

Toxicity Testing in the 21st Century and NexGen Risk Assessments

Grace Patlewicz National Center for Computational Toxicology (NCCT), US EPA

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

- Regulatory Drivers
- Integrated Approaches to Testing and Assessment (IATA) definitions and Adverse Outcome Pathway (AOP) informed
- Decision contexts and their impact on the approaches applied
- Practical workflow where and what approaches can be used
 - -Using the US EPA Chemistry Dashboard
- Summary remarks

- Societal demands for safer and sustainable chemical products are stimulating changes in toxicity testing and assessment frameworks
- Chemical safety assessments are expected to be conducted faster and with fewer animals, yet the number of chemicals that require assessment is also rising with the number of different regulatory programmes worldwide.
- In the EU, the use of alternatives to animal testing is promoted.
- Animal testing is prohibited in some sectors e.g. cosmetics
- The European Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation lays out specific information requirements, based on tonnage level triggers. However, the regulation explicitly expresses the need to use New Approach Methodologies (NAM) to reduce the extent of experimental testing in animals.

- REACH-like schemes also have been established in China, South Korea, and Turkey.
- In the US, the new Frank Lautenberg Chemical Safety for the 21st Century Act (LCSA) requires that a risk based prioritisation is conducted for all substances in commerce, some 80,000, many of which are lacking sufficient publicly available toxicity information.
- The LCSA also suggests developing alternative methods to reduce/refine animal testing.
- Risk based prioritisation is also an important aspect of regulatory frameworks in Canada (the Domestics Substance List), Australia and the EU.
- NAM offer a means of facilitating the regulatory challenges in chemical safety assessment

Integrated Approaches to Testing and Assessment (IATA)

- A means of integrating existing data and non-testing data together, determining what new information needs to be generated in order to make a decision with sufficient confidence for the purpose in mind
- IATA can be likened to workflows depicting the steps of gathering information for a substance and evaluate its fitness for purpose for the decision required
- Some IATA are more complex than others but the generic building blocks of considering existing data, NAM (i.e. *in vitro* methods, nontesting approaches) BEFORE instigating new *in vivo* testing are the same
- NAM fit within the context of these IATA schemes and should not necessarily be considered *in vacuo*

General framework of an IATA

Problem formulation. Definition of the regulatory need (e.g. hazard identification, hazard characterisation, safety assessment etc.) and the information/parameters that are relevant to satisfy the need, including consideration of existing constraints and, if applicable, consideration of the level of certainty required.

Gather and evaluate existing information (in vivo, in vitro, in silico (e.g. (Q)SAR), read across and chemical category data).

Make a weight of evidence assessment or apply predefined decision criteria (e.g. ITS, STS).

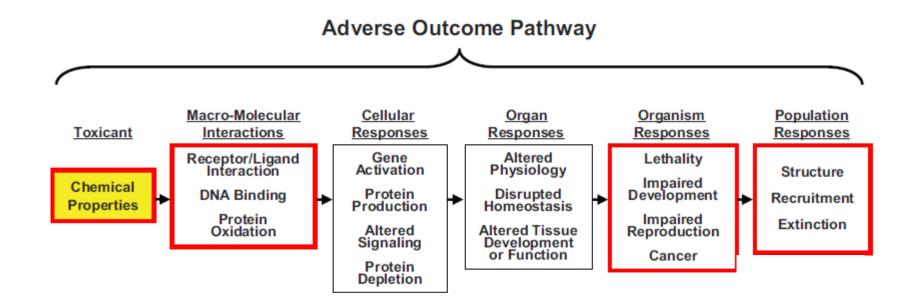
Available information provides sound conclusive evidence for the specific regulatory need

If available information does not provide sufficient evidence consider what additional information from non-testing, non-animal testing methods and, as a last resort, from animal methods would be needed to generate sufficient evidence.

Make a weight of evidence assessment or apply predefined decision criteria (i.e. ITS, STS).

Available information provides sound conclusive evidence for the specific regulatory need

Agency


- Historical information on the chemical of interest
- Non-standard in vivo tests
- Information from "similar" chemicals
- Predictions from other non-testing approaches such as (Q)SAR
- In chemico tests
- In vitro tests
- Molecular biology, -omics
- Exposure, (bio-)kinetics

- As noted earlier, there is a shift towards non animal alternatives as a response to regulatory drivers
- Integration of different non-animal approaches requires an organising framework to ensure that the different information sources are being interpreted in their appropriate context. This is particularly relevant for New Approach Methodologies (NAMs).
- AOPs serve to provide this organisational framework and hence play an important role in developing and applying IATA for different purposes as well as provide a roadmap for future QSAR development
- AOPs provide the linkage from chemistry, through the Molecular Initiating Event (MIE) to Adverse Effect

An AOP represents existing knowledge concerning the sequence of events and causal linkages between initial molecular events, ensuing key events and an adverse outcome at the individual or population level.

