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SUMMARY & CONCLUSIONS

The large number of chemicals with limited toxicological information for chemical risk decision-
making has motivated accelerated development of alternative models. Predictivity of these
models is often evaluated via referencing animal toxicology studies, which are generally
considered the standard for hazard assessment and point-of-departure (POD) determinations.
However, variability in these in vivo reference data may limit the upper bound of predictivity for
alternative models. To bound the expected predictive performance of models that reference in
vivo studies, this work quantified variance within in vivo toxicity studies. Systemic toxicity POD
values were extracted from the US EPA Toxicity Reference Database (ToxRefDB)1 along with
associated study parameters. The goal of the current work was to quantify the amount of
variance that exists within systemic in vivo PODs (both explained and unexplained).
We assumed that the variance between observed POD from study to study can be characterized
by the equation:

Var(Observed POD) = Var(“True” POD) + Var(Study Conditions) + Unexplained Variance

POD is defined as the Log10 mg/kg/day of the lowest dose in which a treatment related effect was
observed per study, and includes lowest effect level (LEL) and lowest observable adverse effect
(LOAEL) values. This work was further refined by calculating the variance per the equation above
for LOAEL values only in order to understand the variance more specifically for adverse effects.
LOAEL is defined as the Log10 mg/kg/day of the lowest dose in which critical effect was observed
per study.

Data Source and Preparation
Source: US EPA’s Toxicity Reference Database (ToxRefDBv1.3)
• Contains 5,890 in vivo toxicity studies for 1,144 chemicals.
• Guideline or guideline studies from various sources.
Data were filtered to only include:  
• Adult animals in the F0 generation
• Systemic toxicity studies 

• Chronic (CHR), subchronic (SUB), developmental (DEV), multigeneration reproductive 
(MGR), and subacute (SAC)

• Administration Route: Oral
• Species: mouse, rat, dog, and rabbit
• Non-control group data
• The resulting 3,929 studies were used to create three datasets: Dataset A, B, and C (Figure 1 & 

2)

Figure 1: Filtering example for dataset A, B, and C. Dataset C is a subset of dataset B, and dataset B
is a subset of Dataset A.

Analysis
Variance Calculations
• Multilinear Regression was used to partition the total variance in the observed POD into an 

unexplained component and a component attributable to different study parameters
• ANOVA was used to compare the significance of individual study parameters
• The same variance estimation was performed on LOAEL values only (a subset of the POD 

values). For chemicals where no adverse effect was observed, the LEL values were used. 
Importance of Each Study Parameter
• Nested models using a leave one out (LOO) approach were used to test each study 

parameter’s contribution to the explainable variance.
• Toxicokinetics

• Estimation of plasma steady state concentrations(Css) for 281 chemicals obtained from 
Wetmore in the HTTK package. Css values are estimated from an oral infusion in a 3 
compartment model2.

• MSE was then calculated for the subset of chemicals. 
Evaluating Chemical Structures and Descriptors (Dataset A)
• Stratification of Data by Chemical Class 

• The top 3 classes with the most number of chemicals were stratified (Conazoles, Phenols, 
and Carbamates), and MSE was estimated for each.

• Significance of the difference between variances was calculated by computing the F-
distribution between the classes, pairwise. This is calculated as the ratio of the greater 
variance over the smaller. The upper confidence limit was then calculated for each pair.

• Assessing naïve chemical groupings
• Toxprint chemotypes (https://chemotyper.org/) were substituted for chemical treatment 

and then clustered using K-means and hierarchical methods 
• MSE was calculated at each clustering interval

• Maximum Common Substructures (MCS) 
• Tanimoto coefficient was used to calculate MCS distance pairwise.  The similarity 

matrix was then clustered using hierarchical methods.  
• MSE was calculated at each clustering interval.

