<EPA

United States
Environmental Protection
Agency

Identifying Susceptible
Populations Using Exposure and
Toxicokinetics

John Wambaugh
National Center for Computational Toxicology

Office of Research and Development
U.S. Environmental Protection Agency

Genetics and Environmental
Mutagenesis Society November 7, 2017

35t Annual Fall Meeting

The views expressed in this presentation are

those of the author and do not necessarily
orcid.org/0000-0002-4024-534X reflect the views or policies of the U.S. EPA



SEPA EPA Office of Research and Development

United States
Environmental Protection
Agency

e The Office of Research and Development (ORD) is the
scientific research arm of EPA
e 558 peer-reviewed journal articles in 2016

e Research is conducted by ORD’s three national
laboratories, four national centers, and two offices
* Includes National Center for Computational
Toxicology and National Exposure Research
Laboratory

e 14 facilities across the country and in Washington, D.C.

e Six research programs
* Includes Chemical Safety for Sustainability

Credit: the Research Triangle Foundaig

e Research conducted by a combination of Federal
scientists; contract researchers; and postdoctoral, ORD Facility in

graduate student, and post-baccalaureate trainees Research Triangle Park, NC
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e Parketal (2012): At least 3221 chemicals in pooled human

blood samples, many appear to be exogenous

GIVE A DOG A PHONE
Technology for cur furry friends

* A tapestry of laws covers the chemicals people are exposed to NEWSCientiSt

in the United States (Breyer, 2009) e

We've made
 Different testing requirements exist for food additives, 150,000 new chemicals

pharmaceuticals, and pesticide active ingredients (NRC, 2007)

* Most other chemicals, ranging from industrial waste to dyes to ' E i

packing materials are covered by the recently updated Toxic

We touch them,

Substances Control Act (TSCA) we wear them, we eat them
e Thousands of chemicals on the market were either But which ones should
“grandfathered” in or were allowed without experimental we worry about?
assessment of hazard, toxicokinetics, or exposure SFRCIAL REPORT, page 5%
* Thousands of new chemical use submissions are made to ,
the EPA every year P | Dpmieri | i |I|II|"I|I

* Methods are being developed to prioritize these existing

and new chemicals for testing N ber 29. 2014
ovember 29,
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= We might estimate points of departure in vitro using

high throughput screening (HTS)

=  Tox21: Examining >8,000 chemicals using ~50 assays
intended to identify interactions with biological
pathways (Schmidt, 2009)

=  ToxCast: For a subset (>2000) of Tox21 chemicals ran
>1100 additional assays (Kavlock et al., 2012)

= Most assays conducted in dose-response format
(identify 50% activity concentration — AC50 — and

efficacy if data described by a Hill function, Filer et al.,
2016)

= All data is public: http://comptox.epa.gov/

= However, we are not exposed to one chemical at a time

m Office of Research and Development
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<EPA High-Throughput Risk-based
Prioritization

* Risk is the product of chemical hazard and exposure (NRC, 1983)

Environmental Protection
Agency

 High throughput risk prioritization based upon HTS requires:
mg/kg BW/day

N

— in vitro-in vivo extrapolation (IVIVE)

— Exposure estimates

— Toxicokinetics
Potential Hazard
from in vitro with
Reverse
Toxicokinetics

Hazard

High-Throughput
Risk
Prioritization

Potential
Exposure Rate

Toxicokinetics Exposure

Lower Medium Risk  Higher
Risk Risk
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Centers for Disease Control and Prevention (CDC) National Health and Nutrition
Examination Survey (NHANES) provides an important tool for monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, medical
exam, biomonitoring (health and exposure), ...

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

)Y,
(B

National Health and Nutrition Examination Survey

Includes measurements of:

. Body weight
. Height
. Chemical analysis of blood and urine

m Office of Research and Development


http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm

wEPA Kapraun et al. (2017) EHP

United States
Environmental Protection
Agency

* Targeted analytical chemistry used to quantitate concentration of specific chemicals in
urine

e Samples must be divided up for each chemical tested
e NHANES cohort divided up to allow enough sample for testing all chemicals

Table 4. Summary information tor each of the National Health and Nutrition
Examination Survey (NHANES) 20092010 subsamples.