Establishing Scientific Confidence in the application of AOPs for IATA

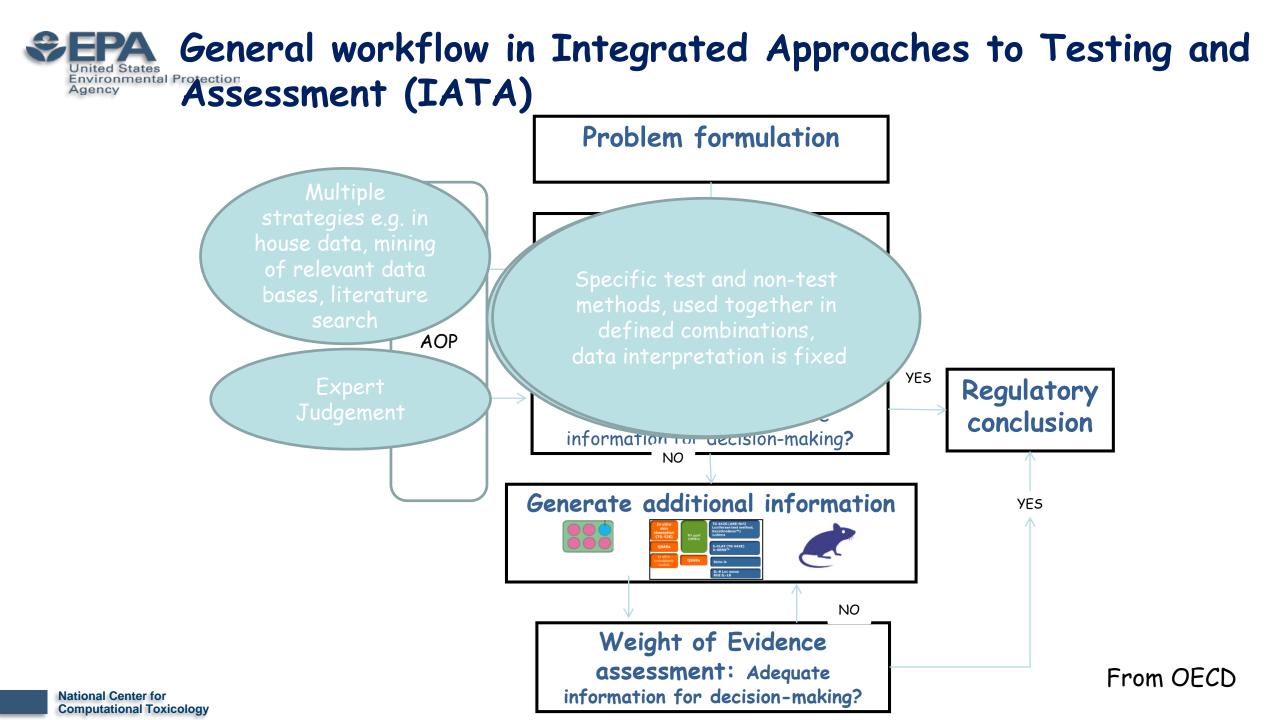
1	Develop the AOP
2	Develop new (or map existing) specific assays to key events within the AOP
3	Conduct (or document) Analytical Validation of each assay
4	Develop new (or map existing) models that predict a specific key event from one or more pre-cursor key events. (The input data for the prediction models comes from the assays described in Steps 2 and 3 above.)
5	Conduct (or document) Qualification of the prediction models
6	Utilization: defining and documenting where there is sufficient scientific confidence to use one or more AOP-based prediction models for a specific purpose (e.g., priority setting, chemical category formation, integrated testing, predicting <i>in vivo</i> responses, etc.)
7	For regulatory acceptance and use, processes need to be agreed upon and utilized to ensure robust and transparent review and determination of fit-for-purpose uses of AOPs. This should include dissemination of all necessary datasets, model parameters, algorithms, etc., to enable stakeholder review and comment, fully independent verification and independent scientific peer review. Whilst these processes have yet to be defined globally, in time, these should evolve to enable credible and transparent use of AOPs with sufficient scientific confidence by all stakeholders.

AOP-informed IATA

a) What existing data and data types are available? Additional Data, Method Needs Insufficient confidence What AOP-IATA tools/assays can be applied or need to be developed to generate data to make the decision?

IATA e.g. QSARs, Readacross, ITS Is data input adequate to make regulatory decision? c) Regulatory **Applications** • Screening • Prioritisation Classification & Labeling Regulatory decisions

b) Is there an AOP that is applicable to the regulatory application of interest?

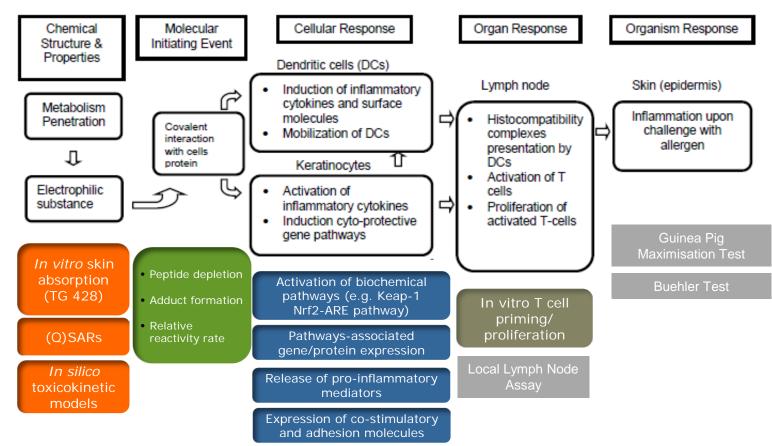

- Hazard Assessment
- Risk Assessment

Tollefsen et al, 2014

•Proposed validation principles:

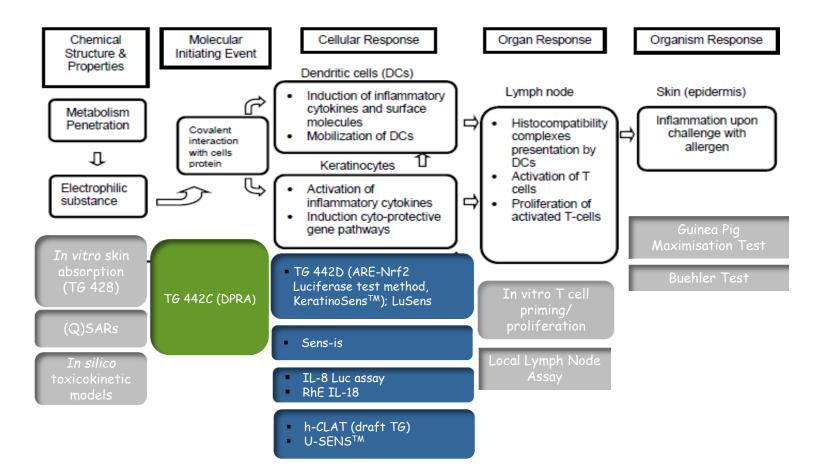
- -define the endpoint being assessed;
- -define the purpose/application for which the IATA is proposed;
- -describe the rationale underlying the construction of the IATA;
- -describe how the individual information sources constituting the IATA are integrated to derive the final prediction/assessment and,
- -describe the predictive capacity of the approach, the limitations in the application of the approach and the known uncertainties associated with the IATA application.

