaction Products and Biological Materials

C3-C15 Sulfophenyl carboxylates

NOCAS 891722 | DTXSID90891722

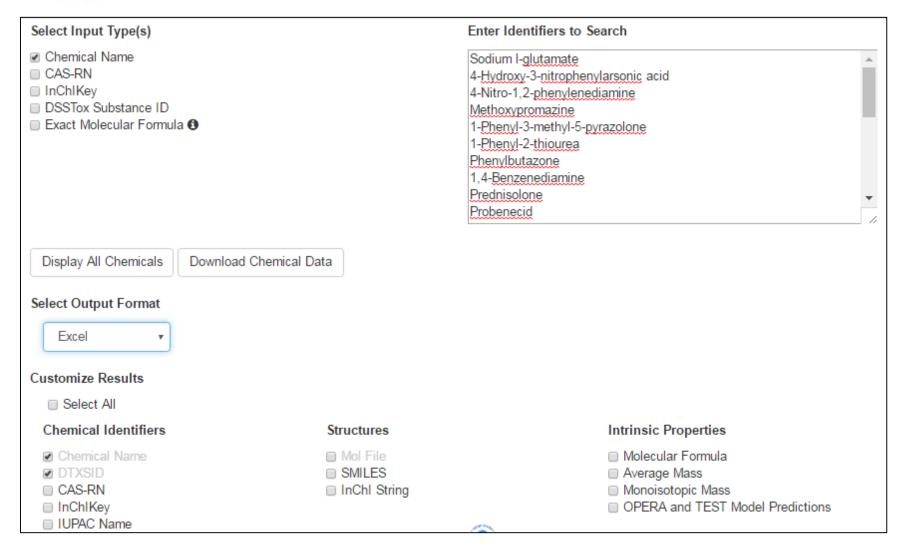
1 Searched by Approved Name: Found 1 result for 'C3-C15 Sulfophenyl carboxylates'.

Some Typical Questions

- I have a 1000 CAS Numbers (or Names) are there data available?
 - -Has any Toxcast data been run?
 - –Are there Toxicity Data values available?
 - –Are there predicted exposure data (via Expocast)?
 - –Can I get predicted physchem data for my model?

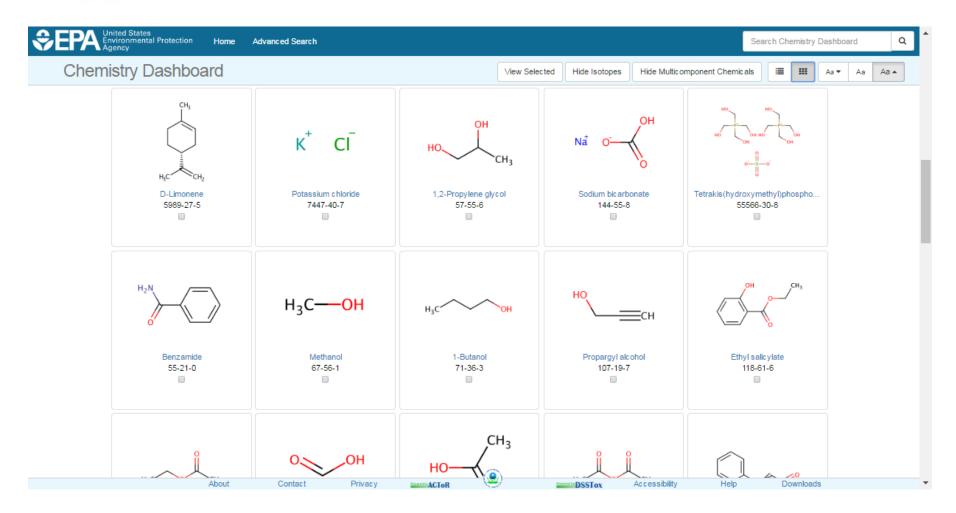
Batch Searching for Data for Thousands of Chemicals

What are these chemicals?

