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EPA Office of Research and Development

• The Office of Research and Development (ORD) is the 
scientific research arm of EPA

• 558 peer-reviewed journal articles in 2016

• Research is conducted by ORD’s three national 
laboratories, four national centers, and two offices

• Includes National Center for Computational 
Toxicology and National Exposure Research 
Laboratory 

• 14 facilities across the country and in Washington, D.C.

• Six research programs
• Includes Chemical Safety for Sustainability

• Research conducted by a combination of Federal 
scientists; contract researchers; and postdoctoral, 
graduate student, and post-baccalaureate trainees

ORD Facility in
Research Triangle Park, NC
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals in pooled human 
blood samples, many appear to be exogenous

• A tapestry of laws covers the chemicals people are exposed to 
in the United States (Breyer, 2009)

• Different testing requirements exist for food additives, 
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

• Most other chemicals, ranging from industrial waste to dyes to 
packing materials are covered by the recently updated Toxic 
Substances Control Act (TSCA)

• Thousands of chemicals on the market were either 
“grandfathered” in or were allowed without experimental 
assessment of hazard, toxicokinetics, or exposure

• Thousands of new chemical use submissions are made to 
the EPA every year

• Methods are being developed to prioritize these existing 
and new chemicals for testing

November 29, 2014
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High-Throughput Bioactivity

 We might estimate points of departure in vitro using 
high throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological 
pathways (Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format 
(identify 50% activity concentration – AC50 – and 
efficacy if data described by a Hill function, Filer et al., 
2016)

 All data is public: http://comptox.epa.gov/ 

 However, we are not exposed to one chemical at a time
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High-Throughput Risk-based 
Prioritization

• Risk is the product of chemical hazard and exposure (NRC, 1983)
• High throughput risk prioritization based upon HTS requires:

– in vitro-in vivo extrapolation (IVIVE)
– Exposure estimates 
– Toxicokinetics

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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CDC NHANES

Centers for Disease Control and Prevention (CDC) National Health and Nutrition 
Examination Survey (NHANES) provides an important tool for monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, medical 
exam, biomonitoring (health and exposure), …

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
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Kapraun et al. (2017) EHP

• We will focus on “Sub-sample B” PAHs, Phenols, Pesticides, and Phthalates

• Targeted analytical chemistry used to quantitate concentration of specific chemicals in 
urine 

• Samples must be divided up for each chemical tested
• NHANES cohort divided up to allow enough sample for testing all chemicals
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Co-Occurrence of Chemicals in 
Individuals

The number of chemicals (out of 37) “present” in individuals depends upon where you set the limit 

Ideally we would use 
some sort of chemical 
toxicity informed point of 
departure but don’t have 
that for all chemicals

Kapraun et al. (2017)
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Identifying Prevalent Mixtures

• We are using data-mining 
methods (frequent 
itemset mining or FIM) to 
identify combinations of 
items (chemicals) that co-
occur together within 
samples from same 
individual

• Used total population 
median concentration as 
threshold for “presence”

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al. (2017)
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Demographic-Specific 
Prevalence of Combinations

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9   8   7   6   5   4   3   2   1

Phthalates PAHs PhenolsPesticides

Kapraun et al. (2017)
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A Testable Number of 
Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions 
of hypothetical combinations

“Exposure based priority setting” (NAS, 2017) allows 
identification of most important mixtures to test

Kapraun et al. (2017)
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• NHANES samples are one time “snapshots” of chemical concentration
• We don’t actually know the toxicokinetics (absorption, distribution, 

metabolism, excretion) for most NHANES chemicals (Strope et al., 2017)
• Chemical exposure patterns not necessarily known – could be constant, 

sporadic, one time, or inherited from mother
– Varies from chemical to chemical

• Chemical clearance (metabolism, excretion tells us the rate of change of 
chemical concentration

– Different for different chemicals
• Chemical distribution tells us which tissues concentrate the chemical and 

the total body burden
– Also varies between chemicals

Combinations are not the same 
as Mixtures

What concentrations should be tested in vitro?
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• Studies like Wetmore et al. (2012, 2015) generate TK data using in vitro methods

Addressing The Need for In Vitro 
Toxicokinetics
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Traditional in vivo TK
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Throughput TK
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High Throughput 
Toxicokinetics (HTTK)

 Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by 
predicting tissue concentrations due to exposure
• However traditional TK methods are resource intensive

 Relatively high throughput TK (HTTK) methods have been used by the 
pharmaceutical industry to determine range of efficacious doses and to 
prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; Wang, 
2010)
• A key application of HTTK has been “reverse dosimetry” (also called Reverse TK 

or RTK)
• RTK can approximately convert in vitro HTS results to daily doses needed to 

produce similar levels in a human for comparison to exposure data  (starting off 
with Rotroff, et al., 2010)
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Figure from Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals

