

Applying a PBTK model for IVIVE

Greg Honda

ORISE Postdoc Participant National Center for Computational Toxicology Office of Research and Development U.S. Environmental Protection Agency

> honda.gregory@epa.gov ILS 10/24/2017

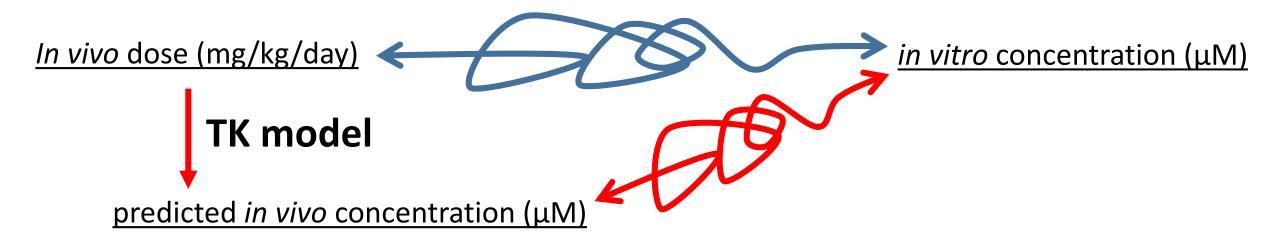
The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency

In Vitro to In Vivo Extrapolation (IVIVE)

Enables use of high throughput toxicity assays as an alternative to animal testing

In vivo dose (mg/kg/day)

- Point of departure (POD: LOEL, LOAEL, etc.)
- Lowest dose where a specific effect (e.g. nonneoplastic pathology in the liver, etc.) was observed

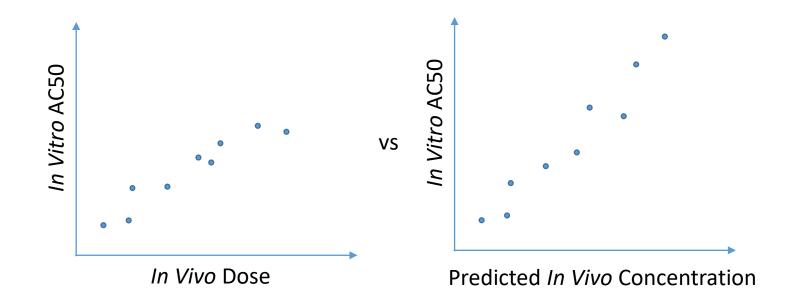


Some kind of model (statistical, machine learning etc.) In vitro concentration (µM)

- An individual assay
- Ensemble of assays

What about toxicokinetics?

In Vitro to In Vivo Extrapolation (IVIVE)



Does incorporating toxicokinetics improve the correlation between *in vitro* and *in vivo* toxicity data?

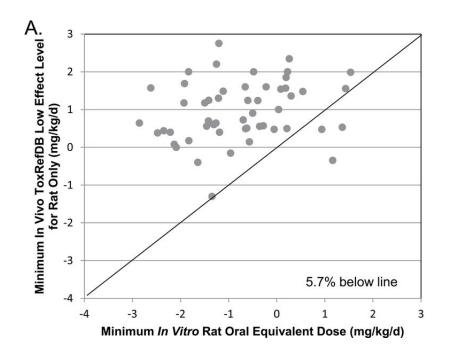
What are the effects of the assumptions in the application of TK?

In Vitro to In Vivo Extrapolation (IVIVE)

Ideally, we would know of an *in vitro* assay that is related to a specific *in vivo* effect (pathology); use this to evaluate the effect of incorporating TK

In the absence of this information, we:

- 1. Evaluate all in vitro assay endpoints against all in vivo effects (ToxRef)
- 2. Evaluate all *in vitro* assay endpoints against points of departure (ToxVal POD; determined across all *in vivo* effects)


Prior Work

Measured rat-specific intrinsic clearance (CI_{int}) and fraction of unbound chemical in plasma (f_{up}) for **56 chemicals** with rat ToxRefDB data.

Used **steady-state** PK model for *in-vitro* to *in-vivo* extrapolation.

