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EPA Office of Research and Development

• The Office of Research and Development (ORD) is 
the scientific research arm of EPA

• 558 peer-reviewed journal articles in 2016

• Research is conducted by ORD’s three national 
laboratories, four national centers, and two offices

• Includes National Center for Computational 
Toxicology and National Exposure Research 
Laboratory 

• 14 facilities across the country

• Six research programs
• Includes Chemical Safety for Sustainability

• Research conducted by a combination of Federal 
scientists; contract researchers; and postdoctoral, 
graduate student, and post-baccalaureate trainees

ORD Facility in
Research Triangle Park, NC
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals in pooled 
human blood samples, many appear to be exogenous

• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

November 29, 2014
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Chemical Regulation in the United States

• Most other chemicals, ranging from industrial waste 
to dyes to packing materials are covered by the 
recently updated Toxic Substances Control Act (TSCA)

• Thousands of chemicals on the market were 
either “grandfathered” in or were allowed 
without experimental assessment of hazard, 
toxicokinetics, or exposure

• Thousands of new chemical use submissions are 
made to the EPA every year

• Methods are being developed to prioritize these 
existing and new chemicals for testing

November 29, 2014
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• National Research Council (1983) identified 
chemical risk as a function of both inherent 
hazard and exposure

• To address thousands of chemicals, we need to 
use “high throughput methods” to prioritize 
those chemicals most worthy of additional 
study

• High throughput risk prioritization needs:
1. high throughput hazard characterization 

(from HTT project)
2. high throughput exposure forecasts
3. high throughput toxicokinetics (i.e., 

dosimetry) linking hazard and exposure

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard from 
in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium 
Risk

Higher
Risk

Chemical Risk = 
Hazard + Exposure
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased 

throughput and reduced assay volumes”

• “Key advances over the past few years include new fluorescence methods, 
detection platforms and liquid-handling technologies.”

Positive control

Titrations of 
potential “hits”
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Assay AC50
with Uncertainty

High-Throughput Bioactivity

 We might estimate points of departure in vitro using 
high throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological 
pathways (Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format 
(identify 50% activity concentration – AC50 – and 
efficacy if data described by a Hill function, Filer et al., 
2016)

 All data is public: http://comptox.epa.gov/dashboard/
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2017 National Academies Report

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

“Translation of high-throughput data 
into risk-based rankings is an important 
application of exposure data for 
chemical priority-setting. Recent

advances in high-throughput 
toxicity assessment, notably the 
ToxCast and Tox21 programs…

and in high-throughput 
computational exposure 
assessment [ExpoCast]

have enabled first-tier 
risk-based rankings of 
chemicals on 

the basis of 
margins of 
exposure”

NAS (2017)
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Limited Available Data for 
Exposure Estimations
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CDC NHANES

What do we know about exposure?

Centers for Disease Control and Prevention (CDC) National Health and Nutrition 
Examination Survey (NHANES) provides an important tool for monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, medical 
exam, biomonitoring (health and exposure), …

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
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Kapraun et al. (2017) EHP

• We will focus on “Sub-sample B” PAHs, Phenols, Pesticides, and Phthalates

• Targeted analytical chemistry used to quantitate concentration of specific chemicals in 
urine 

• Samples must be divided up for each chemical tested
• NHANES cohort divided up to allow enough sample for testing all chemicals
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Co-Occurrence of Chemicals in 
Individuals

The number of chemicals (out of 37) “present” in individuals depends upon where you set the limit 

Ideally we would use 
some sort of chemical 
toxicity informed point of 
departure but don’t have 
that for all chemicals

Kapraun et al. (2017)
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Identifying Prevalent Mixtures

• We are using data-mining 
methods (frequent 
itemset mining or FIM, 
Borgelt, 2012) to identify 
combinations of items 
(chemicals) that co-occur 
together within samples 
from same individual

• Used total population 
median concentration as 
threshold for “presence”

• Identified a few dozen 
mixtures present in >30% 
of U.S. population

Kapraun et al. (2017)
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Demographic-Specific 
Prevalence of Combinations

