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IS a Tall Order

Relevance: High
Amt of Data: Low

Relevance: Low
Amt of Data: High
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Species

TABLE 2. Predictive Value of Carcinogenidty Study Outcomes between Species

N =259 compounds tested in both sexes: all tumor outcomes®

Carcnogenicity in rat (test)

Positive Negative % Positive Prevalence 39 % Negative Prevalence 61
Carcinogenicity in mouse (outcome) Positive 53 47 % Specifidty 68 % Sensitivity 53
Negative 51 108 % Positive predictivity 51 % Negative predictivity 70
% Added to positive prevalence 12 % Added to negative prevalence 9
% Exclusion 60
Carcinogenicity in mouse (test)
Positive Negative % Positive Prevalence 40 % Negative Prevalence 60
Carcinogenicity in rat (outcome) Positive 53 51 % Specifidty 70 % Sensitivity 51
Negative 47 108 % Positive predictivity 53 % Negative predictivity 68
% Added to positive prevalence 13 % Added to negative prevalence 8
% Exclusion 61

N =259 compounds tested in both sexes: only malignant tumor outcomes®

Caranogenicity in rat (test)

Positive Negative % Positive Prevalence 21 % Negative Prevalence 79
Carcinogenicty in mouse (outcome) Positive 10 S % Specihiaty 87 % Sensitivity 19
Negative 26 179 % Positive predictivity 28 % Negative predictivity 80
% Added to positive prevalence 7 % Added to negative prevalence 1
% Exclusion 86
Carcimogenicity in mouse (test)
Positive Negative % Positive Prevalence 14 % Negative Prevalence 86
Carcinogenicity in rat (outcome) Positive 10 26 % Speciiaty 80 % Sensitivity 28
Negative 44 179 % Positive predictivity 19 % Negative predictivity 87
% Added to positive prevalence 5 9% Added to negative prevalence 1
% Exclusion 79

Carcinogenicity study data were extracted from the U.S. EPA Toxicity Reference database. Tumor outcomes were identified from the Data Evaluation Records for each
chemical prior to expert committee review by the U.S. EPA Office of Pesticide Programs.
*There were 259 total chemicals in ToxRefDB with carcincogenicity study data in both species and sexes.

Hill et al., Tox Sci 2017
National Center for
Computational Toxicology
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TABLE 3. Predictive Value of Subchronic Effects for Carcinogenicity Study Outcomes in the Rat and Mouse

N =169 compounds tested in rat subchronic and rat carcinogenicity studies®

Subchronic effect in rat (test)
Positive Negative % Positive Prevalence 43 9% Negative Prevalence 57
Carcinogenicity in rat (outcome) Positive 43 29 % Specificity 53 % Sensitivity 60
Negative 46 51 % Positive predictivity 48 % Negative predictivity 64
% Added to positive prevalence 6 % Added to negative prevalence 6
% Exclusion 47
N =175 compounds tested in rat subchronic and mouse carcinogenicity studies®
Subchronic effect in rat (test)
Positive Negative % Positive Prevalence 31 % Negative Prevalence B9
Carcinogenicity in mouse (outcome) Positive 40 15 % Specificity 42 % Sensitivity 73
Negative 70 50 % Positive predictivity 36 % Negative predictivity 77
% Added to positive prevalence 5 % Added to negative prevalence 8
% Exclusion 37
N =147 compounds tested in rat subchronic and both rat and mouse carcinogenicity studies®
Subchronic effect in rat (test)
Positive Negative % Positive Frevalence 54 % Negative Frevalence 46
Carcinogenicty in rat or mouse Positive 52 27 % Specificity 50 % Sensitivity 66
(outcome) Negative 34 E5e % Positive predictivity 60 % Negative predictivity 56
% Added to positive prevalence 7 % Added to negative prevalence 9
9% Exclusion St

Subchronic and carcinogenicity study data were extracted from the U.S. EPA ToxRef database. A positive subchronic signal was based on histopathologic risk factors or
evidence of hormonal perturbation, as defined in methods. The number of chemicals has been filtered by dose exdusion criteria to avoid subchronic and carcinogenic-
ity studies with large differences in dose ranges.

