

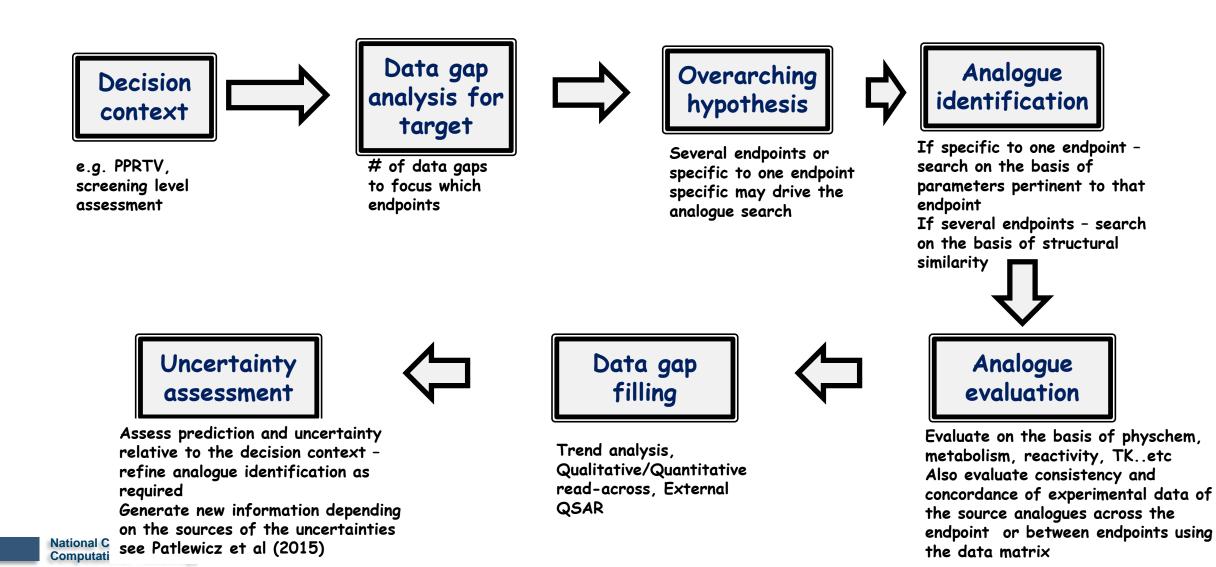
Navigating Through the Minefield of Read-Across: From Research to Practical Tools

Grace Patlewicz, George Helman*, Imran Shah

National Center for Computational Toxicology *ORISE Fellow

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

- Background, Concepts and Definitions
- Category workflow and selected tools for read-across
- Uncertainty assessment in read-across
- Quantifying Uncertainty & Assessing Performance of Read-Across
- From Research to Implementation
- Summary



- •<u>Read-across</u> describes one of the <u>data gap filling techniques</u> used within <u>analogue</u> and <u>category</u> approaches
- "Analogue approach" refers to <u>grouping</u> based on a very limited number of chemicals (e.g. target substance + source substance)
- "<u>Category</u> approach" is used when grouping is based on a more extensive range of analogues (e.g. 3 or more members)

Category Workflow

Selected Read-Across Tools

Tool	AIM	To×Match	AMBIT	OECD Toolbox	CBRA	ToxRead
Analogue identification	×	×	×	×	X	×
Analogue Evaluation	NA	×	X by other tools available	×	×	X For Ames & BCF
Data gap analysis	NA	X	X Data matrix can be exported	X Data matrix viewable	NA	NA
Data gap filling	NA	×	User driven	X	×	×
Uncertainty assessment	NA	<u>NIA</u>	<u>NIA</u>	X	NA	NA
Availability	Free	Free	Free	Free	Free	Free

Selected Read-Across Tools - Review

Computational Toxicology 3 (2017) 1–18

Contents lists available at ScienceDirect

Computational Toxicology

journal homepage: www.elsevier.com/locate/comtox

Navigating through the minefield of read-across tools: A review of in silico tools for grouping

