

Integrating *in vitro* and *in silico* data in a model of neurovascular developmental toxicity

Katerine S. Saili¹, Todd J. Zurlinden¹, Nancy C. Baker², Thomas B. Knudsen¹ ¹National Center for Computational Toxicology, U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, USA ²Leidos, Research Triangle Park, NC, USA

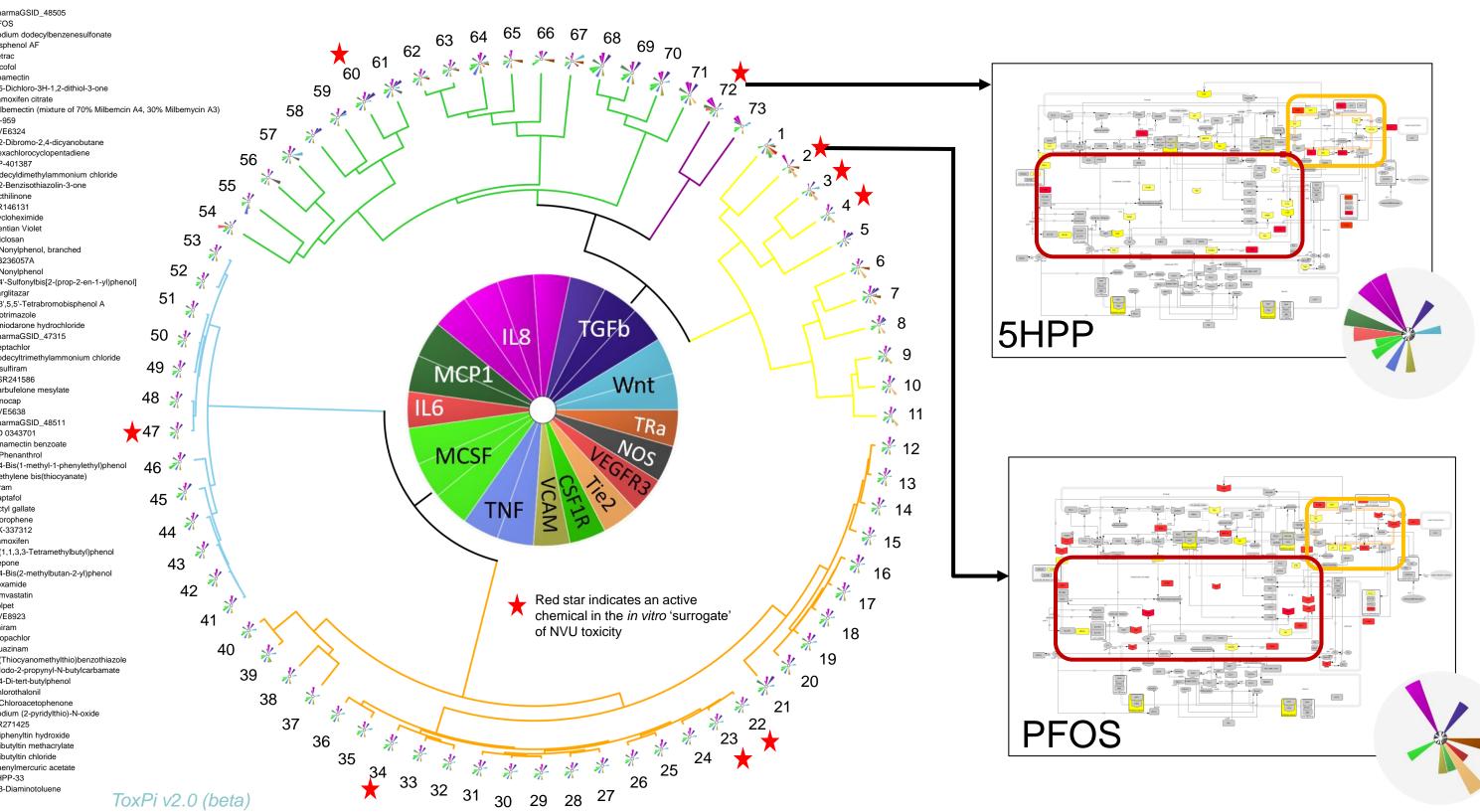
Background

Blood-brain barrier (BBB) development is mediated by complex signals commuted types of the embryonic neuroepithelium (neuroprogenitor by diverse cell glia) and invading vasculature (endothelial pericytes). cells. cells/radial Macrophage-like microglia cells derived from the hematopoietic lineage are incorporated into the rudimentary neurovascular structure. These cells are believed to play a dual role in neurovascular patterning, both as a local source of cytokine/chemokine signals that mediate self-organizing cell behaviors at the developing neurovascular interface and as an adaptive response to alterations in the system. Here, we describe a predictive model for building and testing the hypothesis that microglia are critical transducers of developmental neurotoxicity in response to prenatal exposure(s).