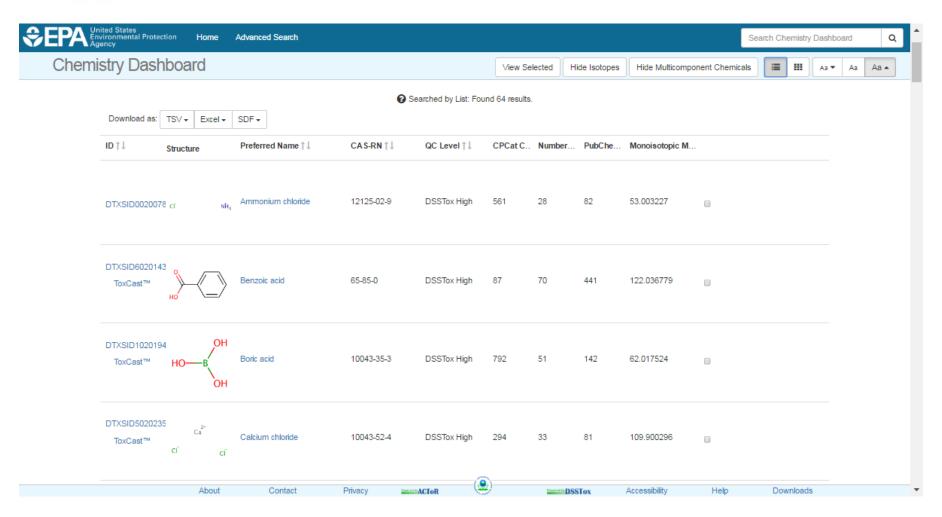

Chemicals Used in the Hydraulic Fracturing Process in Pennsylvania Prepared by the Department of Environmental Protection Bureau of Oil and Gas Management

Updated June 10, 2010

Chemical	Product Name
2,2-Dibromo-3-Nitrilopropionamide	Bio Clear 1000/Bio Clear 2000/ Bio-Clear 200/BioRid20L/ EC6116A
2-methyl-4-isothiazolin-3-one	X-Cide 207
5-chloro-2-methyl-4-isothiazolin-3- one	X-Cide 207
Acetic Acid	Fe-1A Acidizing Composition/ Packer Inhibitor
Acetic Anhydride	Fe-1A Acidizing Composition
Acetylene	GT&S Inc./ Airco
Alcohol Ethoxylated	C12-16 NE-200
Alkyl benzene sulfonic acid	Tetrolite AW0007/ FR-46
Ammonia (aqueous)	FAW-5
Ammonium Bifluoride	ABF 37%
Ammonium Persulfate	AP Break
Ammonium Bisulfite	Techni-Hib 604/ Fe OXCLEAR/ Packer Inhibitor
Ammonium chloride	Salt Inhibitor
Ammonium Salt (alkylpolyether	T 1 22 AMOSOT