Category Subsample A Subsample B Subsample C
Number of subjects 2,741 2,736 2,132

MNumber of chemicals 29 37 40

Maximum weight 476,883.0 426,061.1 413 ,068.1
Minimum weight 14.002.7 13,975.1 12,6593
Sum of weights 238,281,689.4 272.911,664.0 226,021 580.6
Records needed 154451 19.528.5 17.854.1

 We will focus on “Sub-sample B” PAHs, Phenols, Pesticides, and Phthalates
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The number of chemicals (out of 37) “present” in individuals depends upon where you set the limit
0. 175«
® Ideally we would use
0.150 - some sort of chemical
' .® toxicity informed point of
departure but don’t have
12
S @ that for all chemicals
0.100 .

» @ Limit of Detection
B 50th Percentile
Q0th Percentile

o
=
Y |
W
»

25 30 35
Number of Group B Chemicals Present

Office of Research and Development

E Proportion of US Population

Kapraun et al. (2017)
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 We are using data-mining
methods (frequent
itemset mining or FIM) to
identify combinations of
items (chemicals) that co-
occur together within
samples from same
individual

* Used total population
median concentration as
threshold for “presence”

* |dentified a few dozen
mixtures present in >30%
of U.S. population

9 of 35 Office of Research and Development

Identifying Prevalent Mixtures

Prevalent Mixtures
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PAHs and
Phenols Pesticides Phthalates metabolites
NMTONLEeOmammOOe matadI Ty oo =t o, o~ o
S ERS e SR8 S22 YSI288=S8s28 92 ReR
G G DG D DG e DG D D e DG D e e e DG D e DG el D e D D e e e D DG e e G D e e D D
oo oooe ool o O oo OO OF o oF & o
D222 222D D23 DD IDIDI I DD
H N
|
||
H N
[ |
| | [ |
HBE - -
H B
|| [ |
[ |
I [ |

0.4282
0.2377
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<EPA Demographic-Specific

Prevalence of Combinations

Phthalates PAHs
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wEPA A Testable Number of
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e Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions
of hypothetical combinations
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“Exposure based priority setting” (NAS, 2017) allows

Office of Research and Development identification of most important mixtures to test
Kapraun et al. (2017)
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as Mixtures
 NHANES samples are one time “snapshots” of chemical concentration

« We don’t actually know the toxicokinetics (absorption, distribution,
metabolism, excretion) for most NHANES chemicals (Strope et al., 2017)

* Chemical exposure patterns not necessarily known — could be constant,
sporadic, one time, or inherited from mother

— Varies from chemical to chemical

« Chemical clearance (metabolism, excretion tells us the rate of change of
chemical concentration

— Different for different chemicals

e Chemical distribution tells us which tissues concentrate the chemical and
the total body burden

— Also varies between chemicals

What concentrations should be tested in vitro?

(PN LM Office of Research and Development
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 Studies like Wetmore et al. (2012, 2015) generate TK data using in vitro methods

250

200 -

150 -

100 -

50 -

0 -
ToxCast Phase | (Wetmore et al. 2012)

EX Ml Office of Research and Development

ToxCast Phase Il (Wetmore et al. 2015)

W ToxCast Chemicals
Examined

B Chemicals with
Traditional in vivo TK

B Chemicals with High
Throughput TK



United States

<EPA High Throughput
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Toxicokinetics (HT TK)

= Toxicokinetics (TK) provides a bridge between toxicity and exposure assessment by
predicting tissue concentrations due to exposure

e However traditional TK methods are resource intensive

= Relatively high throughput TK (HTTK) methods have been used by the
pharmaceutical industry to determine range of efficacious doses and to

prospectively evaluate success of planned clinical trials (Jamei, et al., 2009; Wang,
2010)

e Akey application of HTTK has been “reverse dosimetry” (also called Reverse TK
or RTK)

e RTK can approximately convert in vitro HTS results to daily doses needed to

produce similar levels in a human for comparison to exposure data (starting off
with Rotroff, et al., 2010)

XL Office of Research and Development



S EPA Characterizing Human In Vivo
7L C e
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Using In Vitro Assays

In Vitro - In Vivo

Extrapolation

Predicted Plasma
Concentrations
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ANy
<
Human Intrinsic Hepatic
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(10 donor pool) (Clinp
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. { .,"_.‘. - -
-. o-. 't-.-“"-o-'-‘--
ﬁ ﬁ 5 .
t ,}\
Human Plasma Protein Binding
Plasma ()
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(XL Office of Research and Development