Characterizing Human In Vivo
Toxicokinetics 

Using In Vitro Assays
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Oral dose in
(mg/kg/day)

Sum of hepatic 
and renal 
clearance

(mg/kg/day)

A Basic Model Allows HTTK

 In vitro plasma protein binding 
(fraction unbound in plasma – fup) 
and intrinsic hepatic metabolic 
clearance (Clint) assays allow 
approximate hepatic and renal 
clearances to be calculated

 At steady state this allows conversion 
from concentration to administered 
dose

 100% bioavailability assumed

GFR: Glomerular filtration rate (kidney)
Ql: Liver blood flow

Jamei et al. (2009)
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Variability in the Basic Steady-
State TK Model

 Because we use a simple model for 
steady-state plasma concentration (Css) 
the amount of human physiology that 
can be varied is limited

 In vitro clearance (µL/min/106

hepatocytes) is scaled to a whole organ 
clearance using the density of 
hepatocytes per gram of liver and the 
volume of the liver (which varies 
between individuals)
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Jamei et al. (2009)
• Glomerular filtration rate (GFR) and blood flow to 

the liver (Ql) both vary from individual to 
individual



Office of Research and Development18 of 35

Monte Carlo (MC) Approach to 
Variability
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We use the upper 95th percentile Css for a 1 mg/kg bw/day 
exposure to convert from in vitro concentration to in vivo dose
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Steady-State In Vitro-In Vivo 
Extrapolation (IVIVE)
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 The higher the predicted Css, the lower the oral equivalent dose, so the upper 95% 
predicted Css from the MC has a lower oral equivalent dose
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Predicted Css

Upper 95%
Predicted Css
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In Vitro - In Vivo 
Extrapolation (IVIVE)

Definition: 
IVIVE is the utilization of in vitro experimental data to predict phenomena 
in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, reversible/ irreversible

• Both contribute to predict in vivo effects

Slide from Barbara Wetmore
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Exposure Forecaster (ExpoCast) generates rapid 
exposure estimates (Wambaugh et al., 2013,2014)

ToxCast + Reverse Dosimetry generates estimated doses needed to cause bioactivity

Incorporating Dosimetry-Adjusted ToxCast 
Bioactivity Data with Exposure

Wetmore et al., Tox. Sci, 2015
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Chemicals with HTTK Data

0 100 200 300 400 500 600

Existing Human data

Existing Rat data

Anticipated Human

Anticipated Rat

Chemicals with HTTK Data

Rotroff et al. 2010

Wetmore et al. 2012

Tonnelier et al. 2012

Wetmore et al. 2013

Wetmore et al. 2015

ToxCast/ExpoCast

Measurement of in vitro clearance and binding both require chemical-specific 
analytical chemistry methods – these can be difficult to develop

Methods are appropriate for chemicals that are soluble, non-volatile only
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ToxCast 
chemicals with 
ER Agonist Assay 
Activity (2636)

Chemicals with 
HTTK Data (543)

Chemicals with Exposure 
Estimates (7969)
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2094

251

273
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Predicting Critical TK Parameters

• Two parameters currently are 
key to HTTK model:

• Plasma protein binding (PPB)
• Hepatic clearance 

(metabolism)

• Ingle et al. (2016) developed 
PPB model for environmental 
chemicals

• If a hepatic clearance model 
can be developed we can 
provide tentative TK 
predictions for thousands of 
more chemicals

Figure from 
Dustin 

Kapraun
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Using Predicted HTTK 
for Risk Prioritization

Doses ranges for all 3925 Tox21 
compounds eliciting a ‘possible’-

to-‘likely’ human in vivo
interaction alongside estimated 

daily exposure

56 compounds with 
potential in vivo biological 

interaction at or above 
estimated environmental 

exposures

Sipes et al., (2017)

Sipes et al. used Simulations Plus ADMET Predictor to make in silico predictions of 
metabolism and protein binding:
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Wetmore et al. (2014)

Population Variability in Metabolism

Office of Research and Development

Single assay per enzyme per chemical – lower throughput!
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McNally et al. (2014) Linear Regressions for 
Population Simulation
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Modern U.S. Population 
Simulator for HTTK
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Modern U.S. Population 
Simulator for HTTK
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Modern U.S. Population 
Simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters
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Risk-Based Ranking for Total 
NHANES Population
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Life-stage and Demographic 
Variation in Exposure

• Wambaugh et al. (2014) 
made steady-state inferences 
of exposure rate (mg/kg/day) 
from NHANES data for various 
demographic groups

