

Moving Towards an Integrated Alternative Testing Paradigm to Identify Carcinogenic Hazards

ToxForum Winter Meeting January 29, 2018

Rusty Thomas Director National Center for Computational Toxicology

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Predicting Chemical Carcinogenesis is a Tall Order

Relevance: High Amt of Data: Low

Relevance: Low Amt of Data: High

Limited Predictivity Across Species

N = 259 compounds tested in both s	exes: all tur	10r outcomes ^a					
		Carcinogenici	ty in rat (test)				
		Positive	Negative	% Positive Prevalence	39	% Negative Prevalence	6
Carcinogenicity in mouse (outcome)	Positive	53	47	% Specificity	68	% Sensitivity	5
	Negative	51	108	% Positive predictivity	51	% Negative predictivity	7
				% Added to positive prevalence	12	% Added to negative prevalence % Exclusion	6
		Carcinogenicity	in mouse (test)				
		Positive	Negative	% Positive Prevalence	40	% Negative Prevalence	6
Carcinogenicity in rat (outcome)	Positive	53	51	% Specificity	70	% Sensitivity	5
	Negative	47	108	% Positive predictivity	53	% Negative predictivity	6
				% Added to positive prevalence	13	% Added to negative prevalence	
N = 259 compounds tested in both s	exes: only m	alignant tumor	outcomes ^a			% Exclusion	6
N = 259 compounds tested in both s	exes: only m	Carcinogenici	ty in rat (test)	% Positive Prevalence	21		
		Carcinogenici Positive	ty in rat (test) Negative	% Positive Prevalence		% Negative Prevalence	6 7 1
	Positive	Carcinogenicit Positive 10	ty in rat (test) Negative 44	% Specificity	87	% Negative Prevalence % Sensitivity	7
		Carcinogenici Positive	ty in rat (test) Negative	% Specificity % Positive predictivity	87 28	% Negative Prevalence <mark>% Sensitivity</mark> % Negative predictivity	7
	Positive	Carcinogenicit Positive 10	ty in rat (test) Negative 44	% Specificity % Positive predictivity	87 28	% Negative Prevalence <mark>% Sensitivity</mark> % Negative predictivity % Added to negative prevalence	712
N = 259 compounds tested in both s Carcinogenicity in mouse (outcome)	Positive Negative	Carcinogenici Positive 10 26	ty in rat (test) Negative 44 179	% Specificity % Positive predictivity	87 28	% Negative Prevalence <mark>% Sensitivity</mark> % Negative predictivity	7
	Positive Negative	Carcinogenicit Positive 10	ty in rat (test) Negative 44 179 r in mouse (test)	% Specificity % Positive predictivity	87 28 7	% Negative Prevalence % Sensitivity % Negative predictivity % Added to negative prevalence % Exclusion	718
- Carcinogenicity in mouse (outcome)	Positive Negative	Carcinogenicit Positive 10 26 Carcinogenicity	ty in rat (test) Negative 44 179	 % Specificity % Positive predictivity % Added to positive prevalence % Positive Prevalence 	87 28 7 14	% Negative Prevalence % Sensitivity % Negative predictivity % Added to negative prevalence % Exclusion % Negative Prevalence	718
- Carcinogenicity in mouse (outcome)	Positive Negative Positive	Carcinogenicit Positive 10 26 Carcinogenicity Positive	ty in rat (test) Negative 44 179 r in mouse (test) Negative	 % Specificity % Positive predictivity % Added to positive prevalence % Positive Prevalence % Specificity 	87 28 7 14 80	% Negative Prevalence % Sensitivity % Negative predictivity % Added to negative prevalence % Exclusion % Negative Prevalence % Sensitivity	7
	Positive Negative	Carcinogenicit Positive 10 26 Carcinogenicity Positive 10	ty in rat (test) Negative 44 179 ' in mouse (test) Negative 26	 % Specificity % Positive predictivity % Added to positive prevalence % Positive Prevalence % Specificity % Positive predictivity 	87 28 7 14 80 19	% Negative Prevalence % Sensitivity % Negative predictivity % Added to negative prevalence % Exclusion % Negative Prevalence	

chemical prior to expert committee review by the U.S. EPA Office of Pesticide Programs.

