

Retrofitting High-Throughput In Vitro Assays for Metabolic Competence

Steven O. Simmons and Danica E. DeGroot

The views expressed in this presentation are those of the author[s] and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Office of Research and Development National Center for Computational Toxicology EDSP Workgroup 14 November 2017

Why is Metabolic Competence Important for *in vitro* Assays?

Existing *in vitro* assays have <u>limited or no metabolic capacity</u>. This leads to two problems:

1. Overestimation of chemical hazard *in vitro* if the parent compound is detoxified to a less toxic or non-toxic metabolite *in vivo*

Example: Coumarin

2. Underestimation of chemical hazard *in vitro* if the parent compound is activated to a more toxic metabolite *in vivo*

Two Scenarios- Two Strategies for Retrofitting

"Extracellular" Strategy

- Capable of metabolizing chemicals in the media or buffer of cell-based and cell-free assays
- More closely models hepatic metabolism and effects of circulating metabolites

"Intracellular" Strategy

- Capable of metabolizing chemicals inside the cell for cell-based assays
- More closely models effects of direct-acting metabolites

Intracellular Metabolism

- Introducing xenobiotic-metabolizing enzyme (XME)encoding genes back into cells with low/no expression is not a new idea
- Plasmid transfection, electroporation, and various viral vectors introduce XME-encoding genes (DNA) back into cells under control of gene promoters that drive strong expression (transcription)
- Transcription levels vary greatly between cell types and tightly controlled co-expression genes is difficult
- Transfection of XME-encoding mRNAs is a novel approach that bypasses cellular transcription
- Chemically-modified nucleotides and cap eliminate the toxicity traditionally seen with RNA transfection
- Rapid XME expression and permits user to define composition and ratios of input mRNAs
- Method development focused on cytochrome P450 (CYP) enzymes, responsible for Phase I metabolism

P450-Glo Assay Principle

CYP Genes Are Not Expressed in Immortalized Cells

- Immortalized Human Kidney Epithelial Cells (HEK293T)
- 25,000 cells/well in 384-well plates
- Luminescent CYP3A4 substrate (Luciferin-IPA)
- Standard RNA transfection protocol (no prior optimization)
- 25ng mRNA per well
- Luciferin-IPA added 6 hours post-transfection
- 12 hour metabolism
- HEK293T cells have no intrinsic CYP3A4 activity (black)
- Simply introducing CYP3A4-encoding mRNA into these cells generates robust CYP3A4 activity

P450 Oxidoreductase Co-expression

- POR required for the electron transfer from NADPH to cytochrome P450 enzymes in ER
- 12.5ng CYP3A4 mRNA per well
- 0.0125 12.5ng POR mRNA per well cotransfected
- β-galactosidase mRNA (negative control) added to ensure total 25ng mRNA input to all wells
- Endogenous POR levels in HEK293T are ratelimiting
- Co-transfecting POR-encoding mRNA at 4% relative to CYP3A4 mRNA increased CYP3A4 activity by 34%
- The returns on POR mRNA compositions > 4% relative to CYP3A4 quickly diminish
- This 24:1 CYP:POR ratio would be very difficult to achieve with traditional gene overexpression methods

mRNA Transfection Optimization

Co-Expression of CYP mRNAs

- Ectopic CYP expression can exhaust cellular resources
- What happens to activity of CYP A when coexpressed with increasing amounts of CYP B?
- 13ng CYP3A4 mRNA + 2ng POR per well
- 27% of total CYP payload ~ human liver
- 0.132 35ng CYP2C9 mRNA per well cotransfected
- β-galactosidase mRNA (negative control) added to ensure total 50ng mRNA input to all wells
- Co-transfecting CYP2C9-encoding mRNA adversely impacts CYP3A4 activity by as CYP2C9 mRNA levels reach parity
- There is a 21% activity penalty for CYP3A4 when co-expressed with other CYP mRNAs at human liver ratios

Characterizing a Panel of CYP Enzymes

- With optimization complete, next was to characterize the activity of the 10 most prevalent CYPs in human liver identified through a meta-analysis of over 700 subjects:
 - **CYP1A2** CYP2C19
 - **CYP2A6** CYP2D6
 - CYP2B6
 - CYP2C8
 - CYP2C9

CYP2J2 CYP3A4

CYP2E1

- Each CYP was characterized as:
 - Singlet (96% CYP + 4% POR)
 - CYP_mix (liver % CYP + β-gal)
 - Liver_mix (all 10 CYPs @ liver %)

Time Course of CYP Activity

Time Course of CYP Activity (con't)

Time Course of CYP Activity (con't)

Benchmark Substrate Studies

Benchmark Substrate Studies (con't)

Comparison to "Gold-Standard" Cell Models

Deployment to Cell-Based Assays

- mRNA transfection retrofits CYP-deficient cell model with robust CYP activity
- Onset of CYP activity is rapid (~6 hours post-transfection) and is sustained for at least 18 hours
- CYP activities produce predicted metabolites and at rates > than HepaRG and SC-PHH models, even when handicapped by HTS sonditions
- What happens when we couple this method with a cell-based assay? Are there any CYP-dependent shift in bioactivity?
- HEK293T cells transfected with 10 x CYP singlets, Liver mix, and β-gal control
- Cells treated with 56 test compounds at 11 concentrations with randomized dispense pattern using acoustic liquid handler → randomization minimizes impact of "edge effect" observed with long assay durations
- 32 hour exposure
- Cytotoxicity measured using Cell Titer Glo[™] Assay

Cytotoxicity Screening Results

Cytotoxicity Screening Results (con't)

Cytotoxicity Screening Results (con't)

Cytotoxicity Screening Results (con't)

What Have We Learned???

- We did not observe much detoxification with CYP expression, which is odd considering the role metabolism plays in toxicokinetics
- Why???

Metabolite Formation vs. Parent Depletion

Metabolite Formation vs. Parent Depletion (con't)

What Have We Learned???

- We did not observe much detoxification with CYP expression, which is odd considering the role metabolism plays in toxicokinetics
- Why???
- It seems to be easier to detect potent metabolites than to appreciably clear toxic parents
- This also assumes that the metabolites of toxic parents are themselves not toxic
- Faster clearance will at some point be hampered by DMSO concentrations

Km, Vmax, and Cytochrome P450s vs. DMSO levels

Velocity vs. [Substrate]

Metabolic reaction velocity is a function of substrate • concentration.

Testing at higher concentrations quickly becomes an issue ۲ because DMSO (library solvent) inhibits CYP activity.

> ↑[DMSO] \downarrow CYP activity

What Have We Learned???

- We did not observe much detoxification with CYP expression, which is odd considering the role metabolism plays in toxicokinetics
- Why???
- It seems to be easier to detect potent metabolites than to appreciably clear toxic parents
- This also assumes that the metabolites of toxic parents are themselves not toxic
- Faster clearance will at some point be hampered by DMSO concentrations
- Cytotoxicity is the "wrong" assay to look for bioactivated metabolites
- There is no single "typical" human liver with respect to CYP expression, there are at least five (Slatter et al., 2006)
- mRNA transfections do provide a method to imbue deficient cell models with robust XME activity
- mRNA mix can be tightly controlled in ways alternative gene delivery methods cannot
- Rapid expression ideal for HTS applications in high-density, multi-well plates with low working volumes (10-80 μl) where time (e.g.evaporation) is critical
- Very cost-effective → Less than \$20 total per 384-plate (\$0.05 per well) at pilot scale synthesis

Acknowledgements

<u>NCCT</u> Rusty Thomas

NHEERL/NERL

Adam Swank Mark Strynar