29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10  9   8   7   6   5   4   3   2   1

Phthalates PAHs PhenolsPesticides

Kapraun et al. (2017)
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A Testable Number of 
Combinations

While high throughput screening (HTS) allows thousands of tests, there are millions 
of hypothetical combinations

“Exposure based priority setting” (NAS, 2017) allows 
identification of most important mixtures to test

Kapraun et al. (2017)
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Consensus Exposure Predictions 
with the SEEM Framework

• We incorporate multiple models into consensus predictions for 1000s of chemicals within the 
Systematic Empirical Evaluation of Models (SEEM) framework (Wambaugh et al., 2013, 2014)

• We evaluate/calibrate predictions with available monitoring data 

• This provides information similar to a sensitivity analysis: What models are working? What data are 
most needed? This is an iterative process.

• To date we have relied on median U.S. population exposure rates only

Integrating Multiple Models
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Wambaugh et al. (2014)

Five descriptors explain 
roughly 50% of the 
chemical to chemical 
variability in median 
NHANES exposure rates

Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index:

• Industrial and 
Consumer use

• Pesticide Inert
• Pesticide Active
• Industrial but no 

Consumer use
• Production Volume

Heuristics of Exposure
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Chemical Use Identifies Relevant 
Pathways

>2000 chemicals with Material Safety Data 
Sheets (MSDS) in CPCPdb (Goldsmith et al., 2014)
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Near-Field 
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Human
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Flora and Fauna
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Direct Use
(e.g. lotion)
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Near field sources have been known to be important at least since 1987 – see Wallace, et al.

Some pathways have much higher 
average exposures!
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The Chemistry Dashboard       
http://comptox.epa.gov/
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Chemicals and Products 
Database

CPDat
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Chemical Use: Chemicals and Products Database

Broad “index” 
of chemical 
uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence data

Occurrence and quantitative 
chemical composition

Targeted and non-targeted 
measurement of chemicals 
in consumer products

CPDat Functional 
Use Data

Also available as R Package Slide from Kristin Isaacs
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Material Safety Data Sheets

XXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXX

XXXXXXXXXX
XXXXXXXXXX

X
X
X

Goldsmith et al. (2014):
• ~20,000 

product-
specific 
Material 
Safety Data 
Sheets (MSDS) 
curated

• ~2,400 
chemicals

Product-specific 
uses determined 
using web spider 
to click through 
categories (e.g., 
home goods, bath 
soaps, baby) to 
find each product
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Predicting Chemical 
Constituents

Isaacs et al. (2016)
Office of Research and Development

 CPCPdb does not cover 
every chemical-product 
combination (~2000 
chemicals, but already 
>8000 in Tox21)

 We are now using 
machine learning 
(Random Forest, Breiman, 
2001) to fill in the rest

 We can predict functional 
use and weight fraction 
for thousands of 
chemicals
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Chemical Structure and Property Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant

film 
forming 

agent

foam 
boosting 

agent
foamer

reducer rheology 
modifier

skin 
protectant

skin condi-
tioner

soluble 
dye

catalyst chelator colorant crosslinker emollient emulsifier

fragrance

plasticizer

monomer

solvent

antistatic 
agent

anti-
oxidant

anti-
microbial

adhesion 
promoter

additive 
for rubber

additive 
for liquid 
system

whitenerwetting 
agent

viscosity 
controlling 

agent
vinylUV 

absorber
ubiquitoussurfactant

pre-
servative

oral care

hair condi-
tioner

emulsion 
stabilizer

buffer

additive

Predicting Function Based on Structure

Random Forest Based Classification Models (Breiman, 2001)

Prediction of
Of Potential 

Alternatives from 
Chemical Libraries

Phillips et al. (2017)

Use Database (FUSE)

Each functional model evaluated on the basis of balanced 
accuracy, 5-fold CV, and Y-randomization classification errors
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Understanding Use Predictions

 Each functional model evaluated on the basis of balanced accuracy, 5-fold CV, 
and Y-randomization classification errors

Viscosity controllers can be used to thicken
or thin out mixtures of chemicals..

