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Fingerprints
1. Unsupervised 80% 
variance threshold
2. Collinearity 80% 
threshold
Rat: 881 -> 39 bits
Mouse: 881 -> 44 bits

Descriptors
1. Supervised 
recursive feature 
elimination using 
linear regression
18 -> 5 descriptors

AL
G

O
RI

TH
M

1. k nearest 
neighbors (kNN)
2. Support vector 
regression (SVR)
3. Random forest 
(RF)
4. Gradient boosting 
regression (GBR) H
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GridSearchCV

1. kNN: k, 
weights, 
algorithm
2. SVR: Epsilon, C, 
gamma, kernel
3. RF: Max 
features, N trees
4. GBR: N trees, 
max depth, loss 
function, learning 
rate
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Internal 
validation
5-fold internal CV 
on 80% training 
set

External 
validation
20% test set

µ = 1.31
σ = 0.82

µ = 1.32
σ = 0.80
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Human health risk assessment associated with environmental chemical exposure is limited by the 
tens of thousands of chemicals little or no experimental in vivo toxicity data. Data gap filling 
techniques, such as quantitative structure activity relationship (QSAR) models based on chemical 
structure information, are commonly used to predict hazard in the absence of experimental data. 
This study presents a set of QSAR models developed using chemical structural and physicochemical 
properties for chronic or sub-chronic in vivo points of departure (POD, the point on the dose-
response that marks the beginning of a low-dose extrapolation). The in vivo data is taken from the 
EPA’s ToxValDB, a compilation of information on ~3000 unique chemicals from a variety of public data 
sources. These models will inform chemical screening and prioritization efforts. 

DATA PREPARATION

1. Point-estimate 
models

• Regression models were built to predict a POD value for each chemical
• Experimental POD = Minimum POD value 

2. Point-estimate, 
balanced-dataset 
models

• The training data was re-constructed to reduce skewness by adding 10% 
duplicate data from the long tail

• Regression models were built to predict a POD value for each chemical 
using the re-constructed data

• Experimental POD = Minimum POD value

3. Point-estimate with 
confidence interval 
models

• A POD distribution was constructed for each chemical using mean = 
experimental POD value (= Median POD value) and standard deviation = 0.5 
log-units, based on the typical lab to lab variability

• Bootstrap models were built with random sampling of POD values for each 
chemical from the pre-generated POD distribution

1.  Experimental Variability
• Data from different labs (sources) running 

the “same” experiment may get different 
answers 

• Sources of variability: Species, strain, dose 
range, dose spacing, length of study etc. 

TYPES of MODELS

2.  Model Uncertainty
• A model gives a result (a POD), but this is an 

estimate of the “true” POD. We are 
uncertain about what the true POD is 

• Uncertainty in the evaluation data will lead 
to uncertainty in the model and our estimate 
of its quality

METHODS
Transform           

PODtr = Log10(POD)

Split Dataset 

Training = 80%
Test = 20%

Figure 2: The POD values were log-transformed for both rat and mouse 
datasets. (a) Histogram of untransformed POD data, (b) Histogram of 
transformed POD (PODtr) data, and (c) Histogram of training and test data 
relative to each other. 
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risk_assessment_class
=[chronic, subchronic]

toxval_units = mg/kg-day

toxval_type != [RfD, RfC]

use_me > 1

species = [rat, mouse]
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Figure 1: Schematic of data selection for 
modeling purposes from the ToxValDB. The 
final dataset for rat data is N = 1691 and 
mouse data is N = 668. 

Figure 3: Distribution of the range of POD values 
for the rat and mouse dataset. Variability in 
experimental data leads to uncertainty in the 
model predictions. Roughly, the root mean squared 
error (RMSE) in the models can be estimated to be 
around 1.15 (√1.31) for rat and 1.15 (√1.32) for 
mouse models.