 $\operatorname{Rat} C_{\rm ss} = \frac{\operatorname{ko}}{\left(\operatorname{GFR} \times F_{\rm ub}\right) + \left(\frac{Q_{\rm l} \times F_{\rm ub} \times \operatorname{Cl}_{\rm int}}{Q_{\rm l} + F_{\rm ub} \times \operatorname{Cl}_{\rm int}}\right)}$

Comparison of the *in vitro* assay with the lowest oral equivalent dose with the *in vivo* response with the lowest LEL for each chemical.

- Using TK for IVIVE may help define exposure heuristics
- Incorporating TK did not otherwise improve predictive performance
 - > Assumptions in the application of TK may have influenced this result

Wetmore, B. A.; Wambaugh, J. F.; *et al. "*Relative Impact of Incorporating Pharmacokinetics on Predicting *In Vivo* Hazard and Mode of Action from High-Throughput *In Vitro* Toxicity Assays." *Toxicol. Sci.* (2013) 132 (2): 327-346.

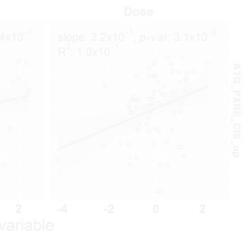
This Work

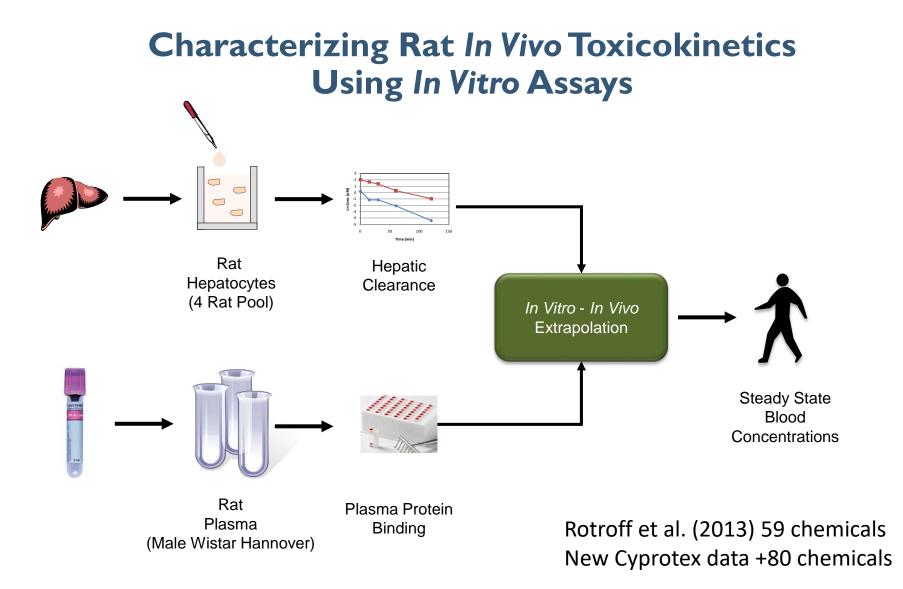
- PBTK model
- **Evaluate assumption To prepare this analysis:**
- 1) Measured values for f_{up} and Cl_{int}
- Accounting for partitionin cell based assays

2) Select doses and examine scope of the data

 104 chemicals w/ rat specific in vitro measured values for (i.e. what assays and in vivo effects can we (Cyprotex)

ToxCast in-vitro AC50




look at?) 3) What assumptions to evaluate?

Multiple Regression

 $4C50 \sim \beta_{j,1} x_{PBTK} + \beta_{j,2} x_{rand} + \beta_{j,3} x_{dose} +$

Slide from Barbara Wetmore

Scope of the Data – Selecting Dose

ToxRef Effect Level Dose (ELD)

- **ToxRef*:** Detailed database of *in vivo* effect and dose
- Effect level dose defined as the minimum dose at which a particular effect (category-type-target, e.g. systemic-nonneoplastic pathology-liver) was observed for a given study and chemical, ignoring gender and strain; <u>a specific effect</u>