CrossMark

Grace Patlewicz^{a,*}, George Helman^{a,b}, Prachi Pradeep^{a,b}, Imran Shah^a

*National Center for Computational Toxicology (NCCT), Office of Research and Development, US Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA
^b Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA

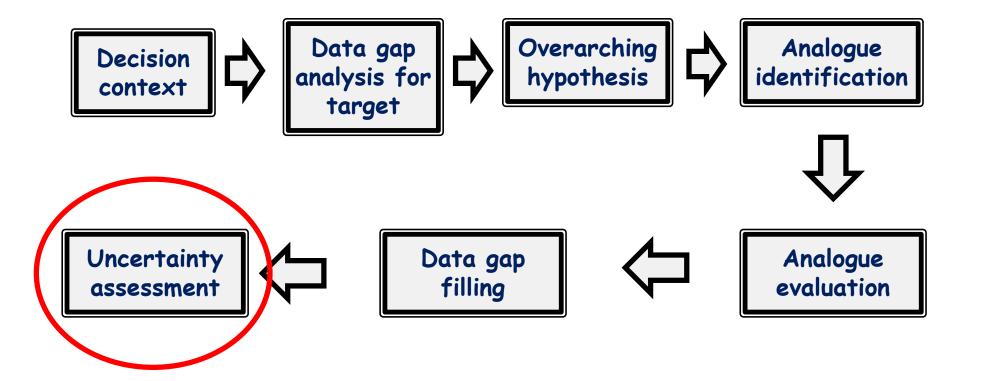
ABSTRACT

ARTICLE INFO

Article history: Received 29 March 2017 Received in revised form 22 May 2017 Accepted 25 May 2017 Available online 29 May 2017

Keywords: Category approach Analogue approach Data gap filling Read-across (Q)SAR Trend analysis Nearest neighbor Read-across is a popular data gap filling technique used within analogue and category approaches for regulatory purposes. In recent years there have been many efforts focused on the challenges involved in read-across development, its scientific justification and documentation. Tools have also been developed to facilitate read-across development and application. Here, we describe a number of publicly available read-across tools in the context of the category/analogue workflow and review their respective a capabilities, strengths and weaknesses. No single tool addresses all aspects of the workflow. We highlight how the different tools complement each other and some of the opportunities for their further development to address the continued evolution of read-across.

Published by Elsevier B.V.


National Center for Computational Toxicology

Protection

5

The Category Workflow

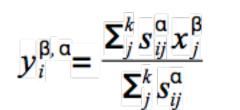
- Analogue or category approach? (# analogues)
- Completeness of the data matrix no. of data gaps
- Data quality for the underlying analogues for the target and source analogues
- Consistency of data across the data matrix concordance of effects and potency across analogues

Sources of Uncertainty (cont'd)

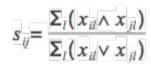
- Overarching hypothesis/similarity rationale how to identify similar analogues and justify their similarity for the endpoint of interest
- Address the dissimilarities and whether these are significant from a toxicological standpoint
- Presence vs. absence of toxicity
- Toxicokinetics

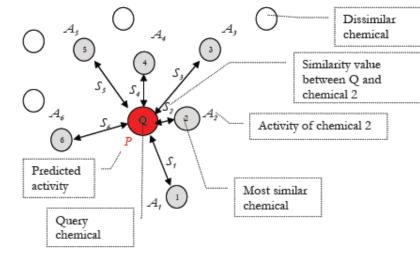
Uncertainty assessment

- There are several frameworks which aim to identify, document and address the uncertainties associated with read-across inferences/predictions
 - Blackburn & Stuard (2014)
 - Patlewicz et al (2015)
 - Schultz et al (2015)
 - ECHA RAAF (2015)
- However read-across acceptance relies on a subjective expert assessment
- There is no objective measure of read-across performance


Quantifying Uncertainty & Assessing Bency Performance of Read-Across

•GenRA (Generalised Read-Across) is a "local validity" approach


•Predicting toxicity as a similarity-weighted activity of nearest neighbors based on chemistry and bioactivity descriptors