^aThere were 259 total chemicals in ToxRefDB with carcincogenicity study data in both species and sexes.

Limited Predictivity Across Time

		Subchronic eff	ect in rat (test)			
		Positive	Negative	% Positive Prevalence	43 % Negative Prevalence	57
Carcinogenicity in rat (outcome)	Positive	43	29	% Specificity	53 % Sensitivity	60
	Negative	46	51	% Positive predictivity	48 % Negative predictivity	64
				% Added to positive prevalence	6 % Added to negative prevalence	6
					% Exclusion	47
N = 175 compounds tested in rat su	ıbchronic an	d mouse carcin	ogenicity studi	25 ^b		
		Subchronic eff	ect in rat (test)			
		Positive	Negative	% Positive Prevalence	31 % Negative Prevalence	69
Carcinogenicity in mouse (outcome)) Positive	40	15	% Specificity	42 % Sensitivity	73
	Negative	70	50	% Positive predictivity	36 % Negative predictivity	77
				% Added to positive prevalence	5 % Added to negative prevalence	8
					% Exclusion	37
N = 147 compounds tested in rat su	ıbchronic an	d both rat and	mouse carcinog	genicity studies ^c		
		Subchronic eff	ect in rat (test)			
		Positive	Negative	% Positive Prevalence	54 % Negative Prevalence	46
Carcinogenicity in rat or mouse	Positive	52	27	% Specificity	50 % Sensitivity	66
(outcome)	Negative	34	34	% Positive predictivity	60 % Negative predictivity	56
				% Added to positive prevalence	7 % Added to negative prevalence	9
					% Exclusion	44

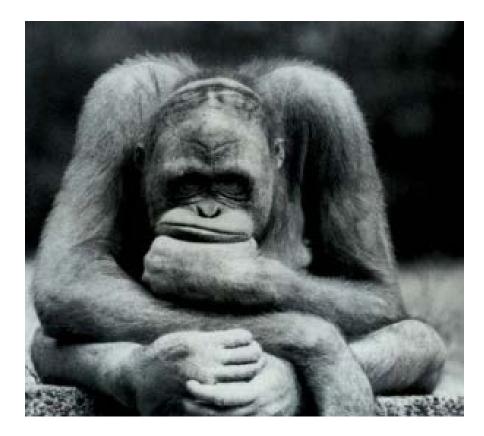
analysis.

^bThere were 186 chemicals with rat subchronic and mouse carcinogenicity study data in ToxRefDB. Dose exclusion criteria eliminated 11 chemicals, leaving 175 chemicals for analysis.

°There were 184 chemicals with rat subchronic and both rat and mouse carcinogenicity study data in ToxRefDB. Dose exclusion criteria eliminated 37 chemicals, leaving 147 chemicals for analysis.

Limited Reproducibility Between Studies

	Carcinogen ^a	Noncarcinogen ^b	Inadequate ^c	Literature
Carcinogen ^a	39	13	1	53
Noncarcinogen ^b	20	30	0	50
nadequate	10	8	0	18
NCI/NTP	69	51	1	121


Gottmann et al., Env Hlth Perspect 2001

In ToxRefDB, 16 chemicals were run in repeat carcinogenicity studies for rat and mouse. Concordance for any tumor outcome was 69% (11/16 chemicals) for rat and 63% (10/16 chemicals) for mouse repeat studies.

Hill et al., Tox Sci 2017

So Now What...

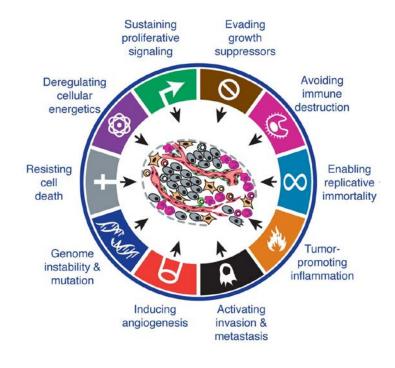
National Center for Computational Toxicology

Are Mechanistic and *In Vitro* Approaches the Answer?

Characteristic

2. Is genotoxic

stress alone.