*There were 215 chemicals with rat subchronic and cardnogenicity study data in ToxRefDB. Dose exclusion criteria eliminated 46 chemicals, leaving 169 chemicals for
analysis.

EThere were 186 chemicals with rat subchronic and mouse carcinogenicity study data in ToxRefDB. Dose exchusion criteria eliminated 11 chemicals, leaving 175 chemi-

cals for analysis.
“There were 184 chemicals with rat subchronic and both rat and mouse carinogenicity study data in ToxRefDB. Dose exdusion criteria eliminated 37 chemicals, leav-

ing 147 chemicals for analysis.

Hill et al., Tox Sci 2017

National Center for
Computational Toxicology




SEPA Limited Reproducibility

Between Studies

Table 4. A comparison of the classification in the NCI/NTP and literature parts of the CPDB.

Carcinogen? Noncarcinogen® Inadequatec Literature
Carcinogen? 39 13 1 53
Noncarcinogen® 20 30 0 50
Inadequate® 10 8 0 18
NCI/NTP 69 51 1 121

Concordant classification: 69 compounds (57%); discordant classification: 52 compounds (43%).
At least one experiment is evaluated as positive. PAt least one experiment is evaluated as negative and no experiment is
evaluated as positive. “Experiments are evaluated neither positive nor negative.

Gottmann et al., Env HIth Perspect 2001

In ToxRefDB, 16 chemicals were run in repeat carcinogenicity studies for rat
and mouse. Concordance for any tumor outcome was 69% (11/16 chemicals)
for rat and 63% (10/16 chemicals) for mouse repeat studies.

Hill et al., Tox Sci 2017

National Center for
Computational Toxicology
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Sustaining Evading
proliferative growth
signaling Suppressors

Resisting Enabling

cell replicative -
death immortality
Genome Tumor—
instability & _ promoting
mutation inflammation
Inducing Activating
angiogenesis invasion &
metastasis

Hanahan and Weinberg, Cell 2011

National Center for
Computational Toxicology

Are Mechanistic and In Vitro
Approaches the Answer?

Table 1. Key characteristics of carcinogens.

Characteristic

Examples of relevant evidence

1. Is electrophilic or can be
metabolically activated
2. |s genotoxic

3. Alters DNA repair or causes
genomic instability

4. Induces epigenetic alterations

5. Induces oxidative stress

6. Induces chronic inflammation

7. s immunosuppressive
8. Modulates receptor-mediated
effects
9. Causes immortalization
10. Alters cell proliferation, cell
death or nutrient supply

Parent compound or metabolite with an electrophilic structure (e.g., epoxide,
guinone), formation of DNA and protein adducts

DNA damage (DNA strand breaks, DNA—protein cross-links, unscheduled
DNA synthesis), intercalation, gene mutations, cytogenetic changes
(e.g., chromosome aberrations, micronuclei)

Alterations of DNA replication or repair (e.g., topoisomerase |l, base-excision
or double-strand break repair)

DNA methylation, histone madification, microRNA expression

Oxygen radicals, oxidative stress, oxidative damage to macromolecules
(e.g., DNA, lipids)

Elevated white blood cells, myeloperoxidase activity, altered cytokine and/or
chemokine production

Decreased immunosurveillance, immune system dysfunction

Receptor infactivation (e.g., ER, PPAR, AhR) or modulation of endogenous
ligands (including hormones)

[nhibition of senescence, cell transformation

Increased proliferation, decreased apoptosis, changes in growth factors,
energetics and signaling pathways related to cellular replication or cell
cycle control, angiogenesis

Abbreviations: AhR, aryl hydrocarbon receptor; ER, estrogen receptor; PPAR, peroxisome proliferator—activated receptor.
Any of the 10 characteristics in this table could interact with any other (e.g., oxidative stress, DNA damage, and chronic
inflammation), which when combined provides stronger evidence for a cancer mechanism than would oxidative

stress alone.