•Generalised version of Chemical-Biological Read-Across (CBRA) developed by Low et al (2013)

•Systematically evaluates read-across performance and uncertainty using available data

Jaccard similarity:

GenRA - Approach

I. Data

1,778 Chemicals 3,239 Structure descriptors (chm) 820 Bioactivity assays (bio) ToxCast 574 Apical outcomes (tox) ToxRefDB

II. Define Local neighborhoods

Use K-means analysis to group chemicals by similarity Use cluster stability analysis ~ 100 local neighborhoods

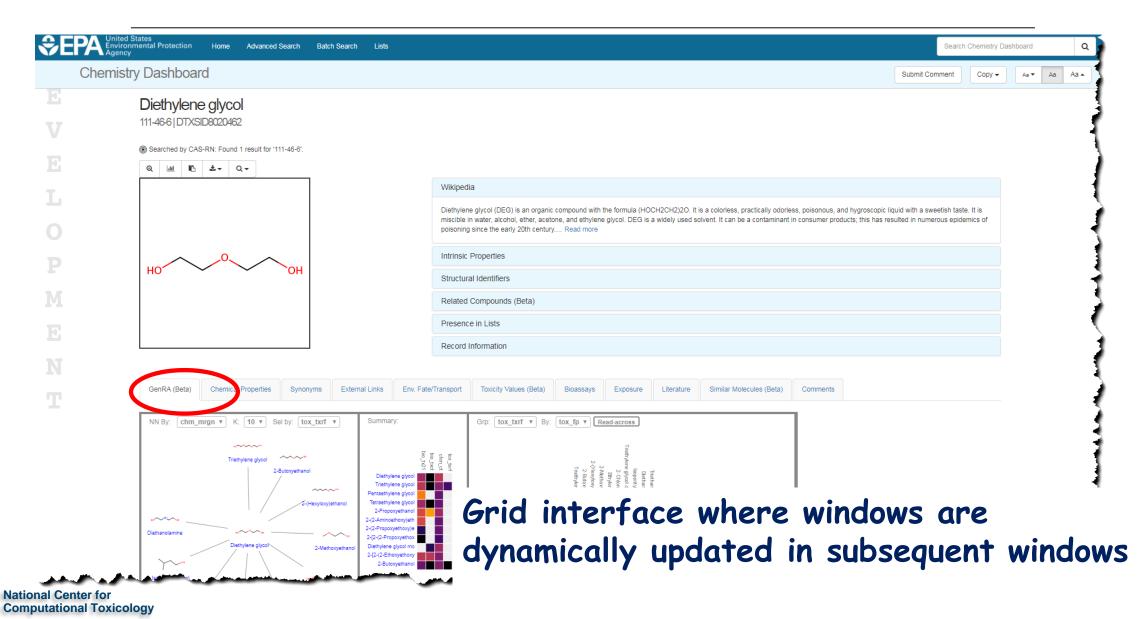
III. GenRA

Use GenRA to predict apical outcomes in local neighbor hoods Evaluate impact descriptors (chm, bio, bc) on prediction Quantify uncertainty

GenRA - Performance in Each Cluster

- No preselection of descriptors was performed
- Tested and compared
 - Chemical descriptors
 - Bioactivity descriptors
 - Hybrid of chemical and bioactivity descriptors
- Use GenRA to predict the similarity weighted toxicity scores for each
 - Toxicity type (β)
 - Descriptor ={chm,bio,bc} (α)
 - No. of nearest neighbors (k)
 - Similarity score threshold (s^{lpha}_{ij})
- Calculate performance by comparing predicted y^{tox} and true x^{tox} for all chemicals using area under ROC curve (AUC)
- Bioactivity descriptors were often found to be more predictive of in vivo toxicity outcomes

- The approach enabled a performance baseline for read-across predictions of specific study outcomes to be established but was still context dependent on the endpoint and the chemical
- Ongoing analysis:
- Consideration of other information to refine the analogue selection e.g. physicochemical similarity, TK similarity, metabolic similarity, reactivity similarity...



