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The timely characterization of the 
human and ecological risk posed 
by thousands of existing and 
emerging commercial chemicals 
is a critical challenge facing EPA in 
its mission to protect public 
health and the environment

November 29, 2014

Introduction

• Park et al. (2012): At least 3221 
chemicals in humans, many appear to be 
exogenous
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• High throughput risk prioritization 
needs:

1. high throughput hazard 
characterization (from HTT project)

2. high throughput exposure
forecasts

3. high throughput toxicokinetics
(i.e., dosimetry) Potential 

Exposure 
Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

High Throughput Risk 
Prioritization
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High-Throughput 
Bioactivity

 Tox21:  Examining >10,000 chemicals using ~50 assays 
intended to identify interactions with biological 
pathways (Schmidt, 2009)

 EPA Toxicity Forecaster 
(ToxCast): 
For a subset (>3000) of Tox21 
chemicals run >1000 
additional assay endpoints 
(Judson et al., 2010)

Most assays conducted in 
dose-response format 
(identify 50% activity 
concentration – AC50 – and 
efficacy if data described by a 
Hill function)

http://actor.epa.gov/dashboard/

http://actor.epa.gov/dashboard/
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Application to U.S. EPA Endocrine Disruptor Screening 
Program (EDSP)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Prioritization as in 
Wetmore et al. 
(2015)

High Throughput Chemical 
Risk Prioritization

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it 
applies to the Endocrine Disruptor Screening Program

HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human Hazard Eco Hazard

Human Exposure Eco Exposure

mg/kg BW/day
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HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human In Vitro Assays 
(HTT/ToxCast)

Predicted Ecological 
Species Effects

SeqAPASS (LaLone, 2016)

High 
Throughput 

Toxicokinetics
(Pearce et a., 2017)

Exposure Predictions  
Calibrated to NHANES
(Including SHEDS-HT)

Exposure Predictions  
Calibrated to USGS 
Water Monitoring

mg/kg BW/day

High Throughput Chemical 
Risk Prioritization

Prioritization as in 
Wetmore et al. 
(2015)

July and December 2014 FIFRA Scientific Advisory Panels reviewed research as it 
applies to the Endocrine Disruptor Screening Program
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ToxCast-derived 
Receptor Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

High Throughput Risk 
Prioritization in Practice

Near Field
Far Field

December, 2014 Panel:
“Scientific Issues Associated with Integrated 
Endocrine Bioactivity and Exposure-Based 
Prioritization and Screening“ToxCast: Toxicity Forecaster

ExpoCast: Exposure Forecaster

Rapid Exposure and Dosimetry Project provides ExpoCast research

mg/kg bw/day
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High Throughput Exposure

Exposure

High-Throughput
Risk 

Prioritization

High throughput screening + 
IVIVE can predict a dose 
(mg/kg bw/day) that might 
be adverse

Need methods to forecast 
exposure for thousands of 
chemicals (ExpoCast)

Toxicokinetics

Hazard
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The Need for High Throughput 
Exposure

0

50

100

150

200

250

300

ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined

Chemicals with
Traditional Exposure
Estimates
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Consensus Exposure Predictions 
with the SEEM Framework

• We incorporate multiple models into consensus predictions for 1000s of chemicals within the 
Systematic Empirical Evaluation of Models (SEEM) framework  (Wambaugh et al., 2013, 2014)

• We evaluate/calibrate predictions with available monitoring data 

• This provides information similar to a sensitivity analysis: What models are working? 
What data are most needed? This is an iterative process.

• To date we have relied on median U.S. population exposure rates only
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Exposures Inferred  from 
NHANES

 Annual survey, data released 
on 2-year cycle.

 Different predictive models 
provide different chemical-
specific predictions

• Some models may do a 
better job form some 
chemical classes than 
others overall, so we 
want to evaluate 
performance against 
monitoring data

 Separate evaluations can be 
done for various 
demographics

CDC, Fourth National Exposure Report  (2011)

National Health and Nutrition Examination Survey
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Wambaugh et al. (2014)

Five descriptors explain 
roughly 50% of the 
chemical to chemical 
variability in median 
NHANES exposure rates

Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index:

• Industrial and 
Consumer use

• Pesticide Inert
• Pesticide Active
• Industrial but no 

Consumer use
• Production Volume

Heuristics of Exposure
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Human Exposure Predictions 
for 134,521 Chemicals

Ring et al. (in prep.)
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Lowest NHANES limit of 
detection (LOD) 
roughly corresponds to 
~10-6 mg/kg BW/day

95% confident that median population 
would be <LOD for thousands of chemicals

Ring et al. (in prep.)

