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- Read-across describes one of the techniques for filling data gaps in either the
analogue or category approaches i.e. not to be confused with the "analogue
approach”

- "Analogue approach” refers to grouping based on a very limited number of
chemicals (e.g. target substance) + source substance)

- "Category approach” is used when grouping is based on a more extensive range of
analogues (e.g. 3 or more members)

- A chemical category is a group of chemicals whose physico-chemical and human
heath and/or environmental toxicological and/or environmental fate properties are
likely to be similar or follow a regular pattern as a result of structural similarity
(or other similarity characteristics) e.g. metabolism similarity.

- National Center for
Computational Toxicology
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- Analogue or category approach? (# analogues)
- Completeness of the data matrix - no. of data gaps

- Data quality for the underlying analogues for the target and source
analogues

- Consistency of data across the data matrix - concordance of effects
and potency across analogues

- Toxicokinetics - similarity in metabolism profile

- Overarching hypothesis/similarity rationale - how to identify similar
analogues and justify their similarity for the endpoint of interest

» Address the dissimilarities and whether these are significant from a
toxicological standpoint

- Presence vs. absence of toxicity
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- In vivo toxicokinetics information if available is often relied
upon to substantiate biological similarity for the purposes of
justifying a read-across

- This information is usually extracted from the literature

- In this pilot study we sought to investigate the feasibility and
utility of using in vitro toxicokinetics data to substantiate
biological similarity.
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Chemicals

p 1: Target/Analogue identification

Cateqgory

Methyleugenol (CASRN 93-15-2), Estragole
(CASRN 140-67-0)

Proof -of -concept: Known similar metabolism;
methyleugenol showed metabolic clearance in
the Wetmore et., (2015) studies

2-nitrotoluene (CASRN 88-72-2), 4-nitrotoluene
(CASRN 99-99-0)

Target: 4-Methyl-2-Pentanol (CASRN 108-11-2)
Analogues: 4-methyl-2-pentanone (CASRN 108-
10-1), 2-propanol (CASRN 67-63-0), 2-propanone
(CASRN 67-64-1)

Target: 3,5-Dinitroaniline (CASRN 618-87-1)

Analogues: 2-Nitroaniline (CASRN 88-74-4), 3-
Nitroaniline (CASRN 99-09-2), 4-Nitroaniline
(CASRN 100-01-6)

National Center for
Computational Toxicology

Proof-of-concept: Known different metabolism;
4-nitrotoluene showed metabolic clearance in
Wetmore et al., (2015) studies

Application to Read-across: Metabolism
considerations form the basis for analogue
identification and selection of most appropriate
surrogate chemical

Application to Read-across: no information on

target compound; exploring the utility of
metabolism in informing analogue selection
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- Perform in vitro rat and human hepatocyte study to determine
intrinsic clearance

- Apply analytical spectroscopy (MS) for the detection of molecular
species and non-targeted analysis for metabolite identification

- Use third party expert systems for the prediction of potential
metabolites and their pathways to facilitate MS analysis

- Evaluate concordance of in vitro metabolism data relative to existing
in vivo data

« Evaluate concordance of in silico metabolism to both in vitro
metabolism and in vivo metabolism data for the proof of concept
substances

- Use the predicted and experimental metabolism data to determine
which source analogue(s) are valid for read-across




SEPA Step 2: Generate in silico metabolism
“" predictions

» There are a handful of metabolism prediction tools.

- Examples include: MetaPrint 2D, Meteor Nexus, TIMES and the
simulators contained within the OECD Toolbox.

- Some are freely available, others are commercial.

- In this pilot study we selected Meteor Nexus, TIMES and the
OECD Toolbox.




SEPA . TIMES = TIssue MEtabolism System

ggggg

- Commercial hybrid expert system

- Unique platform to facilitate toxicity predictions whilst
accounting for metabolism

- Endpoints that have been modelled include skin sensitisation,
Ames mutagenicity, in vitro chromosomal aberration, in vivo
micronucleus

- The metabolism and autoxidation simulators can be used in vacuo
though they have been "trained” to reproduce the metabolic
maps and their associated metabolites for these endpoints

- Of specific interest are the in vitro and in vivo rat liver
metabolism simulators
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- Rat liver S9 v11.15 (technically rodent rather than rat)

- Metabolism training set contains experimentally observed (documented)
in vitro metabolic pathways for 261 parent chemicals of wide structural
diversity, and 978 observed metabolites compiled into a searchable
electronic database.

* Published data on the metabolism of these chemicals in rodent liver
microsomes and S9 fraction were mainly collected from the literature

- Current in vitro rat liver metabolic simulator (fransformation table)
represents electronically designed set of 517 structurally generalised,
hierarchically arranged biotransformation reactions.
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- The following types of molecular transformations are included in the in
vitro simulator:

-25 - 30 abiotic (non-enzymatic) and, also, a few enzyme-controlled
reactions believed to occur at a very high rate as compared to the
duration of the tests.