Defined approaches within IATA

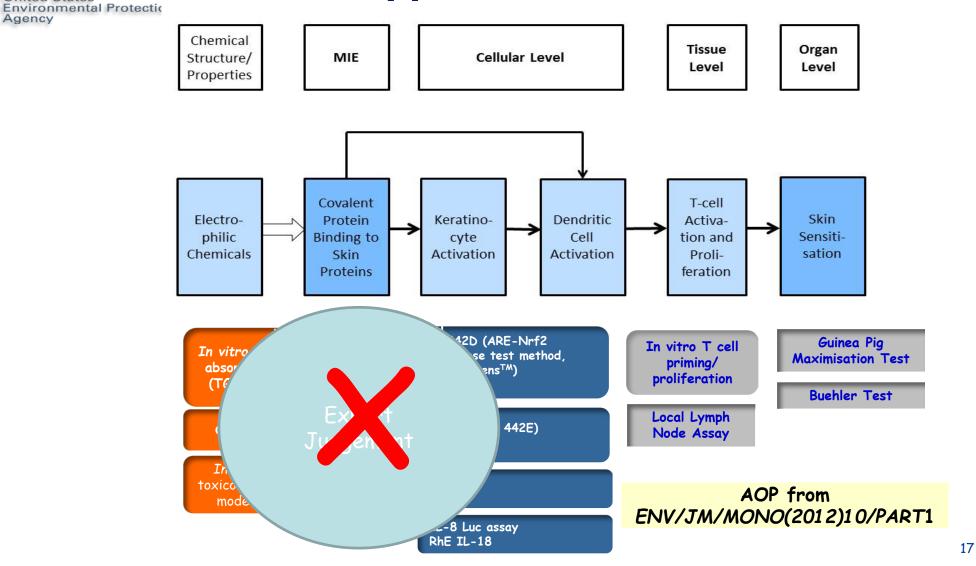

- A <u>defined approach</u> to testing and assessment consists of a <u>fixed</u> <u>data interpretation procedure (DIP)</u> used to interpret data generated with a <u>defined set of information sources</u>, that can either be used alone or together with other information sources, to satisfy a specific regulatory need.
 - Guidance Document on the Reporting of Defined Approaches to be Used within Integrated Approaches to Testing and Assessment <u>ENV/JM/MONO(2016)28</u>
 - Guidance Document on the Reporting of Defined Approaches and Individual Information Sources to be Used within Integrated Approaches to Testing and Assessment (IATA) for Skin Sensitisation <u>ENV/JM/MONO(2016)</u>

EPA Defined approaches within IATA

- Work currently underway within the OECD is aiming to establish Performance-based Defined Approaches for skin sensitisation
- Aims to substitute the need for animal testing for skin sensitisation based on a combination of methods which predict key endpoint responses in the AOP
- DA will be evaluated based on their performance using the same data sets/reference chemicals for the endpoint of interest

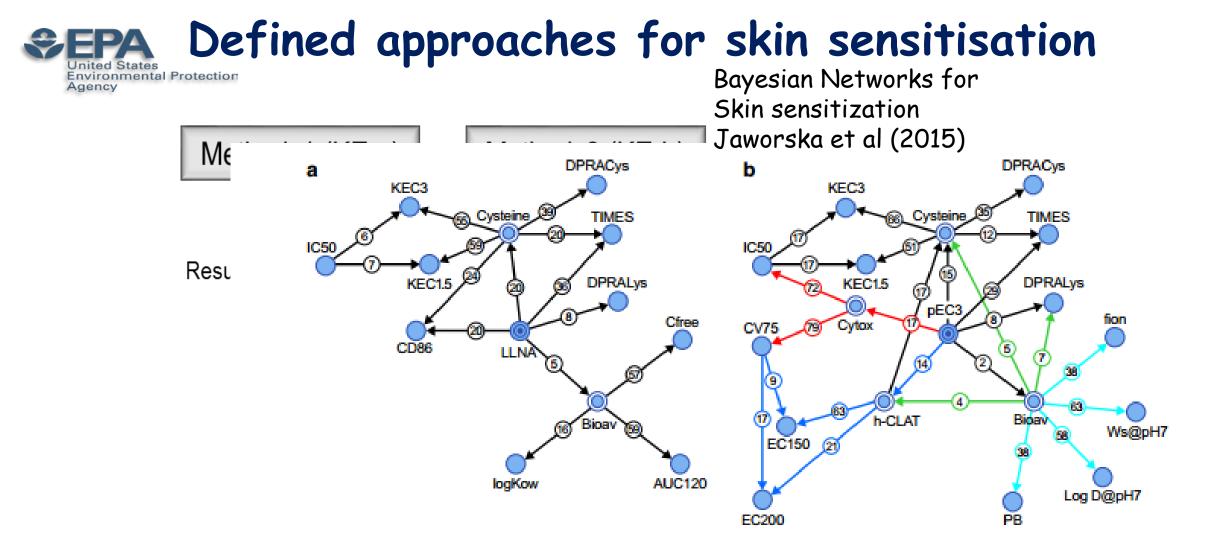

Sepa Defined approaches within IATA: Skin Agency Sensitisation

AOP and available toolbox of non-animal methods


Presented by S Casati, JRC

Defined approaches within IATA: Skin sensitisation (SS)

