

Introduction

Endocrine disrupting chemicals (EDCs) are xenobiotics that mimic the interaction of natural hormones at the receptor level and alter synthesis, transport and metabolism pathways. The prospect of EDCs causing adverse health effects in humans and wildlife has led to the development of scientific and regulatory approaches for evaluating bioactivity. This need is being partially addressed by the use of high-throughput screening (HTS) in vitro approaches and computational modeling. In the framework of the Endocrine Disruptor Screening Program (EDSP), the U.S. EPA led two worldwide consortiums to "virtually" (i.e., in silico) screen chemicals for their potential estrogenic and androgenic activities. The Collaborative Estrogen Receptor (ER) Activity Prediction Project (CERAPP) [1] predicted activities for 32,464 chemicals and the Collaborative Modeling Project for Androgen Receptor (AR) Activity (CoMPARA) generated predictions on the CERAPP list with additional simulated metabolites, totaling 55,450 unique structures. Modelers and computational toxicology scientists from 30 international groups contributed structure-based models and results for activity prediction to one or both projects, with methods ranging from QSARs to docking to predict binding, agonism and antagonism activities. Models were based on a common training set of 1746 chemicals having ToxCast/Tox21 HTS in vitro assay results (18 assays for ER and 11 for AR) integrated into computational networks. The models were then validated using curated literature data from different sources $(\sim 7,000$ results for ER and $\sim 5,000$ results for AR). To overcome the limitations of single approaches, CERAPP and CoMPARA models were each combined into consensus models reaching high predictive accuracy. These consensus models were extended beyond the initially designed datasets by implementing them into the free and open-source application OPERA to avoid running every single model on new chemicals [2]. This implementation was used to screen the entire EPA DSSTox database of ~750,000 chemicals and predicted ER and AR activity is made freely available on the CompTox Chemistry dashboard (<u>https://comptox.epa.gov/dashboard</u>) [3].

	Participants					
Group ID	Institution	Country	CERAPP	CoMPARA		
ATSDR	Agency for Toxic Substances and Disease Registry. CDC.	USA		\checkmark		
DTU	Technical University of Denmark.	Denmark	\checkmark	\checkmark		
ECUST	East China University of Science and Technology.	China		\checkmark		
IBMC	Institute of Biomedical Chemistry.	Russia		\checkmark		
IDEA	IdeaConsult, Ltd.	Bulgaria		\checkmark		
ILS	Integrated Laboratory Systems, Inc.	USA 🗸				
INSLA	University of Insubria.	Italy		\checkmark		
INSLA	Lanzhou University.	China				
IRFMN	Istituto di Ricerche Farmacologiche "Mario Negri".	Italy	\checkmark	\checkmark		
JRC	Joint Research Centre of the European Commission.	Italy	\checkmark			
LM	Lockheed Martin IS&GS.	USA	\checkmark	\checkmark		
MTI	Molecules Theurapetiques In silico.	France		\checkmark		
NCATS	National Center for Advancing Translational Sciences.	USA	\checkmark	\checkmark		
NCCT	National Center for Computational Toxicology. EPA.	USA	\checkmark	\checkmark		
NCI	National Cancer Institute.	USA	\checkmark			
NCSU	North Carolina State University.	USA	\checkmark	\checkmark		
NCTR	National Center for Toxicological Research. FDA.	USA	\checkmark	\checkmark		
NICEATM	NTP Interagency Center for the Evaluation of Alternative Toxicological Methods.	USA	\checkmark	\checkmark		
NRMRL	National Risk Management Research Laboratory. EPA.	USA		\checkmark		
RIFM	Research Institute for Fragrance Materials, Inc.	USA	\checkmark			
SWETOX	Swedish toxicology research center.	Sweden		\checkmark		
TARTU	University of Tartu.	Estonia		\checkmark		
TUM	Technical University Munich.	Germany	\checkmark	\checkmark		
UFG	Federal University of Golas.	Brazil		\checkmark		
UMEA	University of UMEA.	Sweden	\checkmark	\checkmark		
UNC	University of North Carolina.	USA	\checkmark			
UNIBA	University of Bari.	Italy	\checkmark	\checkmark		
UNIMIB	University of Milano-Bicocca.	Italy	\checkmark	\checkmark		
UNISTRA	University of Strasbourg.	France	\checkmark	\checkmark		
VCCLAB	Virtual Computational Chemistry Laboratory.	Germany	\checkmark	\checkmark		