MOLECULAR FEATURES 
• PubChem fingerprints (881 bits)
• Chemistry development kit (CDK) 

descriptors (18)

RESULTS

1. Point-estimate 
models

Random Forest
Hyper-parameters

5-fold Internal Cross-
validation External Validation

RMSE RMSE/σ R2 RMSE RMSE/σ R2

Rat Max features = sqrt
Number of trees = 1000 0.98 0.84 0.29 1.13 0.76 0.25

Mouse Max features = sqrt
Number of trees = 1000 0.97 0.88 0.23 0.97 0.83 0.30

Figure 3: Plots of observed versus predicted POD values (transformed scale) for the best rat and mouse model (random forest 
model) for 5-fold internal cross validation (red scatter plots) and external validation (green scatter plots).

RAT MOUSE

Skew = -0.55
µ = 1.16
σ = 1.20

Skew = -0.33
µ = 1.40
σ = 1.11

Given the variability and skewness in the training dataset, 3 types of models were developed:

2. Point-estimate, 
balanced-dataset
models

Random Forest
Hyper-parameters

5-fold Internal Cross-
validation External Validation

RMSE RMSE/σ R2 RMSE RMSE/σ R2

Rat Max features = sqrt
Number of trees = 1000 0.98 0.84 0.29 1.13 0.76 0.25

Mouse Max features = sqrt
Number of trees = 1000 0.93 0.84 0.29 0.86 0.79 0.39

Figure 3: Plots of observed versus predicted POD values (transformed scale) for the best rat and mouse model (random forest 
model) for 5-fold internal cross validation (red scatter plots) and external validation (green scatter plots).

RAT MOUSE

Table 1: Performance metrics for the point-estimate models for 5-fold internal cross validation and external validation. 

Table 2: Performance metrics for the point-estimate balanced-dataset models for 5-fold internal cross validation and external 
validation. 

Figure 5: Sample histogram of re-
constructed data for (a) rat and (b)
mouse. Total number of samples in
the re-constructed training dataset
for rat data is N = 1860 and mouse
data is N = 734.

Randomly sample 
10% data from the 
long tail and add as 

duplicate data to get
a new distribution

(b)(a)

Figure 3: Plots of observed versus predicted POD values for the best rat and mouse model (random forest model) for 5-fold 
internal cross validation (red scatter plots) and external validation (green scatter plots) with 95% confidence intervals.

2. Point-estimate, balanced-dataset models

3. Point-estimate with confidence interval models

1. Point-estimate models

Illustrative example: Bisphenol A (Rat)
DTXCID30182     40.0
DTXCID30182     40.0
DTXCID30182    200.0
DTXCID30182    200.0
DTXCID30182     37.5
DTXCID30182     50.0
DTXCID30182      5.0
DTXCID30182     50.0
DTXCID30182     50.0
DTXCID30182      5.0
Median POD = 45

POD Distribution

...

...
Sample POD from 
the distribution 

for each 
bootstrap model

PODn

POD1

Point-estimate 
(=mean) 

+ 
Confidence 

Interval

Bootstrap Model 1
Bootstrap Model 2
Bootstrap Model 3

...

...

...

...
Bootstrap Model n

Prediction 1 
Prediction 2 
Prediction 3

…
...
…
…

Prediction n

RAT MOUSE

Summary: Three types of rat and mouse predictive models were developed using chemical structural 
and physicochemical properties for chronic and sub-chronic in vivo points of departure. 

Future work: (1) Add study parameters as model descriptors to account for additional lab-to-lab data 
variability (Species, strain, study duration, exposure route), and (2) Re-construct datasets to reduce 
sampling by sampling equally from both tails (and not duplicate data).

Disclaimer: The views expressed are those of the 
authors and do not necessarily reflect the views or 
policies of the U.S. Environmental Protection Agency.

Skew = -0.46 
µ = 1.07
σ = 1.19

Skew = -0.22
µ = 1.32
σ = 1.10

Skew = -0.55
µ = 1.16
σ = 1.20
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