Methods

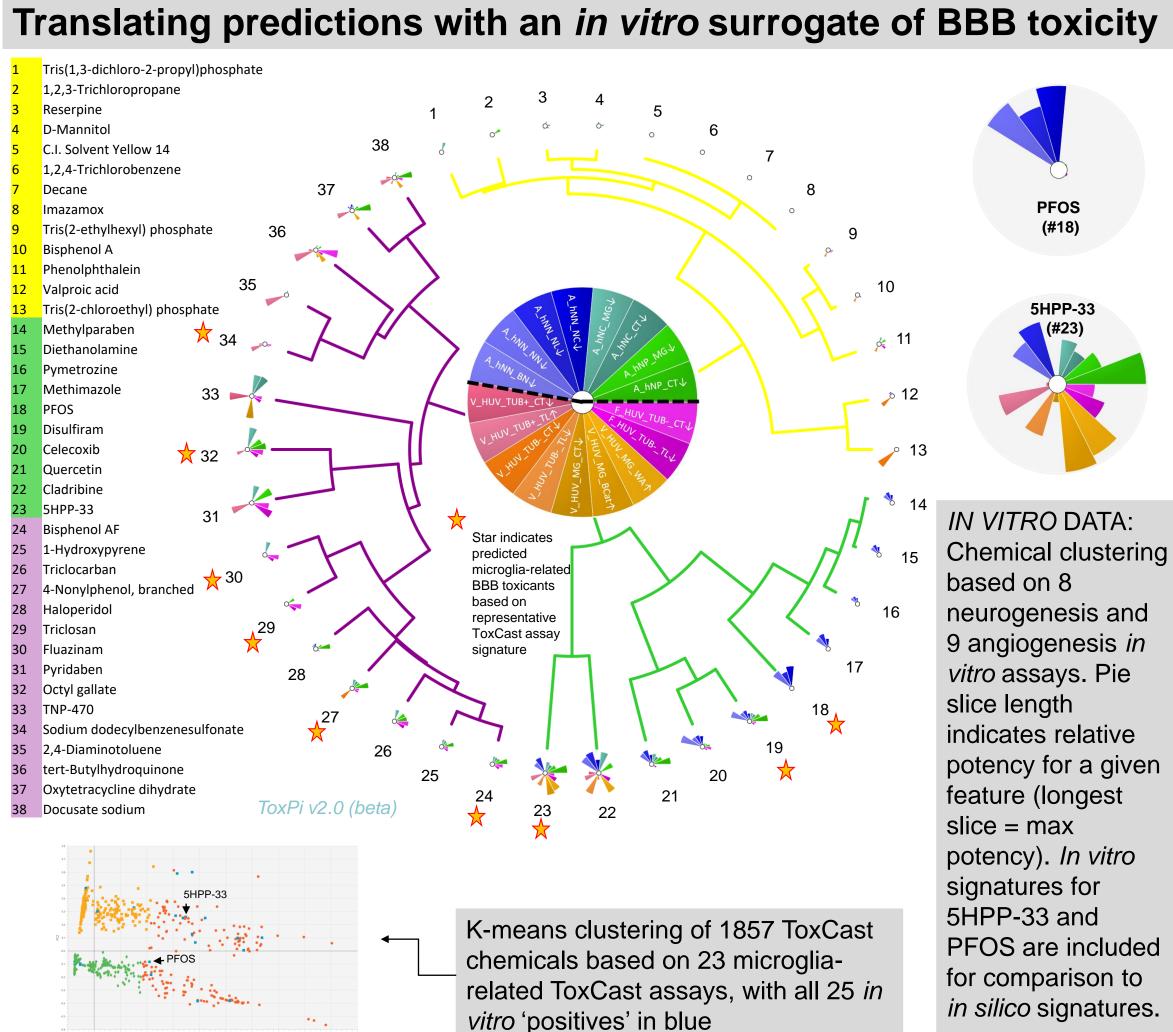

Build Predict Translate	 Literature curation identified 86 proteins important for BBB development (see biowiring diagram produced in CellDesigner v4.4) Compared amino acid sequence % similarity across species (SEQApass.epa.gov) Identified represented ToxCast assays (yellow in biowiring diagram)
	 Identified putative microglia-mediated BBB toxicants from ToxCast chemical dataset (1857 chemicals) based on 23 ToxCast assay features mapping to the microglial compartment of the biowiring diagram Classified ToxCast chemicals according to toxicity signatures (i.e., assay hits and relative potency) for each ToxCast chemical using ToxPi 2.0 (beta) Clustered top 73 chemicals (highest ToxPi scores) based on signature similarity using Ward.D algorithm
	 Used <i>in vitro</i> angiogenesis and neurogenesis studies (see below) as a surrogate of BBB development Filtered active chemical-associated ToxCast assays as a signature of NVU activity to begin to evaluate <i>in silico</i> predictions 38 ToxCast EXPOSURES: Control: 0.1% DMSO; ArunA and VALA: 0.1
	Chemicals- 100 μM (5 conc.); FICAM: 0.0001 – 500 μM (5+ conc.)NeurogenesisMetrogenesis<
	Angiogenesis Cell titer (CT) HUVEC IPSC (in progress) Assay source code (V) Cell titer (CT) Tubule formation agonist (TUB+); tubule length (TL) Cell titer (CT) Tubule formation (MG) wound area (wa), β-catenin (bc) HUVEC Cell titer (CT) Tubule formation antagonist (TUB-); tubule length (TL) Cell titer (CT) Tubule formation antagonist (TUB-); tubule length (TL)
	5xPi analysis: Chemical clustering was based on transformed (–log10(x)+6) values concentration for each chemical-assay feature, where bioactivity is benchmarked

relative to vehicle (DMSO) controls as a point of departure from background noise (i.e., ACB values). Assay annotation: [SOURCE_CELL TYPE_FEATURE_BENCHMARK]


Building a model of molecular interactions leading to BBB development [1]