Human Exposure Predictions 
for 134,521 Chemicals
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Water Concentrations

Exposure

High-Throughput
Risk 

Prioritization

We are now applying 
the SEEM 
methodology to 
models that predict 
water concentrations

Toxicokinetics

Hazard
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USGS National Water Quality 
Assessment (NAWQA) Data

Surface Water Sampling Sites
> 600,000 surface water sites in lower 48
> 700 individual chemicals
GPS, date, and time stamps
LOD indication

Watersheds

National

Region 
(HUC2)
n = 18

Sub-region 
(HUC4)
n = 196

1984 – 2014
Aggregated by 

season

HUC Levels 

HUC = hydrological unit

https://www.waterqualitydata.us/portal/
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Regional Watersheds (HUC2)

Carbaryl

Setzer et al., (in prep) Slide from Parichehr Saranjampour
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Sub-Regional Watersheds 
(HUC4)

Carbaryl

Setzer et al., (in prep) Slide from Parichehr Saranjampour
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Predicting Water Concentrations 
for Thousands of Chemicals

Saranjampour et al., (in prep)

NPV
(n = 32)

USETox
(n = 82)

Rosenbaum et al., 
2008

RAIDAR
(n =74)

Arnot et al., 2006

HT-EXAIR
(n = 91)

Barber et al., 2017

SHEDS-HT-
DTD

(n = TBA)
Isaacs et al., 2014 U.S. EPA

PWC
(n = TBA)

U.S. EPA 

Fate & transport models Loading models

µ = geometric mean water concentrations
log (µ) = fate and transport models * loading models 
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Idenifying Exposure Pathways

Exposure

High-Throughput
Risk 

Prioritization

Some pathways have 
much higher average 
exposures. For 
example, chemicals 
used in consumer 
products in the home 
tend to have higher 
exposures. But what 
chemicals are in 
consumer products?

Toxicokinetics

Hazard
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Chemical Use Identifies Relevant 
Pathways

>2000 chemicals with Material Safety Data 
Sheets (MSDS) in CPCPdb (Goldsmith et al., 2014)

10
6 

N
HA

N
ES

 C
he

m
ic

al
s

Chemical Manufacture
Consumer

Products, Articles, 
Building Materials Environmental 

Release

Food Air, Soil, WaterAir, Dust, Surfaces

Near-Field
Direct

Near-Field 
Indirect

Human
Ecological

Flora and Fauna

Dietary Far-Field

Direct Use
(e.g. lotion)

Residential Use
(e.g. flooring)

MONITORING
DATA

RECEPTORS

MEDIA

EXPOSURE 
PATHWAY

(MEDIA + RECEPTOR)

Biomarkers 
of Exposure

Biomarkers 
of Exposure

Media Samples

Ecological

Waste

Near field sources have been known to be important at least since 1987 – see Wallace, et al.

Some pathways have much higher 
average exposures!
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• Chemical-Product 
database (CPdat) maps 
many different types of 
use information and 
ontologies onto each 
other

• Includes CPCPdb 
(Goldsmith, et al., 2014) 
with information on 
~2000 products from 
major retailors

• Largest single database 
has coarsest information: 
ACToR UseDB

Dionisio et al. (2015)
http://actor.epa.gov/cpcat/

CPdat: Chemical Use Information 
for  ~30,000 Chemicals
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Predicting Exposure
• EPA’s public CPdat (http://actor.epa.gov/cpcat/) includes every chemical safety sheet from 

a major U.S. retailer (>2000 chemicals) but there are many thousands of other chemicals 
(Goldsmith et al, 2015)

• We use applied 
statistics, including 
machine learning 
techniques, to learn 
from the data we have 
to fill in the gaps 
(Wambaugh et al., 2014, 
Isaacs et al., 2016, 
Phillips et al., 2017)

• This is similar to 
how Netflix can 
guess how much 
you will like a 
movie

http://actor.epa.gov/cpcat/
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Predicting Chemical 
Constituents

Isaacs et al. (2016)
Office of Research and Development

 CPCPdb does not cover 
every chemical-product 
combination (~2000 
chemicals, but already 
>8000 in Tox21)

 We can predict functional 
use and weight fraction 
for thousands of 
chemicals
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Non-Targeted Analysis

Exposure

High-Throughput
Risk 

Prioritization

New refinements to 
mass spectrometry 
are broadening our 
ability to understand 
the chemicals present 
in environmental and 
biological samples

Toxicokinetics

Hazard
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“I’m searching for my keys.”