1. Is electrophilic or can be

metabolically activated

 Alters DNA repair or causes genomic instability

4. Induces epigenetic alterations

5. Induces oxidative stress

	Elevated white blood cells, myeloperoxidase activity, altered cytokine and chemokine production
7. Is immunosuppressive	Decreased immunosurveillance, immune system dysfunction
8. Modulates receptor-mediated effects	Receptor in/activation (e.g., ER, PPAR, AhR) or modulation of endogenous ligands (including hormones)
9. Causes immortalization	Inhibition of senescence, cell transformation
10. Alters cell proliferation, cell death or nutrient supply	Increased proliferation, decreased apoptosis, changes in growth factors, energetics and signaling pathways related to cellular replication or cell cycle control, angiogenesis

(a. a. DNIA linida)

Examples of relevant evidence

Parent compound or metabolite with an electrophilic structure (e.g., epoxide,

Alterations of DNA replication or repair (e.g., topoisomerase II, base-excision

DNA damage (DNA strand breaks, DNA-protein cross-links, unscheduled

DNA synthesis), intercalation, gene mutations, cytogenetic changes

Oxygen radicals, oxidative stress, oxidative damage to macromolecules

DNA methylation, histone modification, microRNA expression

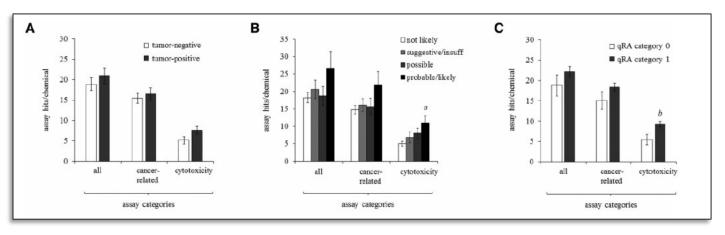
guinone), formation of DNA and protein adducts

(e.g., chromosome aberrations, micronuclei)

or double-strand break repair)