noxifen citrate 401387 3enzisothiazolin-3-one 146131 Ioheximide ntian Violet onylphenol, branche 36057A onylpheno glitazar rimazole iodarone hydrochloride rmaGSID_47315 tachlor odecyltrimethylammonium sulfiram 241586 arbufelone mesylate

Results


redicting putative microglia-mediated BBB disrupting chemicals (*in silico* model)

ToxPi v2.0 (beta) software provided by David Reif (dmreif@ncsu.edu) as part of U.S. EPA STAR #R835802

Innovative Research for a Sustainable Future

IN SILICO MODEL Chemical clustering based on 23 microgliarelated ToxCast assays. Pie slice length indicates relative potency for a given feature (longest slice = max potency) Examples include 5HPP-33, an analogue of thalidomide, which is known to disrupt angiogenesis and CNS development [2]; and PFOS, an industrial surfactant known to disrupt BBB integrity [3]

Summary and Conclusions

- A systems state map of BBB development was integrated with available ToxCast assays potentially representing microglia activity to predict putative BBB disrupting compounds that may act through microglia perturbation.
- Nine of the 25 'NVU-active' compounds in the *in vitro* assays were predicted to be BBB disrupting compounds based on activity in high throughput screening ToxCast assays.
- The current limitations of the model include inadequate ToxCast assay coverage, absence of key cells (e.g., microglia) from the in vitro testing platforms, and a limited in vitro chemical test set; adding these components may qualify the prediction and reduce uncertainty in the modeling.

References

[1] Saili, et al. In submission. Blood-brain barrier development: Systems modeling and predictive toxicology [2] Hallene et al. 2006. Prenatal exposure to thalidomide, altered vasculogenesis, and CNS malformations. Neuroscience

[3] Wang et al. 2011. Perfluorooctane sulfonate triggers tight junction "opening" in brain endothelial cells via phosphatidylinositol 3-kinase. BBRC

PFOS are included in silico signatures.