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals
Wetmore et al. (2015) +163 chemicals

Figure from Barbara Wetmore
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= Invitro plasma protein binding
(fraction unbound in plasma —f
and intrinsic hepatic metabolic
clearance (Cl. ) assays allow
approximate hepatic and renal
clearances to be calculated

up)

= At steady state this allows conversion
from concentration to administered
dose

= 100% bioavailability assumed

C - oral dose rate

A Basic Model Allows HTTK

Minimal Model: Lumped Single Distribution Volume Smicyp

PO _hISmaII Intestine

SS

GFR*F, )+| Q*F,*  Chm
QI + I:up *Clint

GFR: Glomerular filtration rate (kidney)
Q;: Liver blood flow

(XL Office of Research and Development

11«1

‘ Portal Vein ‘

Qpy Qev
Qi

. | Qu Systemic
‘ Liver | Compartment uid

l Hepatic Clearance l Renal Clearance

Jamei et al. (2009)

oral d . @ Sum of hepatic
ral aose in and renal
(mg/kg/day) = = clearance

(mg/kg/day)



<EPA Variability in the Basic Steady-
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State TK Model

= Because we use a simple model for Minimal Model: Lumped Single Distribution Volume smiteyp
steady-state plasma concentration (C) |
the amount of human physiology that PO ==————>Small Intestine
can be varied is limited vlku
= Invitro clearance (puL/min/10° ‘ Portal Vein ‘
hepatocytes) is scaled to a whole organ
clearance using the density of
hepatocytes per gram of liver and the oy Qv
volume of the liver (which varies Qua
between individuals) ‘ o I Q 4’{6 SY“:::: 1_%— -
oral dose rate , omparTmen
Css - l Hepatic Clearance l Renal Clearance

(GFR*FUP)+{Q,*F x_ Cla J

\ I\ ) Q'+F“"*C|““, Jamei et al. (2009)
|

(Passive) Hepatic élearance e Glomerular filtration rate (GFR) and blood flow to
Renal ?Metabolism) the liver (Q)) both vary from individual to
Clearance individual

(VAL Office of Research and Development



wEPA Monte Carlo (MC) Approach to
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A A

log Glomerular Filtration Rate... log Liver Volume

log Liver Flow (Q))
\ \l/
oral dose rate

C$:kGFR*ﬁJ+(QﬁF *(”mimj
N

® Q+F,*Cl
Iog c'intin vitro

Probability
Pr. '\habili_t_y

Probability

Probability

Probability
Probability

A

log f,,

We use the upper 95 percentile Css for a 1 mg/kg bw/day
£ i ] . } ] ]
Office of Research and bevelopment  aynosure to convert from in vitro concentration to in vivo dose



SEPA Steady-State In Vitro-In Vivo
ool ctockion Extrapolation (IVIVE)

A Median

Lower 95%  Predicted C
Predicted C,

Upper 95%
.~ Predicted C

Oral Equivalent Daily Dose

1) >
0 Steady-state Concentration (uM) = in vitro AC50

= The higher the predicted C, the lower the oral equivalent dose, so the upper 95%
predicted C,, from the MC has a lower oral equivalent dose

NI Office of Research and Development
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Extrapolation (IVIVE)

Definition:
IVIVE is the utilization of in vitro experimental data to predict phenomena
In vivo

* IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics):
« Fate of molecules/chemicals in body
e Considers absorption, distribution, metabolism, excretion (ADME)
« Uses empirical PK and physiologically-based (PBPK) modeling

* |IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics):
« Effect of molecules/chemicals at biological target in vivo
« Assay design/selection important
« Perturbation as adverse/therapeutic effect, reversible/ irreversible

» Both contribute to predict in vivo effects

(NI Office of Research and Development

Slide from Barbara Wetmore



wEPA Incorporating Dosimetry-Adjusted ToxCast

Wetmore et al., Tox. Sci, 2015

8 Environmental Protection Bioactivity Data with Exposure
L gency

% 108

2

ED 104 ToxCast + Reverse Dosimetry generates estimated doses needed to cause bioactivity
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- exposure estimates (Wambaugh et al., 2013,2014) Potential