For a given chemical

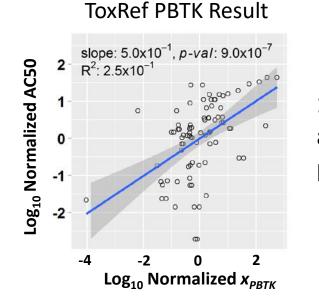
- **x**_{dose} doses for specific effect and study
- x_{PBTK} concentration from transforming x_{dose} via PBTK
- **x**_{rand} **c**oncentration from transforming x_{dose} via the randomly parameterized PBTK model

ToxVal POD Dose

- **ToxVal:** General database of *in vivo* POD
- Lowest observed effect level (LOEL) or lowest observed adverse effect level (LOAEL) for a given chemical and study; all usable rat studies; <u>across all effects</u>

For a given chemical

- *x_{dose}* minimum POD across all studies
- *х_{рвтк}* minimum concentration from transforming all POD via the PBTK model
- *x_{rand}* minimum concentration from transforming all POD via the randomly parameterized PBTK model


Compare against every in vitro toxicity assay

Scope of the Data – An Example

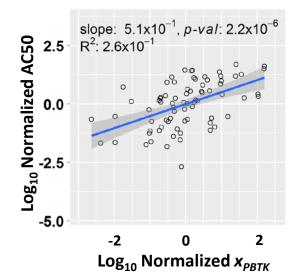
<u>ToxRef Effect</u>: systemic-nonneoplastic pathology-liver

- Possibly multiple points for a given chemical <u>Assay endpoint</u>: ATG_PXRE_CIS_up
- Single point for a given chemical

Number of points in the regression: 85 Number of chemicals in the regression: 49

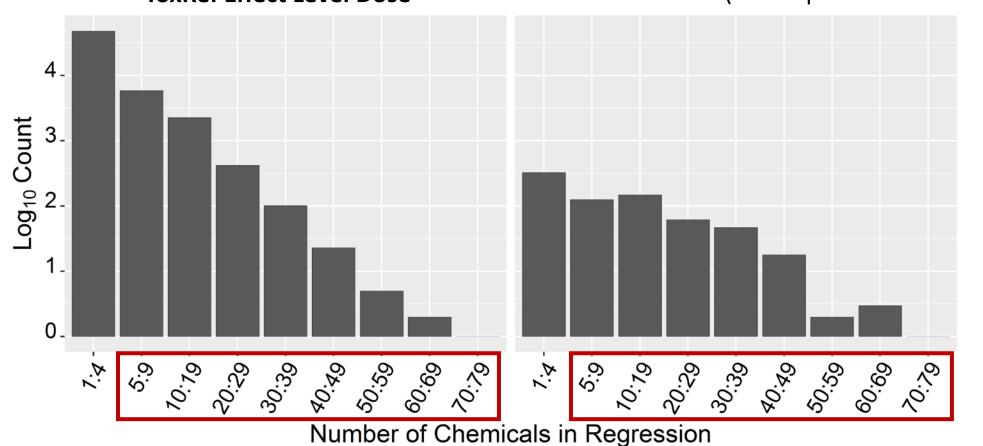
1 of ~40,000 assay and *in vivo* effect pairs

ToxVal POD: LOEL or LOAEL


• Single point for a given chemical (minimum taken across studies)

Assay endpoint: ATG_PXRE_CIS_up

• Single point for a given chemical


Number of points in the regression: 76 Number of chemicals in the regression: 76

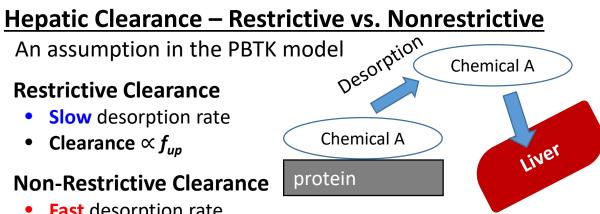
ToxVal PBTK Result

1 of ~1,000 assay endpoints

Scope of the Data

ToxRef Effect Level Dose

ToxVal POD (1 POD per chem. across all effects)


ToxRef Analysis:

- Total: 56,973 *in vitro* assay-*in vivo* effect pairs
- ≥ 5 chemicals: 8,731 *in vitro* assay-*in vivo* effect pairs
- \geq 20 chemicals: 552 *in vitro* assay-*in vivo* effect pairs

ToxVal Analysis:

- Total: 734 in vitro assays
- ≥ 5 chemicals: 405 *in vitro* assays
- \geq 20 chemicals: 133 *in vitro* assays

Evaluated Assumptions in Applying TK for IVIVE

- Fast desorption rate
- Clearance independent of f_{up}

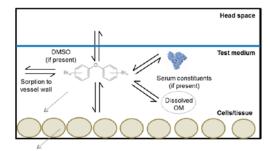
<u>Multiplication or Division by $f_{\mu\nu}$ </u>

Multiplication: $C_{PBTK} * f_{up}$

 Assume AC50 is closer to a free concentration

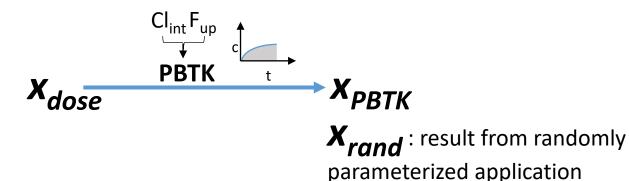
Division: $C_{PBTK} * f_{up}^{-1}$

 Assume AC50 is nominal concentration and convert to free concentration


Concentration Selection from the PBTK model

 C_{PBTK}

- Plasma vs tissue concentration (matched to cell type of cell based assay)
- Mean vs max concentration •


Partition model for cell based assays

- Nominal concentration (AC50) doesn't account for partitioning of chemical into serum and cells
- Determine free concentration from • Armitage model
- Account for free concentration by • defining a factor $\eta = \frac{C_{assay,free}}{C_{assay,nominal}}$ so that $x_{PBTK} = C_{PBTK}/\eta$

Armitage, J. M.; Wania, F.; Arnot, J. A. Env. Sci. & Tech. 2014, 49, 9770-9779.

Methods Summary

All assays:

- 8731 in vitro assay- in vivo effect pairs (analysis of ToxRef ELD)
- 405 in vitro assays (analysis of ToxVal POD)
- 24 combinations of assumptions to evaluate —
- ~219,000 regressions (4 regressions per comparison)

 $\begin{array}{ll} \underline{Simple \ Regressions} & \underline{Multiple \ Regression} \\ AC50 \sim \beta_{i,1} x_{PBTK} + \gamma & AC50 \sim \beta_{j,1} x_{PBTK} + \beta_{j,2} x_{rand} + \beta_{j,3} x_{dose} + \gamma \\ AC50 \sim \beta_{i,2} x_{rand} + \gamma \\ AC50 \sim \beta_{i,3} x_{dose} + \gamma \end{array}$

Cell based assays: nominal vs free concentration (Armitage)

- 1531 *in vitro* assay- *in vivo* effect pairs(ToxRef ELD) with known FBS%
- 78 *in vitro* assays (ToxVal POD) with known FBS%
- an additional 24 combinations of assumptions to evaluate
- ~38,000 additional regressions

Clearance	f _{up} multiplier	Concentration	Concentration value		
		plasma	mean		
	none	plasifia	max		
	none	tissue	mean		
		ussue	max		
	f	plasma	mean		
restrictive		plasifia	max		
restrictive	f_{up}	tissue	mean		
			max		
	f _{up} -1	plasma	mean		
		plasma	max		
		tissue	mean		
			max		
	none	plasma	mean		
		plasma	max		
		tissue	mean		
			max		
		plasma	mean		
non-	f _{up}	plasma	max		
restrictive	'up	tissue	mean		
			max		
		plasma	mean		
	f_{up}^{-1}	Prestrice	max		
	up	tissue	mean		
			max		
Example Results 12					