In all three datasets, the POD variance was approximately 1, the MSE was approximately 0.33 (Figure 2), and the percent of variability that
can be explained is ~66% (not shown). Using the MSE, we can calculate the RMSE ( 𝑀𝑀𝑀𝑀𝑀𝑀) to be about 0.58. MSE remained constant across
all three datasets even as the datasets became more homogeneous, indicating that the amount of variance that can be accounted for is
constant. This provides some level of confidence that the underlining unknown error is inherit across all systemic toxicology studies. For the
log10 (LOAEL) analysis, the total variance was ~0.88, the residual MSE after adjusting for study parameters was ~0.26, and the root mean
squared error (RMSE) was ~0.52. Using the LOAEL values reduced the total variance, as expected since the adverse effects observed for a
chemical would be anticipated to be more consistent across studies, but the percent explained variance remained approximately the same as
with the broader POD analysis.

Stratification of Data by Chemical Class 
Three chemical classes with the most representation within dataset A, (phenols, conazoles,
and carbamates) were used to stratify the dataset and MSE calculated for each group (Figure
3). Carbamate and conazole datasets produced MSE comparable to the MSE of the complete
dataset A, despite having a smaller variance. However, the phenol dataset had an MSE of 0.18
potentially due to fewer chemical and study numbers.

POD 
Dataset A: Two or 
More Studies Per 

Chemical 

Dataset B: Two or More 
Studies & Study Type 

Per Chemical 

Dataset C: Two or More 
Studies, Study Type, & 
Species Per Chemical 

Models MSE p-value MSE p-value MSE p-value 

Full Model 0.346  0.337  0.326  

Chemical 
Removed 

0.871 < 0.00E-4 0.844 < 9.88E-4 0.790 < 6.43E-4 

Strain group 
Removed 

0.391 < 0.00E-4 0.389 < 3.23E-4 0.356 < 9.81E-4 

Study Type 
Removed 

0.368 < 2.81E-4 0.354 < 1.54E-4 0.350 < 3.34E-4 

Admin Method 
Removed 

0.347 2.42E-2 0.338 2.92E-2 0.327 9.16E-2 

Dose Spacing 
Removed 

0.348 < 1.11E-4 0.339 < 8.17E-4 0.330 < 9.64E-4 

Number of Dose 
Removed 

0.349 < 4.24E-4 0.341 < 1.08E-4 0.331 < 2.67E-4 

Study Year 
Removed 

0.346 2.14E-1 0.337 4.37E-1 0.326 1.45E-1 

Substance Purity 
Removed 

0.346 1.58E-1 0.337 1.90E-1 0.326 2.76E-1 

Study Source 
Removed 

0.347 5.99E-3 0.338 1.33E-2 0.327 4.17E-2 

Gender Removed 0.347 1.68E-3 0.339 1.02E-4 0.330 < 4.29E-4 

Table 1:  MSE estimates of PODs for full model and full model with one study condition taken 
out for all three datasets of ToxRefDB.   ANOVA was used to compare each leave one out model 
back to the full model.   

LOAEL 
Dataset A: Two or 
More Studies Per 

Chemical 

Dataset B: Two or More 
Studies & Study Type Per 

Chemical 

Dataset C: Two or More 
Studies, Study Type, & 
Species Per Chemical 

Models MSE p-value MSE p-value MSE p-value 

Full Model 0.280  0.274  0.263  

Chemical Removed 0.801 <1.00E-04 0.790 <1.00E-04 0.742 <4.39E-4 

Strain group Removed 0.319 <6.64E-04 0.316 <8.81E-4 0.290 <1.36E-4 

Study Type Removed 0.290 <3.09E-04 0.283 <1.29E-4 0.279 <1.12E-21 

Admin Method 
Removed 0.280 2.49E-01 0.274 1.27E-01 0.263 2.44E-01 

Dose Spacing 
Removed 0.280 7.58E-01 0.274 5.02E-01 0.263 1.37E-01 

Number of Dose 
Removed 0.281 1.12E-03 0.275 1.58E-03 0.265 1.89E-04 

Study Year Removed 0.280 4.78E-01 0.273 8.35E-01 0.263 5.33E-01 

Substance Purity 
Removed 0.280 5.26E-01 0.274 2.93E-01 0.263 3.02E-01 

Study Source 
Removed 0.280 1.71E-01 0.274 1.52E-01 0.264 1.41E-01 

Gender Removed 0.280 1.88E-01 0.274 2.61E-02 0.265 9.18E-04 

Table 2:  MSE estimates of LOAELs for full model and full model with one study condition taken out for all three 
datasets of ToxRefDB.   ANOVA was used to compare each leave one out model back to the full model.   