From research to implementation: GenRA prototype

- Intent is to integrate objective read-across functionality as part of ongoing dashboard efforts see https://comptox.epa.gov/dashboard
- A limited release of GenRA is currently available on EPA's development server

Integration via a GenRA tab

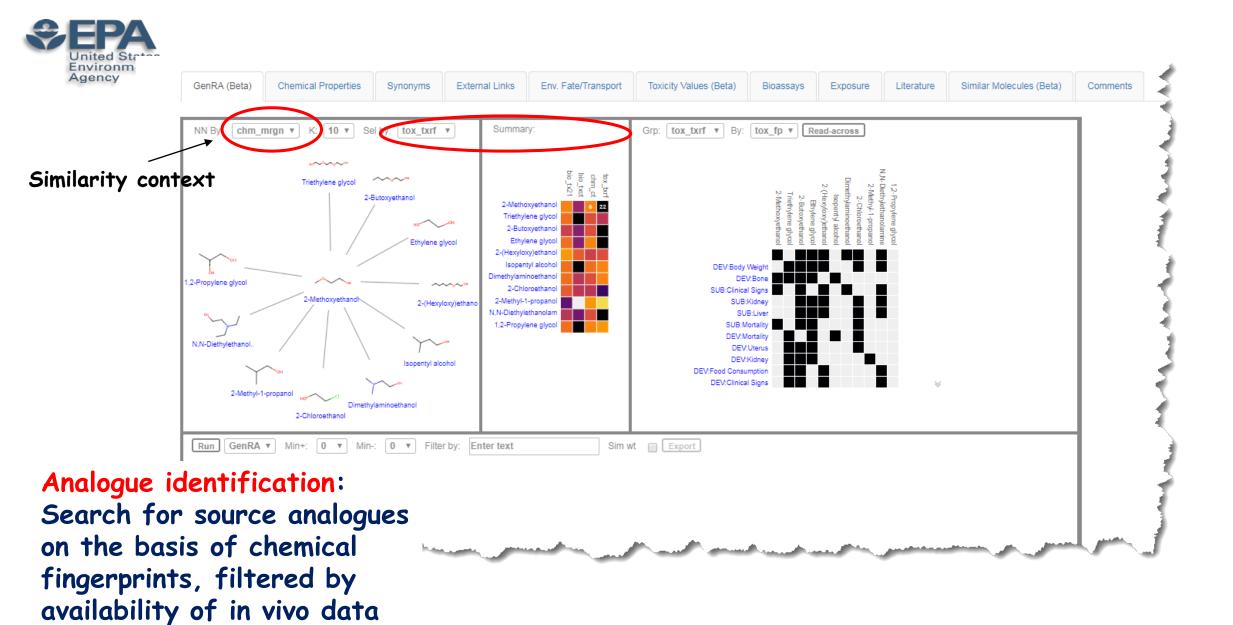