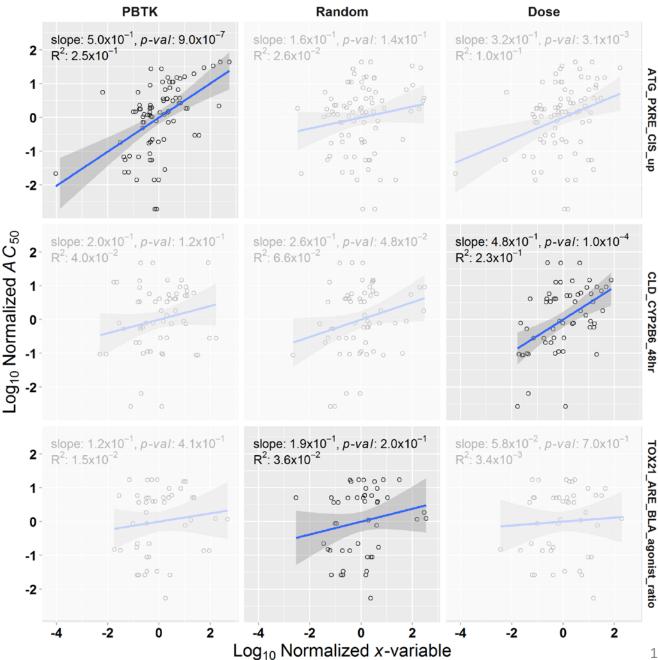
Example Regressions – ToxRef ELD

in vivo Effect: systemic-nonneoplastic pathology-liver

Assumptions

Clearance	f_{up} multiplier	Concentration	Concentration Value
nonrestrictive	none	plasma	mean

Simple Regressions


 $AC50 \sim \beta_{i,1} x_{PBTK} + \gamma$ $AC50 \sim \beta_{i,2} x_{rand} + \gamma$ $AC50{\sim}\beta_{i,3}x_{dose}+\gamma$

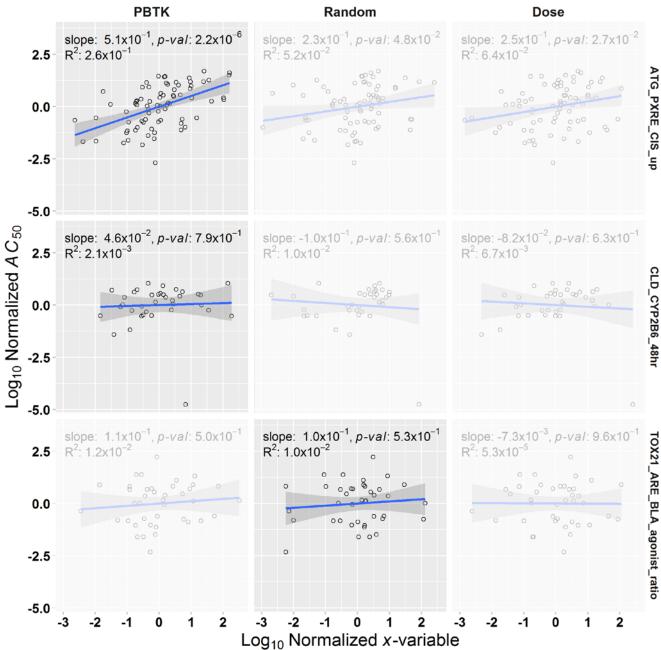
Multiple Regression:

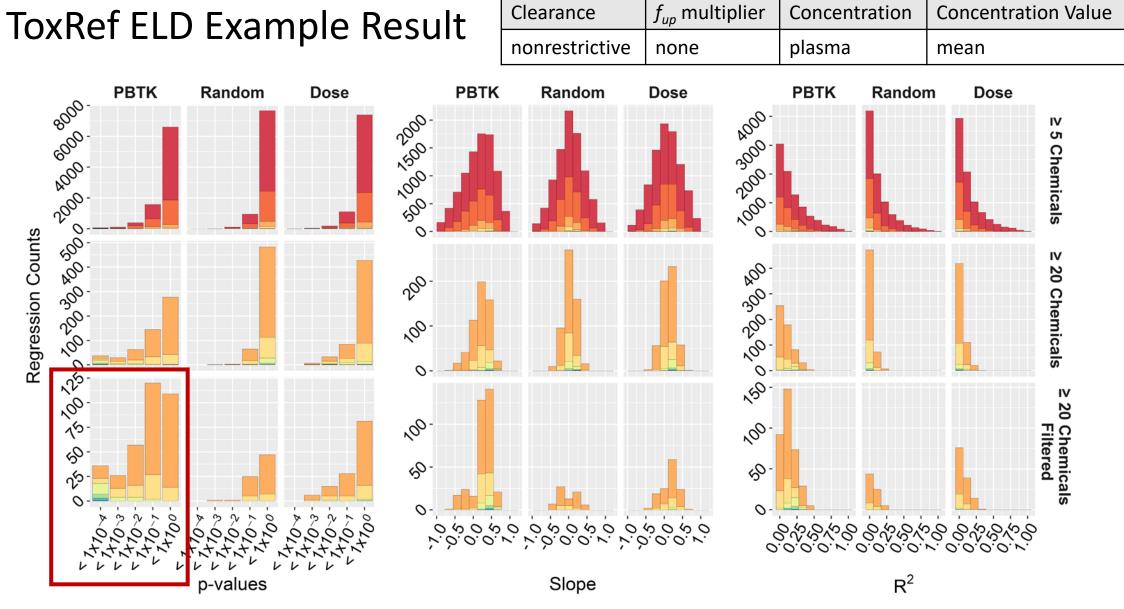
$$AC50 \sim \beta_{j,1} x_{PBTK} + \beta_{j,2} x_{rand} + \beta_{j,3} x_{dose} + \gamma$$

	Slopes			p-values		
Assay	PBTK Random Dose		PBTK	Random	Dose	
ATG_PXRE_CIS_up	0.50	-0.05	0.04	1.1E-04	6.8E-01	8.1E-01
CLD_CYP2B6_48_hr	0.06	-0.01	0.47	6.5E-01	9.7E-01	2.2E-03
TOX21_ARE_BLA						
agonist_ratio	0.09	0.22	-0.10	5.9E-01	2.4E-01	5.8E-01

Filter based on result of multiple regression

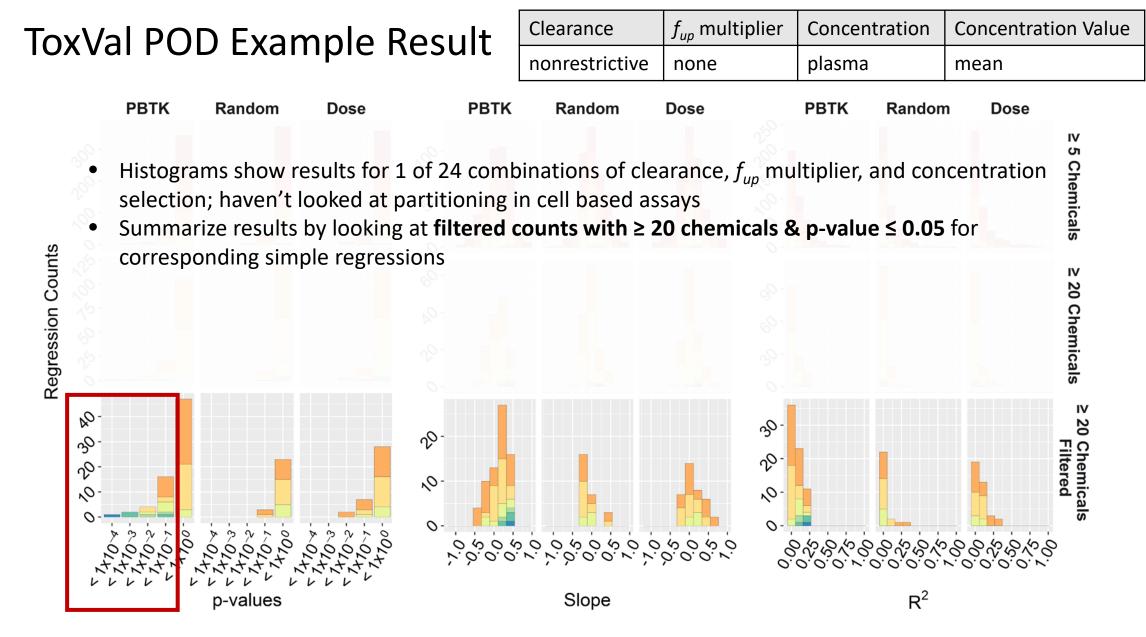
Example Regressions – ToxVal POD


Clearance	f_{up} multiplier	Concentration	Concentration Value
nonrestrictive	none	plasma	mean