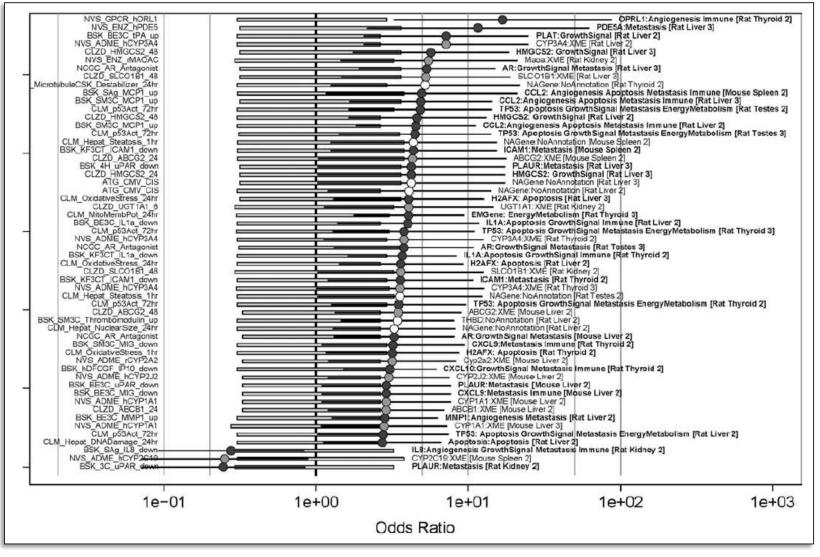
Hanahan and Weinberg, Cell 2011

Smith et al., Env HIth Perspect 2016

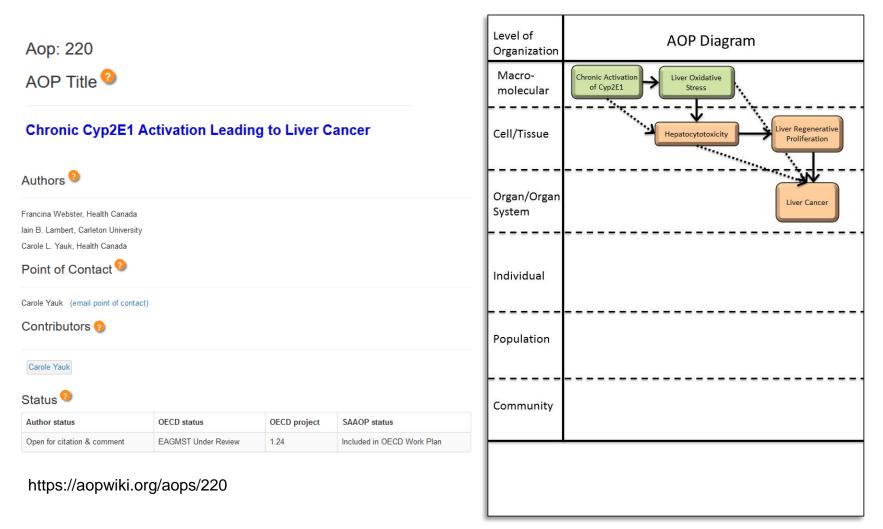

Table 1. Key characteristics of carcinogens.

EPA United States Environmental Protection Agency Machine Learning and Simple Hit Counts of *In Vitro* Assays Do Not Seem Promising

Richard A. Becker ^{a, *}, David A. Dreier ^b, Mary K. Manibusan ^c, Louis A. (Tony) Cox ^d, Ted W. Simon ^e, James S. Bus ^f

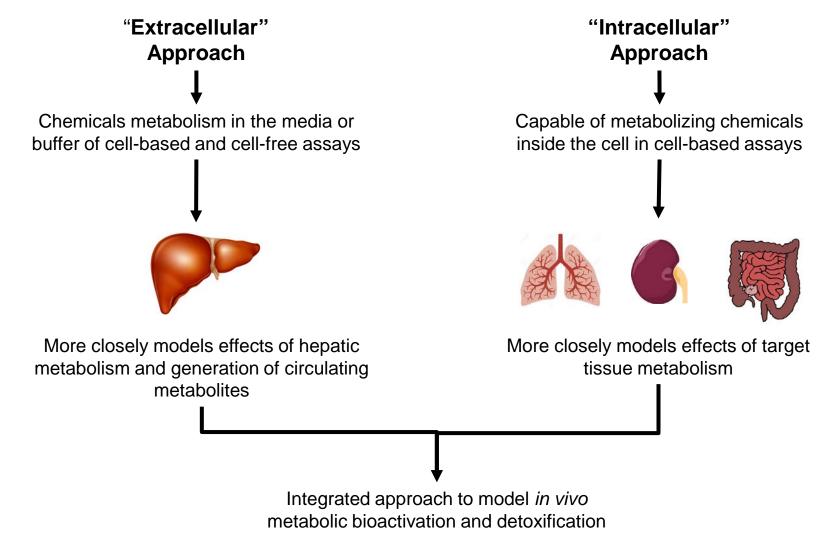

"Using the same assignments as IARC of ToxCast/Tox21 assays to the seven key characteristics of carcinogens, the ability to predict cancer hazard for each key characteristic, alone or in combination, was found to be no better than chance."

Hill et al., Tox Sci 2017


Analyzing Individual Assays in Terms of Relative Risk Provides More Nuance

National Center for Computational Toxicology Kleinstruer et al., Tox Sci 2013

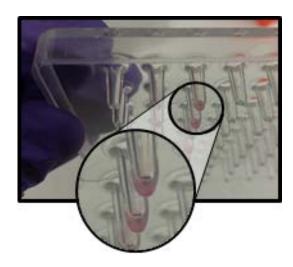
But, a Knowledge Based Approach May Ultimately Prove More Useful



Current In Vitro Assays Also Have Limitations Impacting Cancer Hazard Predictivity

- Limited or lack of relevant metabolism
- Incomplete coverage of important pathways (i.e., biological space)
- Limited higher order biological interactions (i.e., cell-cell, tissue, and organ-level)
- Limited chemical domain of applicability (e.g., volatiles, high logP)