Smith et al., Env HIth Perspect 2016
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of In Vitro Assays Do Not Seem Promising

Regulatory Toxicology and Pharmacology 90 (2017) 185-196

Contents lists available at ScienceDirect

RS e “Using the same assignments as IARC of

Regulatory Toxicology and Pharmacolo =
& y e = 3 ToxCast/Tox21 assays to the seven key
journal homepage: www.slsevier.com/locate/yrtph = characteristics of carcinogens, the ability to predict

cancer hazard for each key characteristic, alone or
in combination, was found to be no better than

How well can carcinogenicity be predicted by high throughput @Cmmk chance.”
“characteristics of carcinogens” mechanistic data? .
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Hill et al., Tox Sci 2017

National Center for
Computational Toxicology
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of Relative Risk Provides More Nuance
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May Ultimately Prove More Useful

Aop: 220
AOP Title ™

Chronic Cyp2E1 Activation Leading to Liver Cancer

Authors

Francina Webster, Health Canada
lain B. Lambert. Carleton University

Carole L. Yauk, Health Canada

Point of Contact

Carole Yauk (email point of contact)

Contributors €

Carole Yauk

Status ¥
Author status OECD status OECD project
Open for citation & comment EAGMST Under Review 1.24

https://aopwiki.org/aops/220

National Center for
Computational Toxicology

Level of
Organization

AOP Diagram

Macro-
molecular

Organ/Organ
System

Community

Chronic Activation | Liver Oxidative
of Cyp2E1 Stress ‘.'
'
.

3
Liver Regenerative

Proliferation

Liver Cancer

Included in OECD Work Plan
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Predictivity

 Limited or lack of relevant metabolism

 Incomplete coverage of important pathways (i.e.,
biological space)

« Limited higher order biological interactions (i.e., cell-cell,
tissue, and organ-level)

 Limited chemical domain of applicability (e.g., volatiles,
high logP)

(not a complete list)

National Center for
Computational Toxicology
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Competence

“Extracellular” “Intracellular”
Approach Approach
Chemicals metabolism in the media or Capable of metabolizing chemicals
buffer of cell-based and cell-free assays inside the cell in cell-based assays
More closely models effects of hepatic More closely models effects of target
metabolism and generation of circulating tissue metabolism

metabolites

1

Integrated approach to model in vivo
metabolic bioactivation and detoxification

. Collaboration with Unilever
National Center for

Computational Toxicology
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| - Extracellular Approach Shows
Bioactivation In ER Assay

CYP1A2 CYP2B1(?)
Luciferin 1A2 (uM) cypace Luciferin 2B6 (pM)
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o .

;3 10 - —— |nactive S9 Vendor #1
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[

B —o— Inactive S9 Vendor #2

©

S 54

o

L

0 T T T 1
-8 -7 -6 -5 -4 DeGroot, Simmons, and

National Center for Log Methoxychlor (M) Deisenroth, Unpublished

Computational Toxicology
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e Bioactivation in ER and Cytotox Assays
CYP3A4 Metabolism of TST CYP2D6 Metabolism of DEX CYP2C9 Metabolism of DCF CYP2E1 Metabolism of CZX
a0 2 100 100
w £ 140
350 E 8 20
) £ £° £
E g Es Ew
g 20 gw g . g -
£u0 H £y H
100 s - 00000000 20 40
50 — 10 20 ———— — ]
o i = R I— é - —— o E— i - o i i I
wepe® sceve sufp"’“:vh193‘—dﬂp:h19;1,\"“E""M wers®® Pt suSV'P“:vMe&‘»aﬂo:mm)’\""’“‘“ weps®® S‘-"““ suse P 1931 9;1 ver weps®” suso P opa931 a1 Mver '
€
Aflatoxin B1 Methoxychlor
100 mRNA  AC50 (nM)
mRNA  ACS50 (uM) I N
Boal 9374 . * 3 = Boal 2934
N L
CYP2J2 3248 1 - CYP2AB 1020
801 CYP3A4 516 - CYP2C19 363
Liver_mix 1269 - CYP3AM 1224
*
601
20
g z
% = Bgal = * Hgal
‘g 401 = CYP2J2 ki ® CYP2AG
2 * CYP3A4 <
° + Liver_mix & ® CYP2C19
S 8 ® CYP3IA4
20+
ol -
- L]
L
-204 p
0.0 05 10 15 20
[cmpd] (log uM) Bl
[cmpd] (log uM)
National Center for Simmons et al., Unpublished

Computational Toxicology



o

<EPA What About Aiming for Protection
Instead of Prediction?