Project planning

Steps	Tasks
1: Training and prioritization sets Organizers	 ToxCast assays for training set data AUC values and discrete classes for continuous QSAR-ready training set and prioritization set
2: Experimental validation set Organizers	 Collect and clean experimental data from the li Prepare validation sets for qualitative and qua
3: Modeling & predictions All participants	 Train/refine the models based on the training Deliver predictions and applicability domains
4: Model evaluation Organizers	 Evaluate the predictions of each model separate Assign a score for each model based on the evaluate
5: Consensus modeling Organizers	 Use the weighting scheme based on the scores Use the same validation set to evaluate consen
6: Manuscript writing All participants	 Descriptions of modeling approaches for each Input of the participants on the draft of the ma

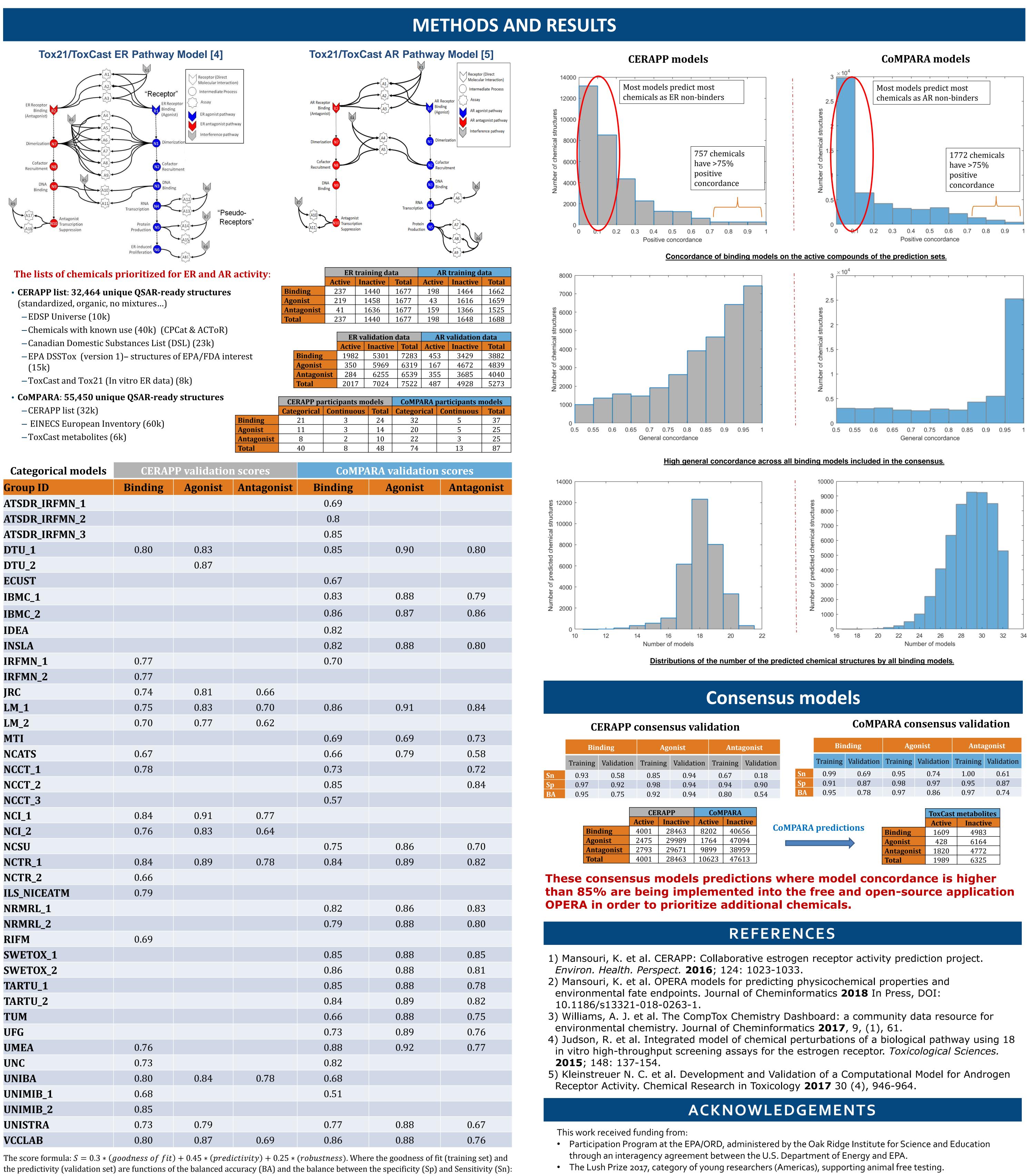
Virtual screening of chemicals for endocrine disrupting activity through **CERAPP and CoMPARA projects**