Simple Regressions

 $AC50 \sim \beta_{i,1} x_{PBTK} + \gamma$

Summarize by looking at histograms of slope, p-value, and R² for every pair of ToxRef Effect and assay endpoint and every assay endpoint with corresponding ToxVal POD


Filter based on result of multiple regression

PBTK gives best result

Number of	5:9	20:29	40:49	60:69
Number of Chemicals	1 0:19	30:39	50:59	70:79

PBTK gives best result

Number of	5:9	20:29 [40:49	60:69
Number of Chemicals	1 0:19	30:39 [50:59	70:79

Filtered counts with p-value \leq 0.05 and # of chemicals \geq 20

All Assays			1	FoxRef ELD		ToxVal POD			
Clearance	f _{up} multiplier	Concentration	Concentration value	РВТК	Random	Dose	PBTK	Random	Dose
	none	plasma	mean	108	23	50	2	6	7
		plasilla	max	101	20	39	4	5	4
	none	tissue	mean	94	19	59	3	3	7
			max	75	17	54	5	2	6
		plasma	mean	189	22	30	9	4	5
restrictive	f	plasina	max	183	20	28	13	2	5
restrictive	f_{up}	tissue	mean	145	24	48	5	5	8
			max	133	25	39	7	3	5
	f _{up} -1	plasma	mean	40	17	77	1	5	9
			max	38	26	72	2	5	8
		tissue	mean	50	25	77	4	6	8
			max	35	25	76	2	5	8
		plasma	mean	214	19	34	15	2	6
	none	plasma	max	210	19	29	15	2	6
	none	tissue	mean	198	16	36	11	4	8
			max	206	14	29	11	2	8
		plasma	mean	213	12	34	19	2	6
non-	f	plasina	max	224	15	28	20	2	6
restrictive	f_{up}	tissue	mean	187	21	38	15	2	8
			max	192	20	34	14	2	8
		plasma	mean	141	29	53	7	5	7
	f _{up} ⁻¹	plasma	max	124	25	56	5	4	7
	'up	tissue	mean	124	24	51	6	6	7
		13300	max	106	25	52	6	4	7

Cell Based Assays

nonrestrictive clearance, no f_{up} multiplier, mean plasma concentration

		ToxRef		ToxVal			
Cell Assay Model	PBTK Random		Dose	РВТК	Random	Dose	
None	22	7	0	1	0	2	
Armitage	30	2	1	3	1	0	

- Nonrestrictive clearance appears to give better result
- Using a f_{up} multiplier has an effect
- Plasma slightly better than tissue concentration
- No significant difference between using mean or max concentration
- Using a cell assay partition model appears to improve results for cell based assays

ToxRef: total pairs \geq 20 chemicals = 552 ToxVal: assays \geq 20 chemicals = 133

Conclusions

- In general, using the PBTK model improves the correlation between the evaluated in vitro and in vivo toxicity data
- In some cases, untransformed dose remains a better predictor
- The assumptions in the application of the PBTK model for IVIVE matter
- Nonrestrictive clearance with plasma concentration gave the best result and should be used as a starting basis when applying PBTK for IVIVE, using the predicted *in vivo* unbound concentration (multiplying by f_{up}) may be beneficial
- Although some correlations were significant, they were not predictive on their own
- Toxicokinetics should be considered when building ensemble models to relate *in vitro* toxicity assay results to particular *in vivo* endpoints *but only had data for 104 chemicals in this analysis*

Acknowledgements

EPA-NCCT:

John Wambaugh

Woody Setzer

Ly Pham

Robert Pearce

Rusty Thomas

EPA-NERL:

Barbara Wetmore

NIEHS-NTP:

Nisha Sipes

Cyprotex