ToxPrint EPI Suite ToxPrint + EPI Suite

Random Forest Importance for Viscosity Controller Functional Use (Failed Model)

Phillips et al. (2017)
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Screening for Alternatives By 
Function and Bioactivity

Probability 
of Chemical 
Performing 

Same 
Function

Phillips et al. (2017)
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Lower 
Bioactivity 

Metric?

Phillips et al. (2017)

Screening for Alternatives By 
Function and Bioactivity
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“I’m searching for my keys.”

 Models present one way forward, but new 
analytic techniques may also allow insight in to 
chemicals composition of products and the 
greater environment

 EPA is coordinating a comparison of non-
targeted screening workflows used by leading 
academic and government groups (led by Jon 
Sobus and Elin Ulrich)
• Examining house dust, human plasma, and 

silicone wristbands (O’Connell, et al., 2014)
• Similar to NORMAN Network (Schymanski 

et al., 2015) analysis of water
 Published analysis on house dust (Rager et al., 

2016)

Non-Targeted and Suspect-
Screening Analysis

 100 consumer products from a major U.S. retailer were 
analyzed, tentatively identifying 1,632 chemicals, 1,445 which 
were not in EPA’s database of consumer product chemicals 
(Phillips et al., submitted)
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Suspect Screening Example:
House Dust

M
as

s

Retention Time

947 Peaks in an American Health Homes Dust 
Sample

We are expanding our reference libraries using ToxCast chemicals to enable greater numbers 
and better accuracy of confirmed chemicals

See Rager et al., (2016)

Each peak corresponds to a 
chemical with an accurate mass 
and predicted formula:

Multiple chemicals can have the 
same mass and formula:

Is chemical A present, 
chemical B, both, or some 
other chemical (neither)?

C17H19NO3
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“As chemists we are obliged to accept the assignment of barium to the observed 
activity, but as nuclear chemists working very closely to the field of physics we 
cannot yet bring ourselves to take such a drastic step, which goes against all 
previous experience in nuclear physics. It could be, however, that a series of strange 
coincidences has misled us.”

Hahn and Strassmann (1938)

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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“As chemists we are obliged to accept the assignment of barium to the observed 
activity, but as nuclear chemists working very closely to the field of physics we 
cannot yet bring ourselves to take such a drastic step, which goes against all 
previous experience in nuclear physics. It could be, however, that a series of strange 
coincidences has misled us.”

Hahn and Strassmann (1938)

1944 Nobel Prize in Chemistry for “discovery of the fission of heavy nuclei"

Appropriate Skepticism for Non-Targeted 
Analysis and Suspect Screening
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Measuring Chemicals in Household Items

Log10(µg/g)

The chemicals 
found in a 
cotton shirt

Phillips et al. (submitted)
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Measuring Chemicals in Household Items

Chemicals that are present

Chemicals that are absent (but found in other products)

Phillips et al. (submitted)

Log10(µg/g)
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Measuring Chemicals in Household Items

The chemicals 
found in a 
cotton shirt

Phillips et al. (submitted)

Log10(µg/g)
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Measuring Chemicals in Household Items

Phillips et al. (submitted)

Log10(µg/g)
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Product Scan Summary
Of 1,632 chemicals confirmed or tentatively identified, 1,445 were 
not present in CPCPdb (Goldsmith, et al., 2015)

Phillips et al. (submitted)
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Predicting Chemical Function

Using the methods of Phillips et al., (2017):

Phillips et al. (submitted)
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Caveats to Non-Targeted 
Screening

• Chemical presence in an object does not mean that exposure occurs
• Only some chemical identities are confirmed, most are tentative

• Can use formulation predictor models as additional evidence
• Chemical presence in an object does not necessarily mean that it is bioavailable

• Can build emission models
• Small range for quantitation leads to underestimation of concentration
• Product de-formulation caveats:

• Samples are being homogenized (e.g., grinding) and are extracted with a 
solvent (dichloro methane, DCM)

• Only using one solvent (DCM, polar) and one method GCxGC-TOF-MS
• Varying exposure intimacy, from carpet padding to shampoo to cereal

• Exposure alone is not risk, need hazard data
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High Throughput Toxicokinetics 
(HTTK)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

Toxicokinetics (TK) describes 
the Absorption, Distribution, 
Metabolism, and Excretion 
(ADME) of a chemical by the 
body

TK relates external 
exposures to internal 

tissue concentrations of 
chemical
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Figure from Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals

High-Throughput Toxicokinetics 
(HTTK)
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Measurements require chemical-
specific methods for concentration

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps 
• In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 

concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
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Wambaugh et al. 
(2015)

• When we compare the Css predicted 
from in vitro HTTK with in vivo Css
values determined from the 
literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 

• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured and 
predicted values (the residual)

Evaluating Predictions of Steady-State 
Plasma Concentration (Css)
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Predicting Error in HTTK Predictions

 For most compounds in the environment 
there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get 

empirical estimates of HTTK 
uncertainty

 Any approximations, omissions, or 
mistakes should work to increase the 
estimated uncertainty when evaluated 
systematically across chemicals

 Through comparison to in vivo data, a 
cross-validated (Random Forest, Breiman, 
2001) predictor of success or failure of 
HTTK has been constructed

 We also have categories for chemicals 
that do not reach steady-state or for 
which plasma binding assay fails

Error in Css

Wambaugh et al., 2015
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Chemicals with HTTK Data

0 100 200 300 400 500 600

Existing Human data

Existing Rat data

Anticipated Human

Anticipated Rat

Chemicals with HTTK Data

Rotroff et al. 2010

Wetmore et al. 2012

Tonnelier et al. 2012

Wetmore et al. 2013

Wetmore et al. 2015

ToxCast/ExpoCast

• Measurement of in vitro clearance and binding both require chemical-specific 
analytical chemistry methods – these can be difficult to develop

• Methods are appropriate for chemicals that are soluble, non-volatile only
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ToxCast 
chemicals with 
ER Agonist Assay 
Activity (2636)

Chemicals with 
HTTK Data (543)

Chemicals with Exposure 
Estimates (7969)

5351

2094

251

273

269

19

Predicting Critical TK Parameters

• Two parameters currently are 
key to HTTK model:

• Plasma protein binding (PPB)
• Hepatic clearance 

(metabolism)

• Ingle et al. (2016) developed 
PPB model for environmental 
chemicals

• If a hepatic clearance model 
can be developed we can 
provide tentative TK 
predictions for thousands of 
more chemicals

Figure from 
Dustin 

Kapraun
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Using Predicted HTTK 
for Risk Prioritization

Doses ranges for all 3925 Tox21 
compounds eliciting a ‘possible’-

to-‘likely’ human in vivo
interaction alongside estimated 

daily exposure

56 compounds with 
potential in vivo biological 

interaction at or above 
estimated environmental 

exposures

Sipes et al., (2017)

Sipes et al. used Simulations Plus ADMET Predictor to make in silico predictions of 
metabolism and protein binding:
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Life-stage and Demographic Specific 
Predictions

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population
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Conclusions

National Academy of Sciences, January, 2017:
“Translation of high-throughput data into risk-based rankings 
is an important application of exposure data for chemical 
priority-setting. Recent advances in high-throughput toxicity 
assessment, notably the ToxCast and Tox21 programs… and 
in high-throughput computational exposure assessment… 
have enabled first-tier risk-based rankings of chemicals on 
the basis of margins of exposure…”

• We would like to know more about the risk posed by thousands of chemicals in the 
environment – which ones should we start with?

• High throughput screening (HTS) provides a path forward for identifying 
potential hazard

• Using big data analytics we can identify priority combinations of chemicals
• Using in vitro methods developed for pharmaceuticals, we can relatively efficiently 

predict TK for large numbers of chemicals, but we are limited by analytical chemistry
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