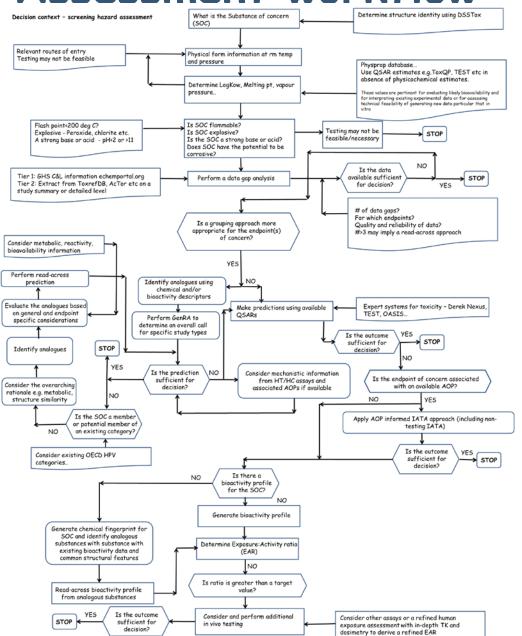
Presented by S Casati, JRC


Defined approaches within IATA-SS

Jnited States

Agency

17



IATA in practice

- What is the Substance of concern (SOC)?
- What is already known about the SOC?
- What is the Decision context?

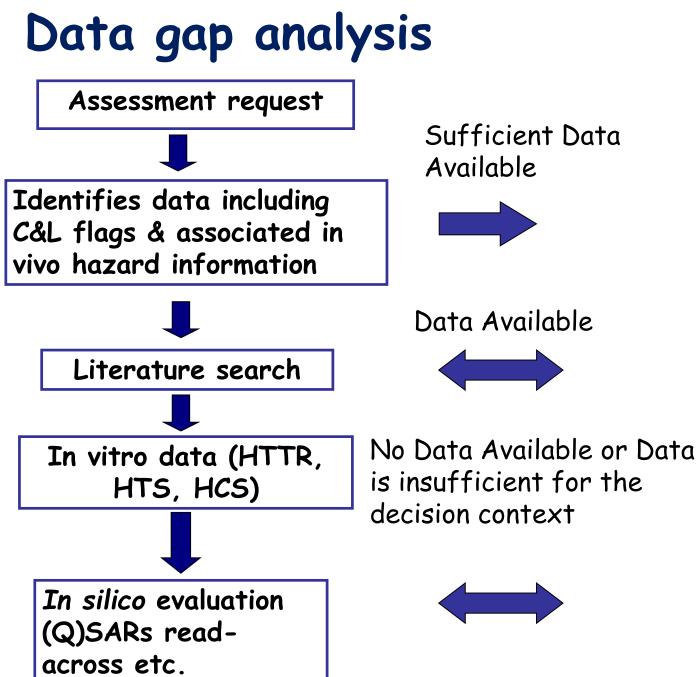
An Assessment workflow

Patlewicz and Fitzpatrick 2016

National Center for Computational Toxicology

EEPA United States	**	Assessmer a gap analysis	<u>nt workflo</u>				
	Strategies f data gaps us across	or filling the ing read-	Strategies fo data using QS informed DA	SARs,			
National Center for Computational Toxicology		Strategies data using b information		ban and	Patlewi	cz and Fitz	patrick 2016

.

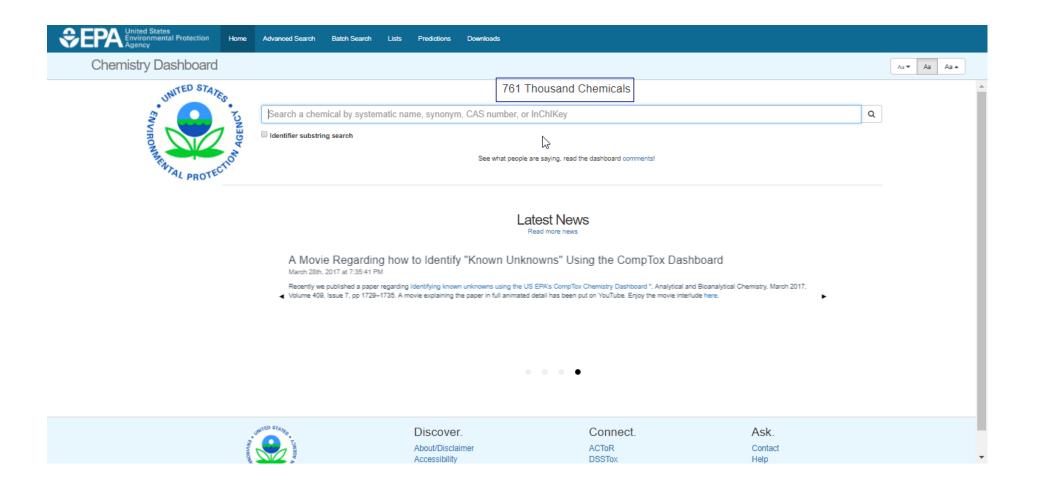

Decision contexts

Prioritisa What do we know about Screening our substance of Risk Asseinterest..

A Data gap analysis is typically the first step

National Center for Computational Toxicology

Evaluation


Hazard

The CompTox Chemistry Dashboard

- A publicly accessible website delivering access:
 - -~760,000 chemicals with related property data
 - Experimental and predicted physicochemical property data
 - -Integration to "biological assay data" for 1000s of chemicals
 - -Information regarding consumer products containing chemicals
 - -Links to other agency websites and public data resources
 - "Literature" searches for chemicals using public resources
 - "Batch searching" for thousands of chemicals
 - DOWNLOADABLE Open Data for reuse and repurposing