Environmental Protectior
Agency

Determine chemicals with high- Determine chemicals with
throughput toxicokinetics (httk) information in ToxCast
information (largest limiter) |

| 1

| Beginning chemical set | Currently ~400 chemicals
[ ‘ EPA - ToxCast ‘ * Ifthe sum of hitcalls across the ToxCast DB > 5, then the 5" percentile on ‘

I the distribution of AC50 values was used.

* Ifthe sum of hitcalls across the ToxCast DB = 5, the lowest AC50 was
‘ ASTAR ‘ —rl
I * Beta: Flag-fiftering by removing AC50 values from fits with flags 7 & 11
‘ Others? ‘ and hitpct < 0.3
|
‘ Apply httk ‘

EPA - ToxValDB

EPA - ExpoCast

Bioactivity-exposure

Health Canada

PODyam : POD, 4 ratio

Health Canada |

Exposure ratio EFSA
ECHA
o Subchronic * NOEL, LOEL,

v only g Chronic NOAEL, or LOAEL
ExpoCast * Oral exposures
{(Wambaugh etal., Dev M /ky?) /d

. * Mg/kg-bw/day
2014, heuristic Repro units

model)

Paul-Friedman, Unpublished
National Center for Collaboration with ECHA, EFSA, Health Canada, A*STAR, JRC, EPA

Computational Toxicology
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6 5 4 3 2 4 0 1 2 3 4 5
log10 mg/kg-bw/day

Bioactivity Provides a Conservative
Estimate of a NOAEL/LOAEL

EXE’Q,EaSt PODToxCast (I?O.D'.I'raditlonal POI:)EFSA POD&C)

Total =
380 chemicals

httk, ToxCast data, and POD
value(s) currently available

For ~91.3% of the
chemicals,
P ODToxCast was
conservative.

(~130-fold with
human HTTK

~40-fold with rat
HTTK)

Missing an
important
component
of biology?
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Estimate for Cancer Responses?

« Chemicals with cancer slope
factor from the IRIS program,
and have httk and ToxCast data
(15 chemicals)

 estBMDL10 = 0.1/cancer slope
factor in mg/kg-day!

e minBMD = for a subset of the
chemicals where available, the
min(BMD) value from any effect
data in ToxRefDB that was
BMDS-amenable (6/15)

* PODq,,cast < €StBMDL10 (11/15
chems)

National Center for
Computational Toxicology

N-Nitrosodiphenylamine

Benziding

2 4, 6-Trichlofophenal

Pantachlorophenol

Biphanyl

il 2-ethylhexyl) adipate

Aldrin

p.p-DDT

Haptachlor

Quinaline

Trifluralin

4, 4-Methylenebis[M,N-dimethylaniline)

£ 2 1 o 1
lag10 mgikg-bwlday

hiaddar

kidnay

thyroid gland

. I:)ODToxCalst O eStBMDLlo . BMDmin
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 The prediction of cancer hazard is confounded by limited data
In relevant species

 Using rodent cancer bioassay data as a benchmark is
confounded by significant cross-species differences, temporal
dependence, and limited reproducibility

- Mechanistic approaches that use machine learning and simple
assay count methods have shown little promise to predict
cancer hazard

- Limitations in current in vitro assays related to cancer
mechanisms are being addressed (e.g., metabolic competence)

- Estimating protective doses based on relevant biological activity
may provide a feasible path forward for application to cancer
risk assessment

National Center for
Computational Toxicology
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