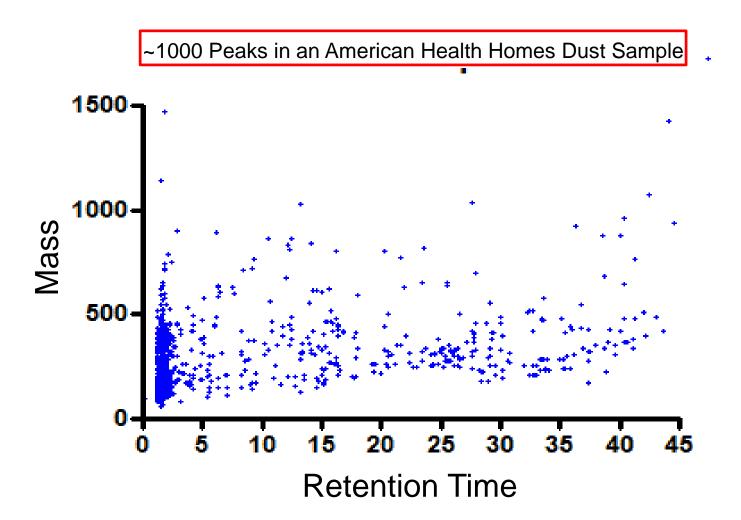


Batch Searching for Data for Thousands of Chemicals



Access to associated data for review, modeling & download

Access to associated data for review, modeling & download

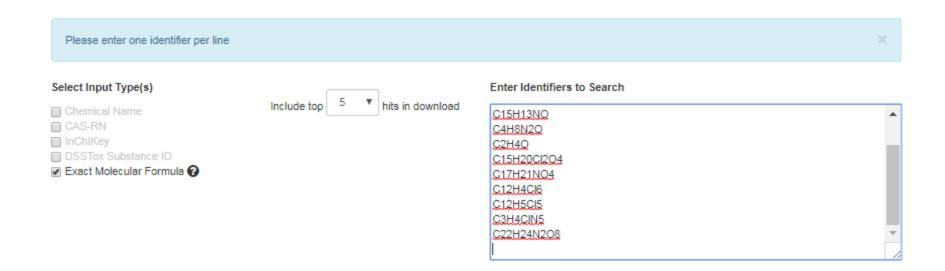


Summary Spreadsheet with Deep Links

⊿ A	В	C D	E	F	G	Н		J	K	L
1 INPUT	DTXSID	PREFERRE CASRN	DATA SOURCES	PERCENT ACTIVE CALLS	BER ACTIVE ASSAYS VS 1	CACTOR REPORT	EXPOCAST	I EXPOSURE PREDICTI	NHANES	TOXVAL DATA
2 1318-09-8	DTXSID708	Libby Amph 1318-09-8	4	-	-		-	-	-	-
3 65195-55-3	3 DTXSID905	Abamectin 65195-55-3	24	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=65195-55-3	-	-	-	Υ
4 526-73-8	DTXSID804	1,2,3-Trimet 526-73-8	56	0.0	0/183	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=526-73-8	-	-	-	-
5 1306-38-3	DTXSID404	Ceric oxide 1306-38-3	30	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=1306-38-3	-	-	-	Υ
6 71-43-2	DTXSID303	Benzene 71-43-2	91	0.0	0/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=71-43-2	Υ	9.13e-06	-	Υ
7 100-52-7	DTXSID803	Benzaldehy 100-52-7	73	0.0	0/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=100-52-7	Υ	3.64e-05	-	Y
8 107-05-1	DTXSID403	Allyl chlorid 107-05-1	65	1.81	5/276	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=107-05-1	Y	7.43e-08	-	Y
9 79-10-7	DTXSID003	Acrylic acid 79-10-7	64	0.0	0/64	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=79-10-7	Υ	4.35e-08	-	Υ
10 75-07-0	DTXSID503	Acetaldehy 75-07-0	72	22.1	61/276	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=75-07-0	Υ	2.57e-06	-	-
11 116-06-3	DTXSID003	Aldicarb 116-06-3	69	4.61	31/673	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=116-06-3	Υ	1.25e-08	-	-
12 68359-37-	5 DTXSID503	Cyfluthrin 68359-37-5	57	6.95	49/705	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=68359-37-5	Υ	1.9e-06	Υ	-
13 7440-66-6	DTXSID703	Zinc 7440-66-6	44	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=7440-66-6	-	-	-	Υ
14 4685-14-7	DTXSID303	Paraquat 4685-14-7	42	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=4685-14-7	-	-	-	-
15 2764-72-9	DTXSID603	Diquat 2764-72-9	31	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=2764-72-9	-	-	-	Υ
16 5436-43-1	DTXSID303	2,2'4,4'-Tetr 5436-43-1	43	7.08	8/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=5436-43-1	Υ	3.36e-07	-	-
17 60348-60-9	9 DTXSID903	2,2',4,4',5-P 60348-60-9	43	2.65	3/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=60348-60-9	Υ	3.49e-07	-	-
18 68631-49-2	2 DTXSID403	2,2',4,4',5,5 68631-49-2	35	1.77	2/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=68631-49-2	Υ	5.08e-07	-	-
19 108-67-8		1,3,5-Trimet 108-67-8	72	0.37	2/536	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=108-67-8	Υ	3.22e-06	-	-
20 12035-72-2		Nickel subs 12035-72-2	30	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=12035-72-2	-	-	-	-
21 101-68-8		4,4'-Dipheny 101-68-8	55	2.65	3/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=101-68-8	Υ	1.62e-05	-	Υ
22 108-86-1	DTXSID502	Bromobenz 108-86-1	60	0.88	1/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=108-86-1	Υ	2e-08	-	-
23 7790-98-9	DTXSID402	Ammonium 7790-98-9	37	0.88	1/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=7790-98-9	Υ	6.55e-08	-	Υ
24 1314-84-7	DTXSID102	Zinc phospl 1314-84-7	32	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=1314-84-7	-	-	-	-
25 557-21-1		Zinc cyanid 557-21-1	18	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=557-21-1	-	-	-	Y
26 7723-14-0		Phosphorus 7723-14-0	32	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=7723-14-0	-	-	-	Y
27 1929-77-7		Vernolate 1929-77-7	49	1.29	7/544	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=1929-77-7	Υ	6.42e-08	-	-
28 118-96-7	DTXSID702	2,4,6-Trinitr 118-96-7	48	-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=118-96-7	-	-	-	-
29 540-84-1		2,2,4-Trimet 540-84-1	48	0.88	1/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=540-84-1	Y	7.1e-06	-	-
30 112-50-5		2-[2-(2-Etho 112-50-5	50	0.19	1/537	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=112-50-5	Υ	4.19e-07	-	-
31 121-44-8	DTXSID302	Triethylamir 121-44-8	65	2.54	7/276	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=121-44-8	Υ	2.98e-05	-	Υ
		Tridiphane 58138-08-2		-	-	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=58138-08-2	-	-	-	-
33 1319-77-3	DTXSID302	Cresol 1319-77-3	37	1.21	3/247	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=1319-77-3	Υ	3.3e-05	-	Υ
34 598-77-6	DTXSID302	1,1,2-Trichl 598-77-6	36	0.0	0/113	https://actorws.epa.gov/actorws/actor/2015q3/chemicalPdfExport.pdf?casrn=598-77-6	Υ	9.68e-08	-	Υ