 

Figure 3: Variance estimation of three chemical class. A comparison of their variance were
performed and results shown by the p-value.

Figure 4: Plot showing the within MSE of the ANOVA analysis for K-Means and Hierarchal clustering of
ToxPrint chemotypes and the Hierarchial clustering for MCS. The coefficient, chemical treatment, were
replaced by their cluster group number for each analysis. Each analysis is defined as one run of
“Number of Clusters”, as shown on the x-axis.

In a linear regression analysis of data from approximately 3,500 in vivo studies,
Variance Calculation – Proportion of Explained and Unexplained 
• Estimated unexplained variance for PODs across all datasets is ~0.33. Even when datasets 

were made more homogeneous, the unexplained variance in the POD values was still 
approximately one-third of the total variance. 

• The RMSE was ~0.52 to 0.58 in log10(mg/kg/day) units, indicating the minimum 
predictive interval for the POD data used in this analysis.
• For a POD of 10 mg/kg/day, the minimum confidence interval would be 3.02-33.11 

mg/kg/day.   
Contribution of Study Parameters 
• Chemical explained ~50% of the total variance, and so chemical features were explored 

further to understand if it would be feasible to predict POD values in this set using 
chemical groupings or descriptors.  
• 7/10 of the study parameters evaluated were a contributor to POD variance – but 

proportionately much less than chemical
• Adding predicted Css as a study parameter did not explain additional variance

Chemical Descriptors to Predict POD
• Stratifying chemical treatment across common classes failed to explain additional 

percentage of the total variance, outside of phenols (which demonstrated a marginal 
improvement, ~20% unexplained variance)

• Replacing individual chemical treatments with chemical groups (clustered toxprint, 
chemotypes, and MCS) did not show that clusters can serve as chemical surrogates 
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Figure 2: The three dataset used
along with results of the variance
analysis. For each dataset, the
number of unique chemical and
studies are shown along with the
calculated variance of the POD.

Variance Calculations Alternative Chemical Descriptors to Predicting POD

Contribution of Study Parameters to Variance

Toxicokinetics as  a Study Parameter

• Css values were obtained for 281 
chemicals to understand if 
toxicokinetic parameters associated 
with each chemical might contribute to 
the observed variance.  

• MSE for the 281 chemical subset was 
~0.37.

Assessing naïve chemical groupings
Replacing chemical treatment with groupings based on structural similarities did not
account for as much variance as using chemical treatment. The MSE for both K-means and
Hierarchal clustering of Toxprint chemotypes and Hierarchal clustering of MCS were not
comparable to the 0.33 MSE found when using chemical treatment (Figure 4). The MSE is
equal to the residual sum of squares (RSS) divided by the degrees of freedom. The
relationship between the MSE and RSS indicates that as the number of clusters go up, both
the MSE and RSS go down. At 600 clusters, most clusters contained around one chemical,
thereby mirroring the original analysis using chemical treatment. Even with the smaller
clusters, the MSE did not equal that of individual chemicals.Importance of Each Study Parameters 

Used in Full Model

By comparing the nested model with the full
model, we quantified the contribution of
each study variable to the total variance
across all three datasets (Table 1 & 2).
Chemical had the largest impact on the
amount of explained variability, accounting
for upwards of 50% or an MSE range of 0.74-
0.84. The results were consistent across
datasets A, B, and C for both the POD and the
LOAEL analysis. The removal of other study
conditions (using LOO methods) did not
have as large an impact, but some of the
covariates were statistically significant.
7/10 of study conditions in the POD and
3/10 of study conditions in LOAEL were
consistently significant covariates across
datasets A, B, and C.
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