Change in Exposure 
Relative to Total Population

Change in Exposure (mg/kg bodyweight/day)

Ring et al. (2017)
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Life-stage and Demographic 
Variation in Exposure

• Ring et al. (2017) made 
demographic-specific 
predictions of change in 
plasma concentrations for 
a 1 mg/kg bw/day 
exposure

Change in Plasma Concentration 
Relative to Total Population

Change in Toxicokinetics (µM/unit exposure)

Ring et al. (2017)
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Life-stage and Demographic Specific 
Predictions

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)
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All Models and Data Open Source 
and Public

 “httk” R Package for 
IVIVE and PBTK

 553 chemicals to date
 100’s of additional 

chemicals being 
studied

 Pearce et al. (2017a) 
provides 
documentation and 
examples

 Built-in vignettes 
provide further 
examples of how to 
use many functions

https://CRAN.R-
project.org/package=httk

Can access this from the R 
GUI: 

“Packages” then “Install 
Packages”

Download R:
https://www.r-project.org/

within R, type:
install.packages("httk")

Then
library("httk")

https://cran.r-project.org/package=httk
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Conclusions

National Academy of Sciences, January, 2017:
“Translation of high-throughput data into risk-based rankings 
is an important application of exposure data for chemical 
priority-setting. Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 programs… and 
in high-throughput computational exposure assessment… 
have enabled first-tier risk-based rankings of chemicals on 
the basis of margins of exposure…”

• We would like to know more about the risk posed by thousands of chemicals in the 
environment – which ones should we start with?

• High throughput screening (HTS) provides a path forward for identifying 
potential hazard

• Using big data analytics we can identify priority combinations of chemicals
• Using in vitro methods developed for pharmaceuticals, we can relatively efficiently 

predict TK for large numbers of chemicals, but we are limited by analytical chemistry



NCCT
Chris Grulke
Greg Honda*
Richard Judson
Andrew McEachran*
Robert Pearce*
Ann Richard
Risa Sayre*
Woody Setzer
Rusty Thomas
John Wambaugh
Antony Williams

NERL
Craig Barber
Namdi Brandon*
Peter Egeghy
Hongtai Huang*
Brandall Ingle*
Kristin Isaacs
Seth Newton
Katherine Phillips
Paul Price

Jeanette Reyes*
Jon Sobus
John Streicher*
Mark Strynar
Mike Tornero-Velez
Elin Ulrich
Dan Vallero
Barbara Wetmore

*Trainees

Chemical Safety for Sustainability (CSS) 
Rapid Exposure and Dosimetry (RED) Project

NHEERL
Linda Adams
Christopher 
Ecklund
Marina Evans
Mike Hughes
Jane Ellen 
Simmons

NRMRL
Yirui Liang*
Xiaoyu Liu

Arnot Research and Consulting
Jon Arnot
Battelle Memorial Institute
Anne Louise Sumner
Anne Gregg
Chemical Computing Group
Rocky Goldsmith
National Institute for Environmental Health 
Sciences (NIEHS) National Toxicology Program
Mike Devito
Steve Ferguson
Nisha Sipes
Research Triangle Institute
Timothy Fennell
ScitoVation
Harvey Clewell
Kamle Mansouri
Chantel Nicolas
Silent Spring Institute
Robin Dodson
Southwest Research Institute
Alice Yau
Kristin Favela
Summit Toxicology
Lesa Aylward
Tox Strategies
Caroline Ring
University of California, Davis
Deborah Bennett
Hyeong-Moo Shin 
University of Michigan
Olivier Jolliet
University of North Carolina, Chapel Hill
Alex Tropsha

Collaborators

The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. EPA

Lead CSS Matrix Interfaces:
John Kenneke (NERL)
John Cowden (NCCT)



Office of Research and Development37 of 35

References

 Breyer, Stephen. Breaking the vicious circle: Toward 
effective risk regulation. Harvard University Press, 
2009 
 Filer, Dayne L.. "The ToxCast analysis pipeline: An R 

package for processing and modeling chemical 
screening data." US Environmental Protection 
Agency: http://www. epa. 
gov/ncct/toxcast/files/MySQL% 
20Database/Pipeline_Overview. pdf (2014)
 Ingle, Brandall L., et al. "Informing the Human 

Plasma Protein Binding of Environmental Chemicals 
by Machine Learning in the Pharmaceutical Space: 
Applicability Domain and Limits of Predictability." 
Journal of Chemical Information and Modeling 
56.11 (2016): 2243-2252.
 Jamei, et al. “The Simcyp® population-based ADME 

simulator.” Expert opinion on drug metabolism & 
toxicology 2009;5:211-223
 Kapraun, Dustin et al., “A Method for Identifying 