Non-targeted Analysis

Searches for Specific Purposes


Advanced Search

Mass Search Min/Max ± Search Q Mass amu Error amu ppm Single component Ignore isotopes Generate Molecular Formula(e) Min/Max ± Search Q amu Mass Error amu ppm

Batch Searching Formulae

Batch Search

Data Available for Download

https://comptox.epa.gov/dashboard/downloads

Downloads

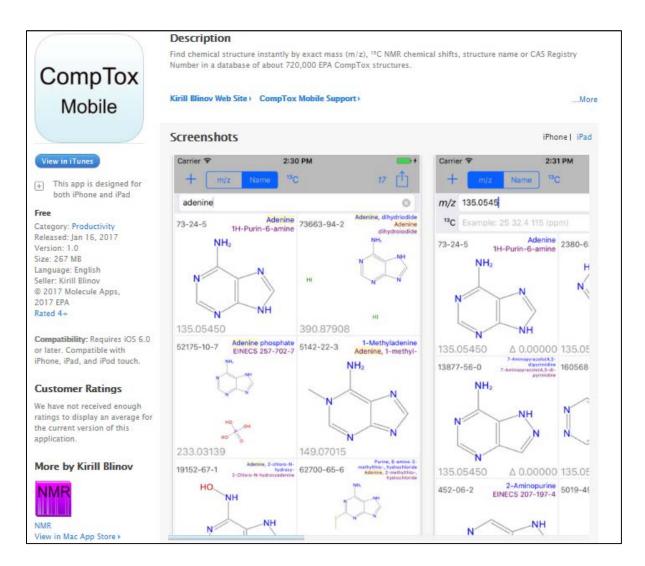
DSSTox Identifier to PubChem Identifier Mapping File

Posted: 11/14/2016

The DSSTox to PubChem Identifiers mapping file is in TXT format and includes the PubChem SID, PubChem CID and DSSTox substance identifier (DTXSID).