Current Category Workflow in GenRA

screening level assessment of hazard based on toxicity effects from ToxRef

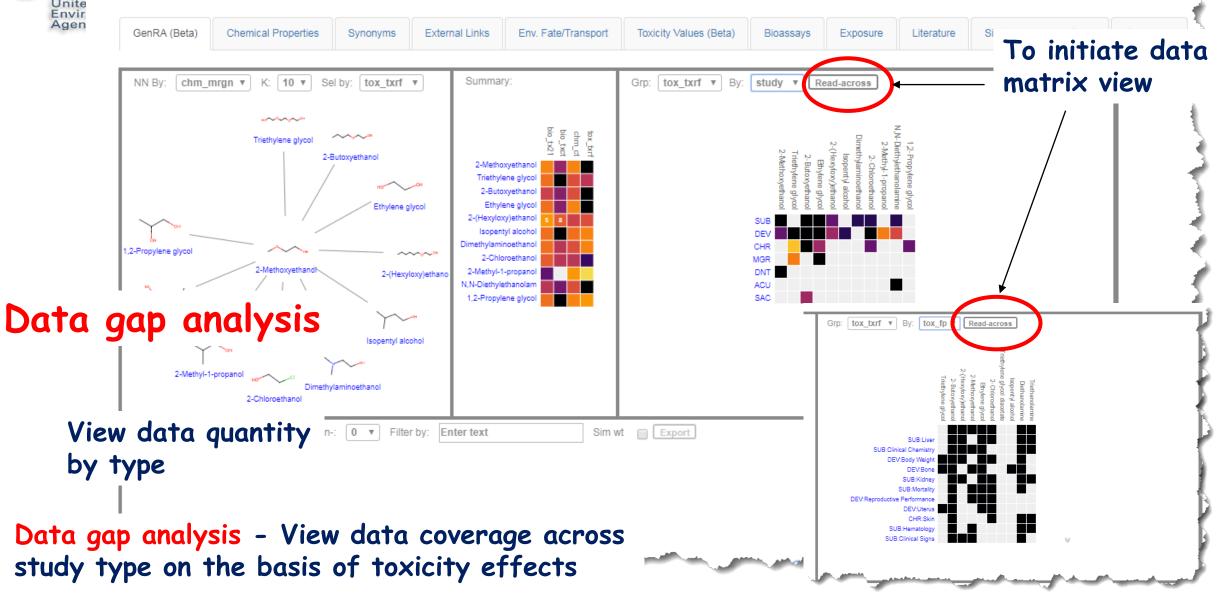
Similarity context is structural characteristics using chemical fingerprints e.g. Morgan, torsion, chemotypes

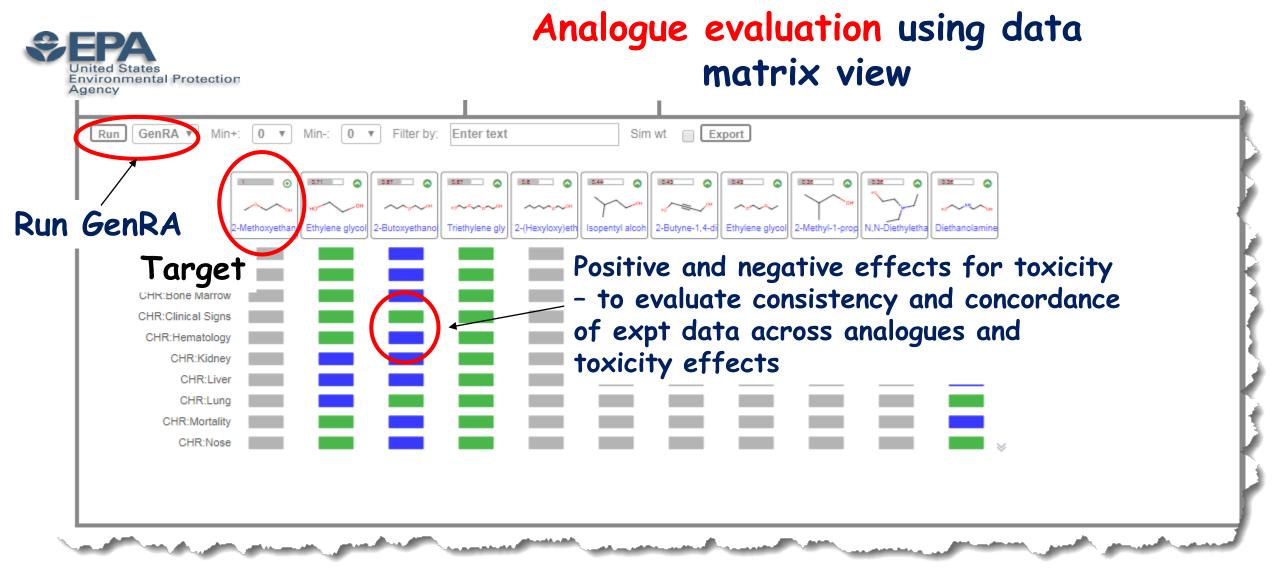
Summary data coverage for target and source substances