8 10-10 Exposure
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Lower Medium Higher
Risk Risk Risk
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wEPA Chemicals with HTTK Data
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Measurement of in vitro clearance and binding both require chemical-specific
analytical chemistry methods — these can be difficult to develop

Methods are appropriate for chemicals that are soluble, non-volatile only

M Rotroff et al. 2010

Anticipated Rat
B Wetmore et al. 2012

Anticipated Human M Tonnelier et al. 2012

vd
. ' B Wetmore et al. 2015
Existing Human data /

0 100 200 300 400 500 600 ™ ToxCast/ExpoCast
Chemicals with HTTK Data

Existing Rat data B Wetmore et al. 2013
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wEPA Predicting Critical TK Parameters
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ToxCast
chemicals with
ER Agonist Assay
Activity (2636)

e Two parameters currently are \
key to HTTK model:
e Plasma protein binding (PPB)

e Hepatic clearance
(metabolism)

Figure from
Dustin
Kapraun

* Ingle et al. (2016) developed
PPB model for environmental
chemicals

* If a hepatic clearance model
can be developed we can
provide tentative TK

1
predictions for thousands of 7
more chemicals Chemicals with

Office of Research and Development HTTK Data (543)

Chemicals with Exposure
Estimates (7969)




SEPA Using Predicted HTTK &2 A oo
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for Risk Prioritization —

Sipes et al. used Simulations Plus ADMET Predictor to make in silico predictions of
metabolism and protein binding:

108+ 105 -

> >

© 10 10 4
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S 10°7 S 10°°

S - . - E

@ 1077 ggen® . ERIEE o 10°-

8 r 8 s salls e %%t aate 500, 0000, 200000

* sapen, ses *

o 10—5 o 10|_5_ e % ssg%se
Doses ranges for all 3925 Tox21 56 compounds with
compounds eliciting a ‘possible’- potential in vivo biological

to-‘likely’ human in vivo interaction at or above
interaction alongside estimated estimated environmental
daily exposure exposures

m Office of Research and Development
Sipes et al., (2017)



SEPA Population Variability in Metabolism

United States ) . .
Environmental Protection - Single assay per enzyme per chemical — lower throughput!

Agency
. Steady State Plasma
Isozyme-Specific Clearance Metabolic Clearance Concentrations (C,, ) for:
(hepatic, renal, intestinal)
' —
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yENJ I Office of Research and Development Population-Specific
Oral Equivalents (mg/kg/day)

Wetmore et al. (2014)



SEPA McNally et al. (2014) Linear Regressions for
Population Simulation
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~A A

Toxicology 315 (2014) 70-85

Toxicology

Contents lists available at ScienceDirect

journal homapage: www.alsevier.com/locate/toxicol

TONICOL0GY

PopGen: A virtual human population generator

Kevin McNally*#, Richard Cotton®, Alex Hogg®, George Loizou **

4 Health & Safety Laboratory, Buxton, Derbyshire, LIK
BT Led, Buxton, Derbyshire, UK

Plausible in vivo
dose responses

l (e sPT =
Probabilistic
PEPK model

Distribution of plausible
reconstructed exposure

rIX I Office of Research and Development

Human BM data

4|

CSBP model

I

In vitro concentration
response

Adipose_ mass (kg

size
& pormal man
4 Obese man

. Muscle Mass (kg)
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Simulator for HTTK

Correlated Monte Carlo sampling of physiological model parameters

Sample guantities from

(.

National Health and Nutrition Examination Survey

Race/ethnluty
Age

Height

Weight

Serum creatinine

Office of Research and Development
Ring et al. (2017)



<EPA Modern U.S. Population
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Simulator for HTTK

Correlated Monte Carlo sampling of physiological model parameters

Sample guantities from

National Health and Nutrition Examination Survey || m

(.