-450 - 470 enzymatic phase I (mostly CYP450-catalysed)
transformations such as aliphatic C-oxidation, aromatic C-
hydroxylation, oxidative N- and O-dealkylation etc.

-15 - 20 enzymatic phase II transformations, such as glucuronidation,
sulfation, glutathione conjugation, N-acetylation, etc.
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¢ Rat v07.11

- Metabolism training set contains experimentally observed
(documented) in vivo metabolic pathways for 647 structurally different
parent chemicals, and 4382 observed metabolites.

- The current in vivo rat metabolic simulator (fransformation table)
represents electronically designed set of 622 structurally generalised,
hierarchically arranged biotransformation reactions.

- The following types of molecular transformations are included:
-26 abiotic (non-enzymatic) reactions.
-479 enzymatic phase I transformations
-104 enzymatic phase IT transformations
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« Contains in vitro and in vivo rat liver simulators which are taken
from the commercial TIMES system

* Provides a list of metabolites but not their hierarchy or the
associated metabolic tree

- National Center for
Computational Toxicology
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- Developed by Lhasa Ltd

- Several options - default is a site of metabolism scoring with
molecular mass variance

[Flsite of Metabolism Scoring (with Molecular Mass Variance) - default method

sites of metabolism are identified for the query structure. A Site of Metabolism (SoM) is a sub-set of the atoms of a structure where a biotransformation takes place. For every example compound
in the model, the SoM is retrieved. The examples Sites of Metabolism are sorted in order of their similarity to the calculated SoM of the query structure using the Tanimoto Coefficient. The most
similar SoMs are used as the supporting examples that determine the score.

Processing Options for the Site of Metabolism Scoring (with Molecular Mass Variance) method are:

* Molecular Mass Similarity Threshold - A threshold by which the molecular weight of the gquery compound is used to decide which examples are considered. The molecular weight of the
example compounds, as a percentage of the query compounds molecular weight, must be equal to or above this value. The default is 70.0.

+ Number of Mearest Meighbours - Specifies the number of examples shown in the results. As examples also determine the score for a metabolite, this setting can also strongly affect what
metabolites are actually predicted. You can set this value to between 6 and 12 examples, but the default has been set to B following investigations. We advise you to leave this at 8 if
possible.

I/\\rl(eep Nearest Meighbours with Equal Similarities - When ticked, prevents Meteor from discarding supporting examples where there is a tie in similarity rank at the cut-off point, even if this
means that the number of examples kept exceeds the Mumber of Mearest Neighbours specified (see ¥ below for an example - using the Top N filter).

+ Scoring Filters - Records how predictive a structure is when evaluated against the biotransformations in Meteor, and orders them according to their occurrence ratios. The options are:

* Relative - Only displays metabolites with scores at or above the percentage value set in the Score Threshold field {between 0% and 100% with a default of 70). For example if your
highest score is 449 and the threshold is set to 50% then anything with a score of 224.5 will be displayed.

- National Center for
Computational Toxicology
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SEPA  Step 3: Derive in silico metabolism pathways

Methyl eugenol Estragole
Role Target Source
CAS [93-15-2] [140-67-0]
DTXSID DTXSID5025607 DTXSIDO0020575
Structure
/Qx O
Average Mass 178.23 148 .21
LogKow (predicted) 2.61 3.02
Boiling pt (predicted) 252.16 deg C 219.74 deg C
Melting pt (predicted) 30.59 deg C -7.93 deg C
Reactivity Potential to be activated to a  Potential to be activated to a
Michael acceptor Michael acceptor

- National Center for
Computational Toxicology
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Step 3: In vivo TIMES metabolic map of me'rhyl
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<EPA Step 4: Concordance between in silico and in
vivo data
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- The OECD toolbox metabolites presented a subset of those
identified by TIMES (results not shown).

«In vitro TIMES predictions presented an incomplete picture
of the metabolism pathway of target and analogue
substances.

In vivo TIMES metabolism simulator was able to replicate the
majority of the experimental in vivo metabolites for the
proof of concept substances. Data only shown for methyl
eugenol/estragole pair but similar findings found for the
nitrotoluenes pair.




<EPA Step 4: Concordance between in silico and in
AAAAAA vivo data

- These pathways are relevant to the genotoxicity of
methyleugenol/estragole which highlights the significance and
relevance of these findings for understanding the role of
metabolism plays in the expected toxicity of these chemicals.
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SEPA Next steps

-Compare concordance with in vitro experimental data to
evaluate whether a combination of in silico & in vitro data
best represents the in vivo metabolism profile of a given
target/analogue.

- National Center for
Computational Toxicology
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» Questions?
- Contact: Patlewicz.grace@epa.gov

- National Center for
Computational Toxicology
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