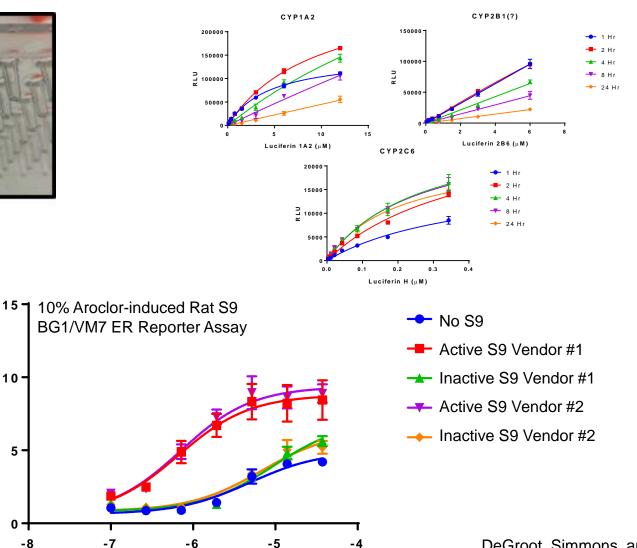
Current Strategy to Address Metabolic Competence



Extracellular Approach Shows Bioactivation In ER Assay

-6

Log Methoxychlor (M)


Induction

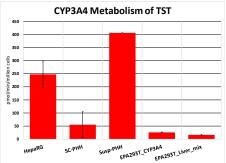
Fold

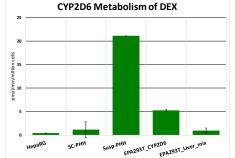
10

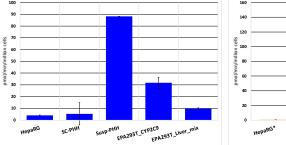
5.