Prevalent Chemical Combinations in the US 
Population,” Environmental Health Perspectives, 
2017
 Kavlock, Robert, et al. "Update on EPA’s ToxCast 

program: providing high throughput decision 
support tools for chemical risk management." 
Chemical research in toxicology 25.7 (2012): 1287-
1302.
 McNally, et al., “PopGen: a virtual human 

population generator.” Toxicology 2014

 National Research Council. (1983). Risk Assessment 
in the Federal Government: Managing the Process 
Working Papers. National Academies Press.
 National Research Council. Toxicity testing in the 

21st century: a vision and a strategy. National 
Academies Press, 2007.
 Park, Youngja, H., et al. “High-performance 

metabolic profiling of plasma from seven 
mammalian species for simultaneous environmental 
chemical surveillance and bioeffect monitoring.” 
Toxicology 295:47-55 (2012)
 Pearce, Robert, et al. “httk: R Package for High-

Throughput Toxicokinetics.” Journal of Statistical 
Software, 2017
 Ring, Caroline, et al., “Identifying populations 

sensitive to environmental chemicals by simulating 
toxicokinetic variability”, Environment International, 
2017
 Schmidt, Charles W. "TOX 21: new dimensions of 

toxicity testing." Environmental health perspectives 
117.8 (2009): A348.
Sipes, Nisha, et al. (2017) “An Intuitive Approach for 

Predicting Potential Human Health Risk with the 
Tox21 10k Library”, Environmental Science and 
Technology
Strope, Cory L., et al. (2018) "High-throughput in-

silico prediction of ionization equilibria for 
pharmacokinetic modeling." Science of The Total 
Environment

Tonnelier, A., Coecke, S., & Zaldívar, J. M. (2012). 
Screening of chemicals for human bioaccumulative 
potential with a physiologically based toxicokinetic 
model. Archives of toxicology, 86(3), 393-403.
Wambaugh, John F., et al. "High-throughput models 

for exposure-based chemical prioritization in the 
ExpoCast project." Environmental science & 
technology 47.15 (2013): 8479-848.
Wambaugh, John F., et al. "High Throughput 

Heuristics for Prioritizing Human Exposure to 
Environmental Chemicals." Environmental science & 
technology (2014).
Wetmore, Barbara A., et al. "Integration of 

dosimetry, exposure and high-throughput screening 
data in chemical toxicity assessment." Toxicological 
Sciences (2012): kfr254.
Wetmore, Barbara A., et al., “Incorporating 

population variability and susceptible 
subpopulations into dosimetry for high-throughput 
toxicity testing. Toxicological sciences 
2014;142:210-224
Wetmore, Barbara A., et al. "Incorporating High-

Throughput Exposure Predictions with Dosimetry-
Adjusted In Vitro Bioactivity to Inform Chemical 
Toxicity Testing." Toxicological Sciences 148.1 
(2015): 121-136.


	Identifying Susceptible Populations Using Exposure and Toxicokinetics
	EPA Office of Research and Development
	Chemical Regulation in the United States
	High-Throughput Bioactivity
	High-Throughput Risk-based Prioritization
	CDC NHANES
	Kapraun et al. (2017) EHP
	Co-Occurrence of Chemicals in Individuals
	Identifying Prevalent Mixtures
	Demographic-Specific Prevalence of Combinations
	A Testable Number of Combinations
	Combinations are not the same as Mixtures
	Addressing The Need for In Vitro Toxicokinetics
	High Throughput Toxicokinetics (HTTK)
	Characterizing Human In Vivo Toxicokinetics �Using In Vitro Assays
	A Basic Model Allows HTTK
	Variability in the Basic Steady-State TK Model
	Monte Carlo (MC) Approach to Variability
	Steady-State In Vitro-In Vivo Extrapolation (IVIVE)
	In Vitro - In Vivo Extrapolation (IVIVE)
	Incorporating Dosimetry-Adjusted ToxCast Bioactivity Data with Exposure
	Chemicals with HTTK Data
	Predicting Critical TK Parameters
	Using Predicted HTTK for Risk Prioritization
	Population Variability in Metabolism
	McNally et al. (2014) Linear Regressions for Population Simulation
	Modern U.S. Population Simulator for HTTK
	Modern U.S. Population Simulator for HTTK
	Modern U.S. Population Simulator for HTTK
	Risk-Based Ranking for Total NHANES Population
	Life-stage and Demographic Variation in Exposure
	Life-stage and Demographic Variation in Exposure
	Life-stage and Demographic Specific Predictions
	All Models and Data Open Source and Public
	Conclusions
	Chemical Safety for Sustainability (CSS) �Rapid Exposure and Dosimetry (RED) Project
	References