316388886 25021861 DTXSID80873133 316388885 2784427 DTXSID60873133	316388885	2784427	DTXSID DTXSID30873143 DTXSID70873142 DTXSID40873139 DTXSID20873137 DTXSID00873135 DTXSID80873133 DTXSID60873131 DTXSID00873130
---	-----------	---------	--

DSSTox identifiers mapped to CAS Numbers and Names File


Posted: 11/14/2016

The DSSTox Identifiers file is in Excel format and includes the CAS Number, DSSTox substance identifier (DTXSID) and the Preferred Name.

4	Α	В	
1	casrn	dsstox_substance_id	preferred_name
2	26148-68-5	DTXSID7020001	A-alpha-C
3	107-29-9	DTXSID2020004	Acetaldehyde oxime
4	60-35-5	DTXSID7020005	Acetamide
5	103-90-2	DTXSID2020006	Acetaminophen
6	968-81-0	DTXSID7020007	Acetohexamide
_			

ca. 720,000 structures on an iPhone or iPad

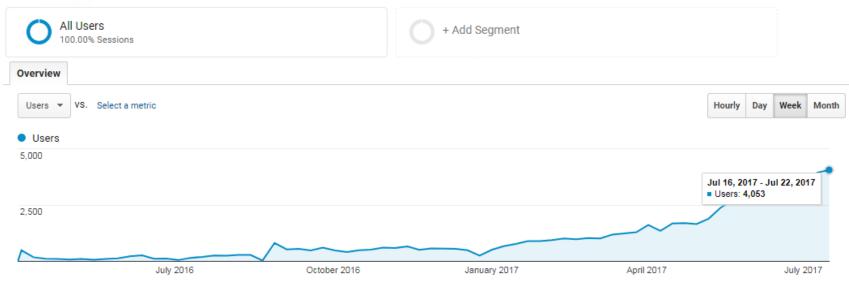
Present Activities

- Update to release by end of August 2017
 - New chemical substances and structures (+11,000 chemicals)
 - -Hundreds of thousands of names and predicted PhysChem Properties
 - -NEW LISTS COMING SOON
 - CalEPA Office of Environmental Health Hazard Assessment
 - Agency for Toxic Substances and Disease Registry
 - Drinking Water Suspects, KWR Water, Netherlands
 - EU Cosmetic Ingredients Inventory
 - Swedish Chemicals Agency List of Substances on the Market
 - Integration to MassBank and mzCloud MS databases
 - National Environmental Methods Index
 - NIOSH Chemical Safety Cards, Skin Notation Profiles and Pocket Guide to Chemical Hazards

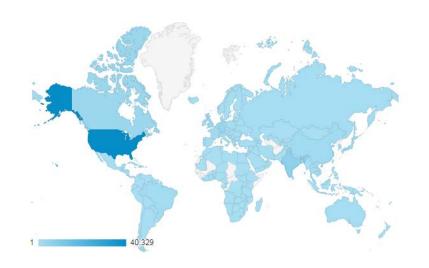
United States Environmental Protection Agency

Future Work

- Continue expansion and curation of data.
- Provide "programmatic access" to all data connect to other Agency resources and allow other scientists to integrate their scientific applications.
- Integrate algorithms that allow for real-time predictions. T.E.S.T and OPERA predictions
- Continue to assemble and enhance chemical lists and data for specific projects.



Conclusion


- The Dashboard provides access to data for ~760,000 chemicals (soon)
- An Integration Hub integrating multiple data sources: experimental and predicted property data, bioassay data, links to public and agency resources
- Data downloads allows for reuse in other systems and integration of resources to support research
- 1 year since initial release (on April 2016) but already an important resource we believe...

Usage Growth Statistics

Approaching 5000 unique users per week and worldwide usage

Acknowledgements

EPA-RTP

An enormous team of contributors from NCCT

and collaborators from NERL NHERL NRMRL

Contact

Antony Williams

US EPA Office of Research and Development National Center for Computational Toxicology (NCCT) 919-541-1033

Williams.Antony@epa.gov