26 Detailed Chemical Pages Agency

SEPA United States Environmental Protection Home Adva Agency	anced Search Batch Searc	h Lists	Predictions	Downloads				Se	earch All Da	ta
Chemistry Dashboard EPAHFR						Submit Comme	nt Copy	- A:	a ▼ Aa	Aa
1,2-Propylene gly 57-55-6 DTXSID002120					ß					
Searched by DSSTox_Substance_Id: Found	1 result for 'DTXSID0021206'.									
	Wikipedia									
ОН	C3H8O2. It is classed a	is a viscous c s a diol and is	olorless liquid whi miscible with a b	ch is nearly odor road range of so	etic organic compou less but possesses ivents, including wat iction of polymers, b	a faintly sweet tast ter, acetone, and ch	e. Chemically it nloroform. It is			
НО, 人	Intrinsic Pr	operties								
	CH ₃ Structural	Identifiers								
	Linked Sul	ostances								
	Presence	in Lists								
-	Record Inf	ormation								
	Quality Co	ntrol Notes								
			1							
Chemical Properties Env. Fate/Transport Hazard AD	OME (Beta) Exposure	Bioassays	Similar Com	pounds Re	lated Substances	Synonyms	Literature	Links	Comme	nts

Access to Chemical Hazard Data

Protection	l States nmental Protection Home .	Advanced Search	Batch Search	h Lists	Predictions	Download	s				Search All Dat	ta
	y Dashboard EPAHF	R						Submit	Comment	Copy 🕶	Aa 🕶 🛛 Aa	Å
Chemical Properties	Env. Fate/Transport Hazard	ADME (Beta)	Exposure	Bioassays	Similar Con	pounds	Related Substance	es Synony	yms Li	iterature Lini	ks Commen	nts
Exposure Limit	Download table as:	TSV Excel			Hum	an Eco						
Lethality Effect Level Point of Departure	Priority	y ≑ † y Type	Subtype	Risk Assessment Class	m_Values [♦]	\$ Units		Exposure Route	Species	Subsource	Source	
Toxicity Value	+ 8	NOEL	Cardiova	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (*
	+ 8	NOEL	Endocrine	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	LOEL	Hematol	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	LOEL	Hepatic	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	NOEL	Immune	immunot	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	NOEL	Renal	subchronic	5000.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	LOEL	Systemic	subchronic	2500.0	mg/kg-day	subchronic	oral	rat	Vaille et	PPRTV (
	+ 8	NOEL	Hematol	subchronic	1500.0	mg/kg-day	subchronic	oral	rabbit	Vaille et	PPRTV (
	+ 8	NOEL	Systemic	subchronic	1500.0	mg/kg-day	subchronic	oral	rabbit	Vaille et	PPRTV (

National Center for Computational Toxicology

27

United States

28 EPA In Vitro Bioassay Screening Agency ToxCast and Tox21

Chemistry Das	hboard EPA	HFR					Submit Comm	ent Copy	✓ Aa ✓ Aa	Aa 4
emical Properties Env. Fa	te/Transport Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links Comme	nts
ToxCast: Summary					Chemical Activity Sun	nmary 🚯				
PubChem	2.0 - 1.8 - 1.6 - 1.4 - 1.2 -	Show All dna binding nuclear receptor cell cycle round measurement	• • •	• • • • • • •		AC50 (uM)	Assay Des Gene Sym Organism Tissue: N/ Assay For Biological Detection Analysis I Intended 1 Descriptio NVS_NR_1 1 assay en NVS_NR_1 the positive the negativ Using a typ activity car	2: 1.41 me: NVS_NR_hf scription: 716 abol: NR1H4 : human A mat Type: bioch Process Targe Technology: TF Direction: posith farget Family: n m: Data from the hFXR_Antagonis dpoint. This ass hFXR_Antagonis e fitting direction we control and ba e of binding rep h be used to und	EXR_Antagonist EXR_Antagonist t: receptor binding R-FRET ve uuclear receptor assay component at was analyzed into	•

National Center for Computational Toxicology

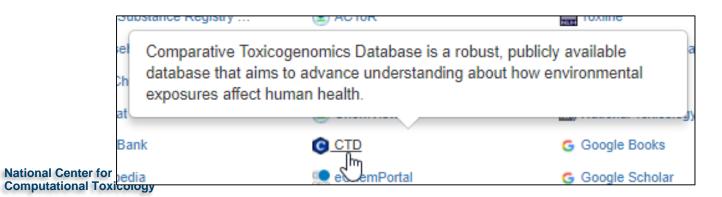
SEPA Sources of Exposure to Chemicals

Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links	Comments
Product	Product & Use Categories					luct & Use Categorie	es (PUCs) 🚯				
Chemical	Weight Frac	tion		÷	<u>Categorizat</u>	ion type	≑ <u>Nu</u>	mber of Unique I	Products		•
Chemical	Functional U	lse			PUC PUC		288	-			Î
onomica	in an caonar c	/00			PUC		200				
Monitorin	a Data				PUC		107	7			
	<u>,</u>				PUC		107	7			
_					PUC		101	1			
Exposure	Predictions				PUC		101	1			
					PUC		90				
Productio	on Volume				PUC		89				-

Agency

Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synony
					Found 78 s	synonyms		
		I	Legend: Valid	Synonyms	Good Synonyms	Other Synonyms	Copy all Synonyms	
1,2-Propylene glycol								
Propane-1,2-diol								
1,2-Propanediol								
57-55-6 Active CA8-RN								
alpha-Propylene glycol								
(+/-) 1,2-Propanediol								
(RS)-1,2-Propanediol								
dl-Propylene glycol								
3-01-00-02142 Belistein Re	egistry Number							
1,2-Propanediol								
(.+)-1,2-Propanediol								
(.+)-Propylene glycol								
1,2-(RS)-Propanediol								
1,2-DIHYDROXYPROPAI	VE							
,2-PROPANDIOL								