Kamel Mansouri¹, Nicole Kleinstreuer², Chris Grulke³, Ann Richard³, Imran Shah³, Antony J. Williams³ and Richard S. Judson³

1 ScitoVation LLC, RTP, NC, USA; 2 NTP Interagency Center for the Evaluation of Alternative Toxicological Methods, RTP, NC, USA; 3 National Center for Computational Toxicology, U.S. EPA, RTP, NC, USA

is/classification modeling literature antitative models set

for evaluation


itely

aluation step

s to generate the consensus nsus predictions

individual model

anuscript

Categorical models	CERAP	P validation		
Group ID	Binding	Agonist		
ATSDR_IRFMN_1				
ATSDR_IRFMN_2				
ATSDR_IRFMN_3				
DTU_1	0.80	0.83		
DTU_2		0.87		
ECUST				
IBMC_1				
IBMC_2				
IDEA				
INSLA				
IRFMN_1	0.77			
IRFMN_2	0.77			
JRC	0.74	0.81		
LM_1	0.75	0.83		
LM_2	0.70	0.77		
MTI				
NCATS	0.67			
NCCT_1	0.78			
NCCT_2				
NCCT_3				
NCI_1	0.84	0.91		
NCI_2	0.76	0.83		
NCSU				
NCTR_1	0.84	0.89		
NCTR_2	0.66			
ILS_NICEATM	0.79			
NRMRL_1				
NRMRL_2				
RIFM	0.69			
SWETOX_1				
SWETOX_2				
TARTU_1				
TARTU_2				
TUM				
UFG				
UMEA	0.76			
UNC	0.73			
UNIBA	0.80	0.84		
UNIMIB_1	0.68			
UNIMIB_2	0.85			
UNISTRA	0.73	0.79		
VCCLAB	0.80	0.87		

0.7 * (BA) + 0.3 * (1 - |Sn - Sp|). Robustness of the model is the balance between training and validation set statistics: $1 - |BA_{Tr} - BA_{test}|$

Agonist			Ant	agonist	ist		Binding		Agonist		Antagonist	
aini	ng Validat	tion	Training	Validation		Training	Validation	Training	Validation	Training	Validation	
0.85	0.94	4	0.67	0.18	Sn	0.99	0.69	0.95	0.74	1.00	0.61	
0.98		1	0.94	0.90	Sp	0.91	0.87	0.98	0.97	0.95	0.87	
0.92	0.94	1	0.80	0.54	BA	0.95	0.78	0.97	0.86	0.97	0.74	
CERAPP CoMPARA			A					ToxCas	t metabol	ites		
ve	Inactive	Acti	ive Ina	ctive					Active	Active Inactive		
)1	28463	820	02 40	<u>656</u>	OMPARA	predictions		Binding	1609	4983	3	
75	20080	176	51 17					Accentet	420	(1)	4	

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily represent the U.S. EPA or NIEHS policies.