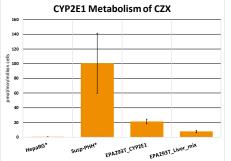
0 --8

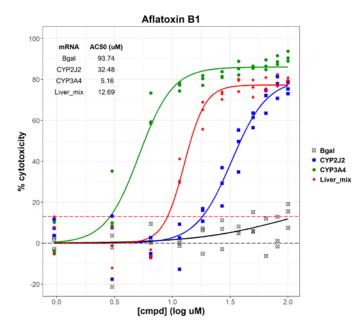
-4

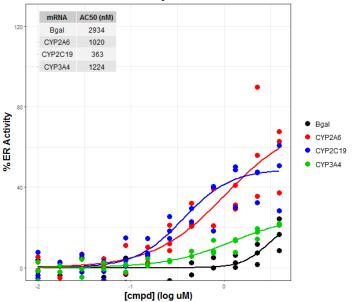

DeGroot, Simmons, and Deisenroth, Unpublished


National Center for Computational Toxicology

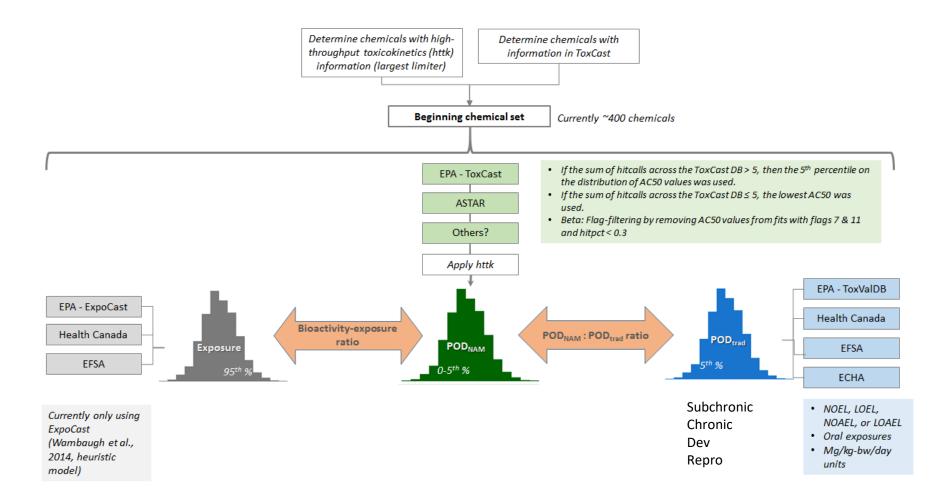



Intracellular Approach Shows Bioactivation in ER and Cytotox Assays


CYP2C9 Metabolism of DCF



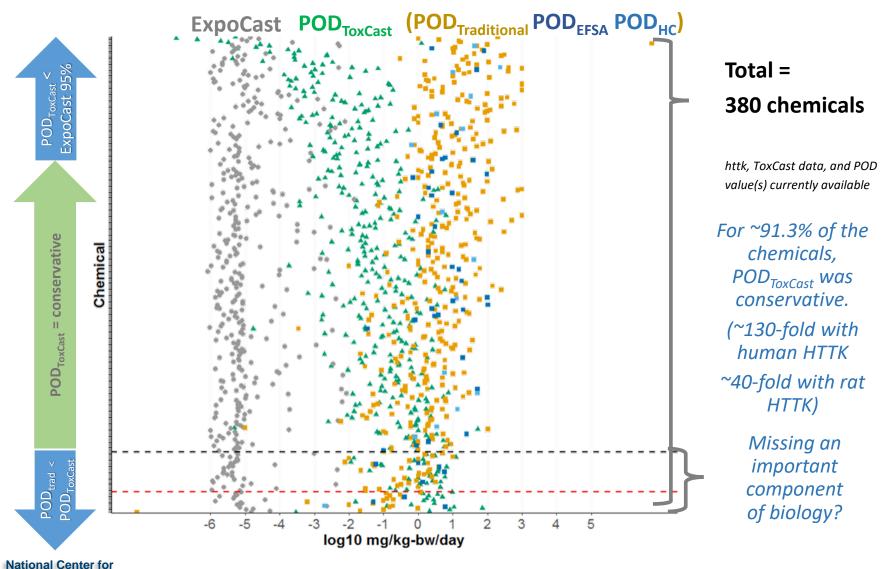
Methoxychlor



National Center for Computational Toxicology

Simmons et al., Unpublished

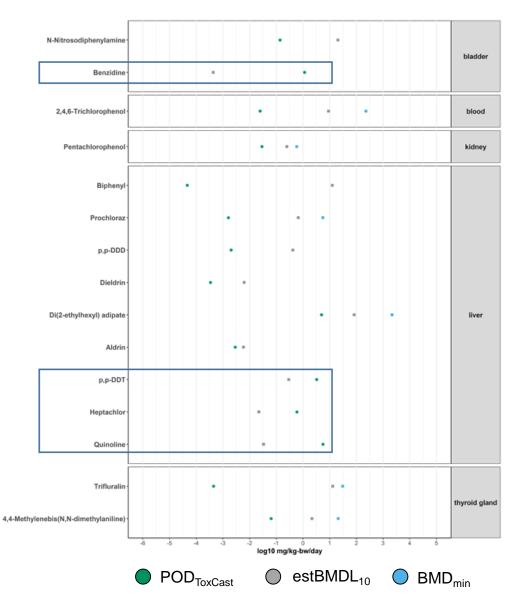
What About Aiming for Protection Instead of Prediction?


Paul-Friedman, Unpublished

Collaboration with ECHA, EFSA, Health Canada, A*STAR, JRC, EPA

National Center for Computational Toxicology

Bioactivity Provides a Conservative Estimate of a NOAEL/LOAEL



Computational Toxicology

Is Bioactivity a Conservative Estimate for Cancer Responses?

- Chemicals with cancer slope factor from the IRIS program, and have httk and ToxCast data (15 chemicals)
- estBMDL10 = 0.1/cancer slope factor in mg/kg-day⁻¹
- minBMD = for a subset of the chemicals where available, the min(BMD) value from any effect data in ToxRefDB that was BMDS-amenable (6/15)
- POD_{ToxCast} < estBMDL10 (11/15 chems)

Take Home Messages...

- The <u>prediction</u> of cancer hazard is confounded by limited data in relevant species
- Using rodent cancer bioassay data as a benchmark is confounded by significant cross-species differences, temporal dependence, and limited reproducibility
- Mechanistic approaches that use machine learning and simple assay count methods have shown little promise to predict cancer hazard
- Limitations in current *in vitro* assays related to cancer mechanisms are being addressed (e.g., metabolic competence)
- Estimating <u>protective</u> doses based on relevant biological activity may provide a feasible path forward for application to cancer risk assessment

Acknowledgements and Questions

Tox21 Colleagues: NTP FDA NCATS

EPA Colleagues: NERL NHEERL NCEA

Collaborative Partners: Unilever A*STAR ECHA EFSA Health Canada **EPA's National Center for Computational Toxicology**