Google Scholar	Exposure Bioassa	ys Similar Compounds	Related Substances	Synonyms	Literature	Links	Comments		
PubMed Abstract Sifter	rery then 2) click on Re Retrieve		13 of 13 articles loaded	ſ	NOEL OR LOEL	1,2-Propylen	e glycol" OR "Propylen	e Glycol") AND (NOAEL or eference concentration" OR [tiab])	
PubChem Articles	s to sift abstracts. ()	view of available studies on best	Authors a Zulkifii; Abidin; Abidii	- Amer Nordia -	Praveena: Sve	Journal	pad / Send to 🔻	Rev	
PubChem Patents	l assessment of a protot	garettes: a systematic review of available studies on hea assessment of a prototype e-cigaret device and three fl monitoring Equivalents for selected E- and P-series glyc mful health effects of inhaling nicotine-free shisha-pen v			Werley; Kirkpatrick; Oldham; Jerome; Langston; Lill Poet; Ball; Hays Kienhuis; Soeteman-Hernandez; Bos; Cremers; Kie			ind environmental h	-
PPRTV	afety assessment of Efi	eproductive toxicity potential of acconazole Solution (10%) for enous mouse pharmacokinetic	Jo; Glynn; Nejishima	; Sanada; Minow	va; Calvarese;	Regulator	tive toxicology (Elmsfo y toxicology and pharm ca; the fate of foreign c	nacology : RTP	-
IRIS	on the safety assessmen	safety and pharmacokinetic evaluations of propylene gly on the safety assessment of methoxyisopropanol and m logically-based pharmacokinetic modeling to address n			Wallery; Byron;	Toxicology International journal of toxicology Risk analysis : an official publication of the Society f			-
	of 2-methoxypropionic a	cid formed from beta-propylen	e Carney; Pottenger; J	ohnson: Liberad	ki: Tornesi: Drv	Toxicolog	ical sciences : an officia	al journal of the Soc	1


32 SEPA External Links to Data and Services Agency

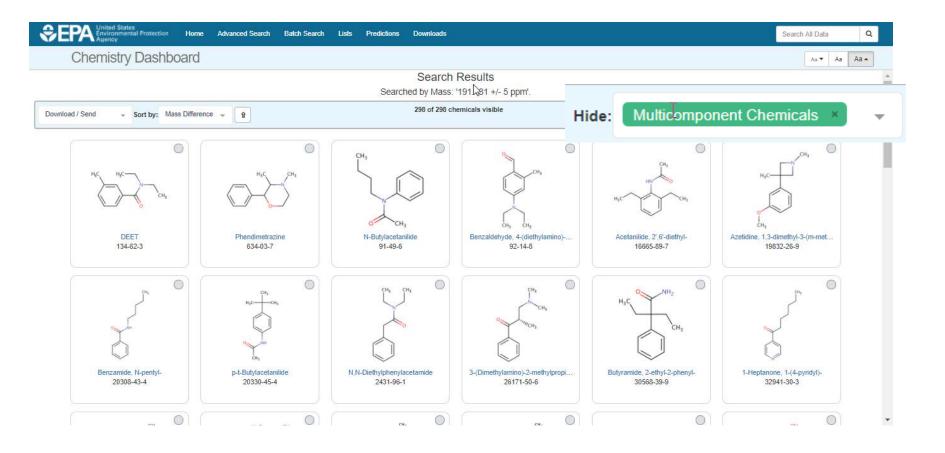
N2										
Chemical Properties	Env. Fate/Transport	Hazard	ADME (Beta)	Exposure	Bioassays	Similar Compounds	Related Substances	Synonyms	Literature	Links
General	Toxicol	ogy		Publications		Analytical		Prediction		
EPA Substance Regis	try 🛞 ACT	oR		Toxline		C RSC Analytic	al Abstracts	2D NMR HSQC	/HMBC Pr	
or Household Products D	Data 📴 Drug	Portal		Environment	tal Health Per	🛆 Tox21 Analyti	cal Data	Carbon-13 NMF	R Prediction	
DubChem		IS		NIEHS		MONA: Mass	Bank North	Proton NMR Proton NMR Protocol	ediction	
CPCat	() Che	mView		National Tox	icology Progr	NET NIST IR Spec	trum	SchemRTP Pred	lictor	
🝠 DrugBank	🕒 СТВ			G Google Book	ks	NET NIST MS Spe	ctrum	6 LSERD		
W Wikipedia	🥷 eCh	emPortal		G Google Scho	olar					
Q MSDS Lookup	Gen	e-Tox		G Google Pate	ints					
ChEMBL	HSD	в		PPRTVWEB	1					
Q Chemical Vendors	() Tox	ast Dashboa	rd 2	W PubMed						
INIOSH Chemical Safe	ety 🔛 Lact	Med		IRIS Assess	ments					
b ToxPlanet	Inter	national Toxic	ity Esti	EPA HERO						
💮 ACS Reagent Chemic	als 🕜 ATS	DR Toxic Sub	stances	C RSC Publica	ations					
W Wikidata	() ACT	oR PDF Repo	ort	🚮 BioCaddie D	ataMed					
🍄 ChemHat: Hazards an	nd A CRE	ST		🙆 Springer Ma	terials					
🌞 Wolfram Alpha				Federal Reg	ister					

Illuminating how chemicals affect human health.	Ν	YOUR QUERIES CONTACT US
Comparative Toxicogenomics Database	<i>\</i> √	
Home - Search - Analyze - Download -	Help 🔻	
Oppleme Glycol		
Basics Gene Interactions Genes Diseases Phenotype	Comps Pathways GO Exposure Studies Exposure Details References	
		2