Race/ethnluty

A

Hi? ht Use equations from literature
.g (McNally et al., 2014)

Weight

. (+ residual marginal variability)
Serum creatinine

Office of Research and Development
Ring et al. (2017)



<EPA Modern U.S. Population
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Simulator for HTTK

Correlated Monte Carlo sampling of physiological model parameters

Sample guantities from

(,.' Hanesm #m Predict physiological

quantities

Race/ethnluty

Age . . Tissue masses
& Use equations from literature

\I;I\/el'gh;t (McNally et al., 2014) T|ssui.téloodfflow§
cig o (+ residual marginal variability) GFR (kidney upctlon)
Serum creatinine Hepatocellularity

Office of Research and Development
Ring et al. (2017)



SEPA Risk-Based Ranking for Total
Emvironmenial Protection N H AN ES Popu I ation

Agency

NI T WA N
Ty

Hazard from
in vitro with
Reverse
Toxicokinetics

....................

Potential
Exposure
Rate

Compound

Estimated Equivalent Dose or Predicted Exposure (mg/kg BW/day)

Lower Medium Higher
Risk Risk Risk

Office of Research and Development
Ring et al. (2017)
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 Wambaugh et al. (2014)
made steady-state inferences
of exposure rate (mg/kg/day)
from NHANES data for various
demographic groups
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Life-stage and Demographic

Variation in Exposure
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* Ring et al. (2017) made
demographic-specific
predictions of change in
plasma concentrations for
a 1 mg/kg bw/day
exposure
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SEPA Life-stage and Demographic Specific

E\g\éir:gcmental Protection Predictions

mg'kg BEW/day

* Can calculate Change in Activity:Exposure Ratio

Potential Hazard

margin between "

Toxicokinetics 24-d
Maphthalene

bioactivity and
eX p O S u re fo r Potential Exposure E%EE%EE\‘[HE
specific

populations
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Risk Risk
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Download R:
https://www.r-project.org/
within R, type:

install .packages(''httk')

Then
library(""'httk')

» “httk” R Package for
IVIVE and PBTK

= 553 chemicals to date

= 100’s of additional
chemicals being
studied

» Pearceetal. (2017a)
provides
documentation and
examples

» Built-in vignettes
provide further
examples of how to
use many functions

All Models and Data Open Source
and Public

R CRAN - Package httk X

&« C ) | & Secure | hitpsy//cran.r-project.org/w

/packages/httk/index.htm @+ 0O /¢
I Apps & DSStox (8! Confluence 7% JESEE A EHP [B BattelleBox &) ORD Travel Request

httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokineties ("TK") using data obtained from relatrvely high throughput. in vitro studies. Both physiologically-based
("PBTK") and empirical (e.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and multiple species. These models are solved efficiently. often using compiled (C-
based) code. A Monte Carlo sampler is included for simulating biological variability and measurement limitations. Functions are also provided for exporting "PBTK" models to "SBML" and
"JARNAC" for use with other simulation software. These functions and data provide a set of tools for in vitro-in vivo extrapolation ("IVIVE") of high throughput screening data (e.g.. ToxCast) to
real-world exposures via reverse dosimetry (also known as "RTK").

Version: 1.7

Depends: R (=2.10)

Imports: deSolve, msm. data.table. survey, mvtnorm, truncnorm. stats, utils

Suggests: geplot2, knitr. rmarkdown. Rursp. GGally, gplots. scales. EnvStats, MASS. RColorBrewer, TeachingDemos, classInt. ks, reshape2. gdata. viridis. CensRegMod. gmodels.
colorspace

Published: 2017-07-15

Author: John Wambaugh. Robert Pearce. Caroline Ring, Jimena Davis, Nisha Sipes. and R. Woodrow Setzer

Maintainer: John Wambaugh <wambaugh. john at epa.gov=>

License: GPL-3
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Conclusions

 We would like to know more about the risk posed by thousands of chemicals in the
environment — which ones should we start with?
e High throughput screening (HTS) provides a path forward for identifying

potential hazard
e Using big data analytic
e Using in vitro methods

s we can identify priority combinations of chemicals
developed for pharmaceuticals, we can relatively efficiently

predict TK for large numbers of chemicals, but we are limited by analytical chemistry

[ vepa——
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USING
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TO IMPROVE
RISK-RELATED
EVALUATIONS

m Office of Research and Development

National Academy of Sciences, January, 2017:

“Translation of high-throughput data into risk-based rankings
is an important application of exposure data for chemical
priority-setting. Recent advances in high-throughput toxicity
assessment, notably the ToxCast and Tox21 programs... and
in high-throughput computational exposure assessment...
have enabled first-tier risk-based rankings of chemicals on
the basis of margins of exposure...”
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