 Models present one way forward, but new 
analytic techniques may also allow insight in to 
chemicals composition of products and the 
greater environment

 EPA is coordinating a comparison of non-
targeted screening workflows used by leading 
academic and government groups (led by Jon 
Sobus and Elin Ulrich)
• Examining house dust, human plasma, and 

silicone wristbands (O’Connell, et al., 2014)
• Similar to NORMAN Network (Schymanski 

et al., 2015) analysis of water
 Published analysis on house dust (Rager et al., 

2016)

Non-Targeted and Suspect-
Screening Analysis

 100 consumer products from a major U.S. retailer were 
analyzed, tentatively identifying 1,632 chemicals, 1,445 which 
were not in EPA’s database of consumer product chemicals 
(Phillips et al., submitted)
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Suspect Screening in House Dust
M

as
s

Retention Time

947 Peaks in an American Health Homes Dust 
Sample

We are expanding our reference libraries using ToxCast chemicals to enable greater numbers 
and better accuracy of confirmed chemicals

See Rager et al., (2016)

Each peak corresponds to a 
chemical with an accurate mass 
and predicted formula:

Multiple chemicals can have the 
same mass and formula:

Is chemical A present, 
chemical B, both, or some 
other chemical (neither)?

C17H19NO3
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“As chemists we are obliged to accept the assignment of barium to the 
observed activity, but as nuclear chemists working very closely to the 
field of physics we cannot yet bring ourselves to take such a drastic 
step, which goes against all previous experience in nuclear physics. It 
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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“As chemists we are obliged to accept the assignment of barium to the 
observed activity, but as nuclear chemists working very closely to the 
field of physics we cannot yet bring ourselves to take such a drastic 
step, which goes against all previous experience in nuclear physics. It 
could be, however, that a series of strange coincidences has misled us.”

Hahn and Strassmann (1938)

1944 Nobel Prize in Chemistry for “discovery of the fission of heavy nuclei"

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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ExpoCast Consumer Product Scan

Log10(µg/g)

The chemicals 
found in a 
cotton shirt

Phillips et al. (submitted)
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ExpoCast Consumer Product Scan

Log10(µg/g)

Chemicals that are present

Chemicals that are absent (but found in other products)

Phillips et al. (submitted)
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ExpoCast Consumer Product Scan

Log10(µg/g)

The chemicals 
found in a 
cotton shirt

Phillips et al. (submitted)
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ExpoCast Consumer Product Scan

Log10(µg/g)

Phillips et al. (submitted)
Of 1,632 chemicals, 1,445 were not present in 
our database from the major retailer (CPCPdb)
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Product Scan Summary

Phillips et al. (submitted)

Of 1,632 chemicals confirmed or tentatively identified, 1,445 were 
not present in CPCPdb
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Predicting Chemical Function

Using the methods of Phillips et al., (2017):

Phillips et al. (submitted)



Office of Research and Development38 of 54

Analysis of Drinking Water

High resolution mass spectrometry 
was used to investigate the 
occurrence and identity of 
replacement fluorinated compounds 
in surface water and sediment of the 
Tennessee River near Decatur, 
Alabama

A series of nine polyfluorinated carboxylic acids was discovered

Phillips et al. (2017)
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Caveats to Non-Targeted 
Screening

• Chemical presence in an object does not mean that exposure occurs
• Only some chemical identities are confirmed, most are tentative

• Can use formulation predictor models as additional evidence
• Chemical presence in an object does not necessarily mean that it is bioavailable

• Can build emission models
• Small range for quantitation leads to underestimation of concentration
• Product de-formulation caveats:

• Samples are being homogenized (e.g., grinding) and are extracted with a 
solvent (dichloro methane, DCM)

• Only using one solvent (DCM, polar) and one method GCxGC-TOF-MS
• Varying exposure intimacy, from carpet padding to shampoo to cereal

• Exposure alone is not risk, need hazard data
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Expanded Biomonitoring

• Moving beyond NHANES 
chemicals

• Non-targeted 
analysis of blood may 
be possible

• Not just a matter of 
sensitivity, must also 
“filter out” 
endogenous, food, 
and drug chemicals

Rappaport et al. (2014)
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Toxicokinetics for IVIVE

Exposure

High-Throughput
Risk 

Prioritization

We want to perform 
in vitro-in vivo 
extrapolation (IVIVE) 
of ToxCast activities

Toxicokinetics

Hazard



Office of Research and Development42 of 54 • Studies like Wetmore et al. (2012, 2015), addressed 
the need for TK data using in vitro methods

The Need for In Vitro 
Toxicokinetics

0

50

100

150

200

250

300

ToxCast Phase I (Wetmore et al. 2012) ToxCast Phase II (Wetmore et al. 2015)