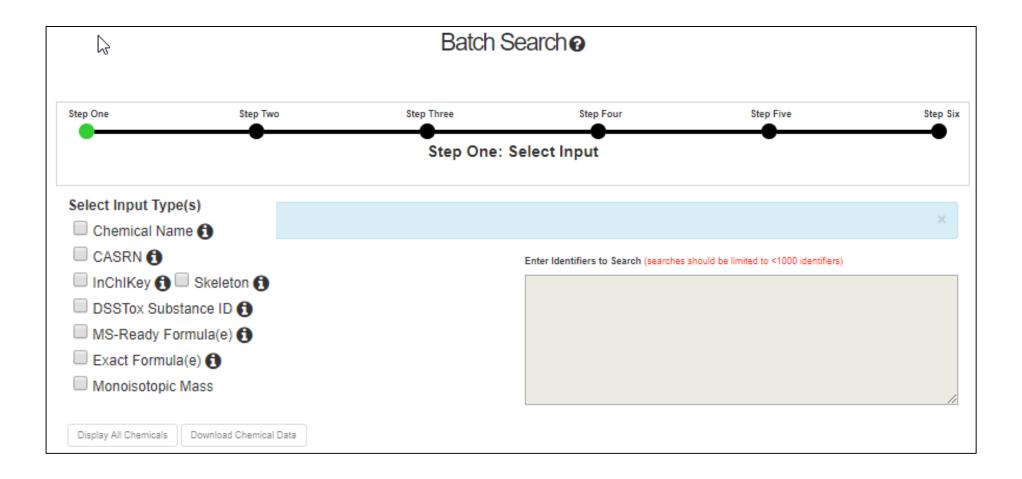
These diseases are associated with *Propylene Glycol* or its descendants. Each association is *curated* (M *marker/mechanism* and/or I therapeutic) and/or inferred (via a curated gene interaction).

Disease categories [Show chart]

Filter by	Association type ALL Filter Filter											
1-50 of 240 results.	-50 of 240 results. ■ First ■ Previous 1 2 3 4 5 ▶ Next ▶ Last											
First Previous	1 2 3 4 5 Next Last											
Chemical 4	Disease 🗢	Direct Evidence	Enrichment Analysis	Inference Network 🔶	Inference Score	References#						
1. Propylene Glycol	Drug-Related Side Effects and Adverse Reactions	м		2 genes: ABCC2 ABCC4	4.09	5						
 Propylene Glycol 	Acute Kidney Injury	Μ	1001	ö 2 genes: IL6 TGFB1	3.78	3						
 Propylene Glycol 	Chemical and Drug Induced Liver Injury	м		ö 2 genes: ABCC2 IL6	2.82	5						
4. Propylene Glycol	Kidney Diseases	Μ		1 gene: TGFB1	2.54	4						


	Advance	ed Search@	
Mass Search () ± Min/Max M ▼ Mass Da	± Error	Da ppm	Search Q
Molecular Formula Search Molecular Formula		 MS Ready Formula (1) Exact Formula (1) 	Search Q
Generate Molecular Formula(e) () ± MinMax Mass Da Default Options: C[1-50] H[0-100] O[0-20] N[0-2 Include Halogens: F[0-20] Cl[0-20] Br[0-20] I[0		Da ppm	Search Q
Options 👻			

National Center for Computational Toxicology



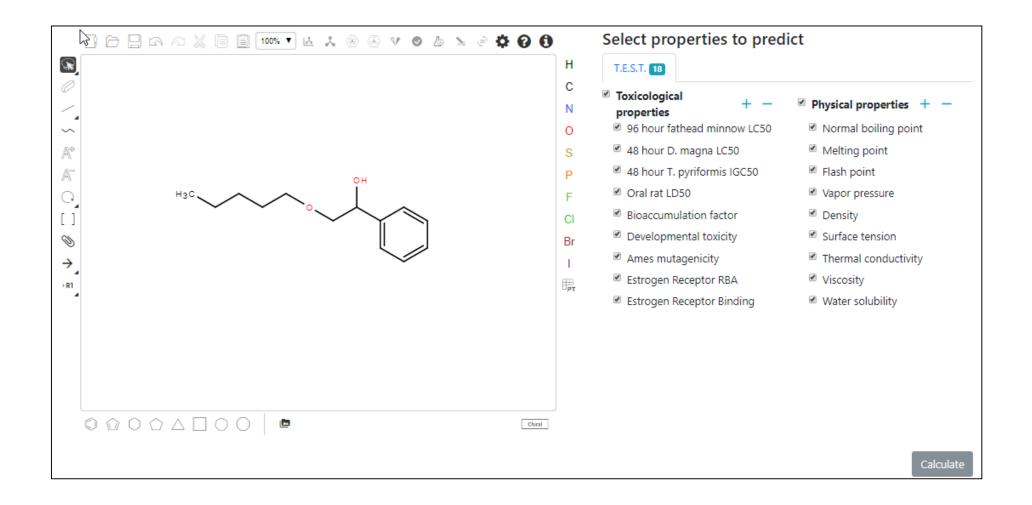
Mass Search 🚯					
± Min/Max	M	·			
	_				
191.131	Da	±	5	Da ppm	Search Q

Select Input Type(s)
Chemical Name
CASRN
C

Enter Identifiers to Search (searches should be limited to <1000 identifiers)

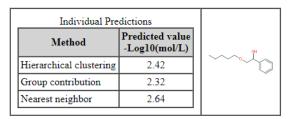
C6H12O3			
<u>C7H7N3</u>			
C8H11NO			
C7H5NOS			
C9H15NO			
C11H12O			
C9H8O3			
C6H12O5			
C9H15NO2			
			1

Metadata

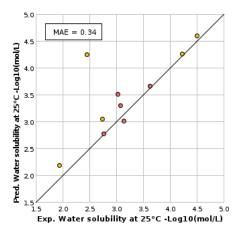

Curation Level Details 1
Data Sources 1
Assay Hit Count 1
Include links to ACToR reports - SLOW! (BETA) 1
NHANES/Predicted Exposure 1
Include ToxVal Data Availability 1
Number of PubMed Articles 1
Abstract Sifter Input File (Beta) 1
MetFrag Input File(Beta)
IRIS
PPRTV
PubChem Data Sources
ToxPrint fingerprints 1