Evaluate consistency and concordance of experimental data of the source analogues across the endpoint or between endpoints using the data matrix


Uncertainty assessment

Assess prediction and uncertainty using AUC and p value metrics





Similarity weighted average – many to one read-across

Data gap filling using GenRA within data matrix

								c .			
Run G	enRA Min+: 1 Min-: 0 Filter by: bone B	Sim wt	Export D	E	Exp	_	toad	SV †1	le		Ş
s	target	analog	analog	analog	r analog	G analog	H analog	analog	analog	К	1
ibel	2-Methoxyethanol	-	-	-	_	_	-	-	· · ·	1-propanol	Ē.
sstox_cid	DTXCID804182	DTXCID40597	DTXCID904097	DTXCID60	DTXCID60	DTXCID70	DTXCID90	DTXCID30	DTXCID60	1759	4
asrn	109-86-4	107-21-1	111-76-2	112-27-6	112-25-4	123-51-3	110-65-6	629-14-1	78-83-1		
iccard	1	0.714285714	0.666666667	0.666667	0.6	0.444444	0.428571	0.428571	0.375		1
HR:Bone Marrow	GenRA Neg Act=0 (0.326) AUC=0 p=0.685	no_effect	125.000 ppm	no_effect	no_data	no_data	no_data	no_data	no_data		1
EV:Bone	GenRA TP Act=1 (1) AUC=0 p=1(50.000 ppm)	750.000 mg/kg/day	100.000 ppm	5630.000	no_effect	0.500 p	no_effect	100.000	no_effect		
GR:Bone	GenRA Pos Act=1 (0.517) AUC=0 p=0.51	1333.330 mg/kg/day	no_data	no_effect	no_data	no_data	no_data	no_data	no_data		1
JB:Bone	GenRA FN Act=0 (0.483) AUC=0 p=0.66(546.000 mg/kg/day)	no_effect	500.000 ppm	no_data	no_effect	no_data	no_data	no_data	no_data		
JB:Bone Marrow	GenRA FN Act=0 (0.483) AUC=0 p=0.65(297.000 mg/kg/day)	no_effect	62.500 ppm	no_data	no_effect	no_data	no_data	no_data	no_data		
											_
											Ī

Selected Read-Across Tools

Analogue identificationXXXXXXXXAnalogue EvaluationNAXXXXXXXData gap analysisNAXXXXXAnalogue For Ames & BCFNAXXXXXData gap analysisNAXXXXData matrix can be exportedNANAXData matrix can be exportedNAXXXXUncertainty assessmentNANANAXNAXXXAvailabilityFreeFreeFreeFreeFreeFreeFreeFreeFreeFreeFree	ΤοοΙ	AIM	To×Match	AMBIT	OECD Toolbox	CBRA	ToxRead	GenRA
Evaluationby other tools availableSolutionFor Ames & 		×	×	×	×	×	x	×
analysisData matrix can be exportedData matrix can be exported<		NA	×	by other tools	×	X	For Ames &	NA
fillingNANANANAXUncertainty assessmentNANANAXNAXAvailabilityFreeFreeFreeFreeFreeFreeFree		NA	×	Data matrix can be	Data matrix	NA	NA	Data matrix can be
assessment Availability Free Free Free Free Free Beta for Internal		NA	×		X	x	×	×
Internal	•	NA	NA	NA	×	NA	NA	×
	Availability	Free	Free	Free	Free	Free	Free	

Summary

- Still many challenges remain in read-across
- Quantifying the uncertainty of read-across prediction is a critical issue
- Have illustrated the research directions being taken within NCCT and work to implement these into practical tools

Acknowledgements

- Imran Shah
- George Helman
- Tony Williams
- Jeff Edwards
- Richard Judson
- Prachi Pradeep
- Chris Grulke