ToxCast Chemicals
Examined
Chemicals with
Traditional in vivo TK
Chemicals with High
Throughput TK
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High Throughput Toxicokinetics

 “httk” R Package for in vitro-in vivo extrapolation 
and PBTK

 553 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. (2017) provides documentation and 

examples
 Built-in vignettes provide further examples of how 

to use many functions

https://CRAN.R-project.org/package=httk
Can access this from the R GUI: 

“Packages” then “Install Packages”

https://cran.r-project.org/package=httk
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Using HTTK Predicted Cmax
for Risk Prioritization

Doses ranges for all 3925 Tox21 
compounds eliciting a ‘possible’-

to-‘likely’ human in vivo
interaction alongside estimated 

daily exposure

56 compounds with 
potential in vivo biological 

interaction at or above 
estimated environmental 

exposures

Sipes et al., (2017)

Screening for toxicity has blind spots and exposure forecasts are highly uncertain, yet:
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Further Analyzing the CDC NHANES Data

Exposure

High-Throughput
Risk 

Prioritization

• Using data to identify 
populations with 
greater/lesser risk

Data sets publicly 
available: 
http://www.cdc.gov/nchs/nhanes.htm

The U.S. Centers for Disease 
Control and Prevention (CDC) 
National Health and Nutrition 
Examination Survey (NHANES) 
provides continuously updated 
statistically representative data 
on biometrics and chemical 
exposure

Toxicokinetics

Hazard
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Sample NHANES 
quantities

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature
(+ residual marginal variability) 

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (in press)

Correlated Monte Carlo sampling of physiological model parameters
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Change in Risk

Ring et al. (2017

Change in Activity : Exposure Ratio

Toxicokinetic IVIVE:
Convert HTS µM to mg/kg/day

• We use HTTK to 
calculate margin 
between bioactivity 
and exposure for 
specific populations

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro

converted to dose 
by  HTTK

Lower
Risk

Medium Risk Higher
Risk
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Public Chemical Assessment Tools from EPA ORD

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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A Google for Chemicals

Technical leads Tony Williams, Richard Judson, et al. (NCCT)

http://comptox.epa.gov/dashboard/

Examples:

“Stearic Acid”

“Bisphenol A”

“C17H19NO3”
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A Google for Chemicals

Technical leads Tony Williams, Richard Judson, et al. (NCCT)

http://comptox.epa.gov/dashboard/
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Public Chemical Assessment Tools 
from EPA ORD

Chemistry Dashboard (one stop shop):
http://comptox.epa.gov/dashboard/
iCSS Dashboard (ToxCast data):
http://actor.epa.gov/dashboard/
CPdat:
http://actor.epa.gov/cpcat/

DSStox (Distributed structure-searchable toxicity (DSSTox) public 
database,  Richard et al., 2002)
ToxRefDB (Animal Study data, Martin et al., 2009)
CPCPdb (Consumer Product Chemical Pathways databse, 
Goldsmith et al, 2014)

httk: High-Throughput Toxicokinetics (Pearce et al., in press)
https://cran.r-project.org/web/packages/httk/index.html
tcpl: ToxCast Data Analysis Pipeline (Filer et al., 2014)
https://cran.r-project.org/web/packages/tcpl/index.html

Dashboards:

Underlying
Databases:

R Packages:

http://comptox.epa.gov/dashboard/
http://actor.epa.gov/dashboard/
http://actor.epa.gov/cpcat/
https://cran.r-project.org/web/packages/httk/index.html
https://cran.r-project.org/web/packages/tcpl/index.html
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Conclusions

 We would like to know more about the risk posed by thousands of chemicals in the environment –
which ones should we start with?

• High throughput screening (HTS) provides a path forward for identifying potential hazard
• Exposure and dosimetry provide real world context to hazards indicated by HTS

 Using in vitro methods developed for pharmaceuticals, we can relatively efficiently predict TK for 
large numbers of chemicals, but we are limited by analytical chemistry

 Using high throughput exposure approaches we can make coarse predictions of exposure
• We are actively refining these predictions with new models and data
• In some cases, upper confidence limit on current predictions is already many times lower than 

predicted hazard
 Expanded monitoring data (exposure surveillance) allows evaluation of model predictions

• Are chemicals missing that we predicted would be there?
• Are there unexpected chemicals?

 All data being made public:
• R package “httk”: https://CRAN.R-project.org/package=httk 
• The Chemistry Dashboard (A “Google” for chemicals) http://comptox.epa.gov/
• Consumer Product Database: http://actor.epa.gov/cpcat/

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA
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