- NIOSH IDLH Values
- NIOSH International Chemical Safety Cards
- NIOSH Pocket Guide to Chemical Hazards
- NIOSH Skin Notation Profiles
- NORMAN Collaborative Trial 2015 Targets and Suspects
- Norman Network PFAS (KEMI Report)
- NORMAN Network Priority List
- NormaNEWS: Norman Early Warning System
- PFAS list provided by X.Trier et al
- Pharmaceutical List with EU, Swiss and US Consumption Data
- Provisional Peer Reviewed Toxicity Values
- Stockholm Convention on Organic Pollutants
- STOFF-IDENT Database of Water-Relevant Substances
- Superfund Chemical Data Matrix
- Surfactant List Screened in Swiss Wastewater (2014)
- _

INPUT	FOUND_BY	DTXCID_IN	DATA_SOL	TOXVAL_C	TOXCAST	TOXCAST	NUMBER_C	PUBCHEM	STOFFIDE
C6H12O3	MS Ready	DTXCID701	<u>୍</u> ୟୁ	Y	0.36	2/562	24	83	Υ
C6H12O3	MS Ready	DTXCID003	67		0.36	1/276	376	80	Υ
C6H12O3	MS Ready	DTXCID106	65		4.42	5/113	6	77	Y
C6H12O3	MS Ready	DTXCID105	45	Y	0.0	0/163	3	94	-
C6H12O3	MS Ready	DTXCID901	38	Y	-	-	14	110	Υ
C6H12O3	MS Ready	DTXCID402	4 34	Y	0.0	0/113	-	53	Υ
C6H12O3	MS Ready I	DTXCID202	9 31	Y	-	-	-	36	Υ
C6H12O3	MS Ready I	DTXCID202	4 30	-	2.54	7/276	-	54	-
C6H12O3	MS Ready	DTXCID109	26	Y	-	-	-	46	-
C6H12O3	MS Ready	DTXCID202	24	Y	0.0	0/113	-	47	-
C6H12O3	MS Ready I	DTXCID303	22	Y	-	-	-	89	-
C6H12O3	MS Ready	DTXCID302	20	Y	-	-	2	25	Y
C6H12O3	MS Ready	DTXCID407	4 19	Υ	-	-	12	62	-
C6H12O3	MS Ready I	DTXCID704	17	Y	-	-	-	64	-
C6H12O3	MS Ready	DTXCID704	16	Y	-	-	3	49	-



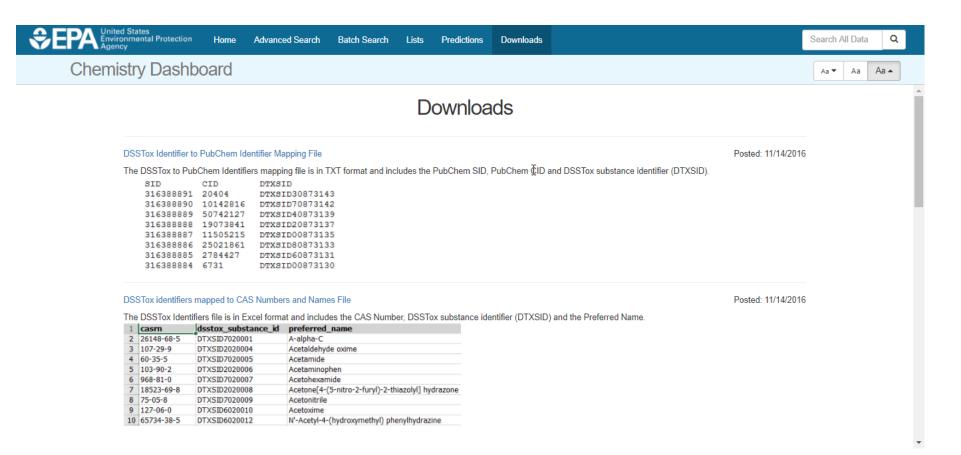
	Experimental	Prediction					
Property	Value	Consensus	Hierarchical clustering	Single model	Group contribution	Nearest neighbor	
♀ 96 hour fathead minnow LC50		4.477 -Log10(mol/L) 6.954 mg/L	4.195 -Log10(mol/L) 13.288 mg/L	3.994 -Log10(mol/L) 21.110 mg/L	3.478 -Log10(mol/L) 69.224 mg/L	6.238 -Log10(mol/L) 0.120 mg/L	
48 hour D. magna LC50		4.398 -Log10(mol/L) 8.328 mg/L	3.877 -Log10(mol/L) 27.677 mg/L	4.039 -Log10(mol/L) 19.026 mg/L	4.084 -Log10(mol/L) 17.173 mg/L	5.593 -Log10(mol/L) 0.532 mg/L	
48 hour T. pyriformis IGC50		4.063 -Log10(mol/L) 18.039 mg/L	3.731 -Log10(mol/L) 38.668 mg/L		3.386 -Log10(mol/L) 85.610 mg/L	5.070 -Log10(mol/L) 1.773 mg/L	
Oral rat LD50		1.758 -Log10(mol/kg) 3640.950 mg/kg	1.982 -Log10(mol/kg) 2172.756 mg/kg			1.533 -Log10(mol/kg) 6101.245 mg/kg	
Bioaccumulation factor		1.797 Log10 62.700	2.202 Log10 159.310	1.287 Log10 19.346	1.181 Log10 15.157	2.520 Log10 330.834	
Developmental toxicity		false	false	false		true	
Ames mutagenicity		false	false			false	
Estrogen Receptor RBA		-3.075 Log10 8.418*10 ⁻⁴	-3.078 Log10 8.356*10 ⁻⁴	-3.720 Log10 1.907*10 ⁻⁴		-2.427 Log10 0.004	
Estrogen Receptor Binding		true	true	true	false	true	


Predicted Water solubility at 25°C for OC(C=1C=CC=CC1)COCCCCC from Consensus method

Prediction results					
Endpoint	Experimental value	Predicted value			
Water solubility at 25°C -Log10(mol/L)	N/A	2.46			
Water solubility at 25°C mg/L	N/A	723.26			

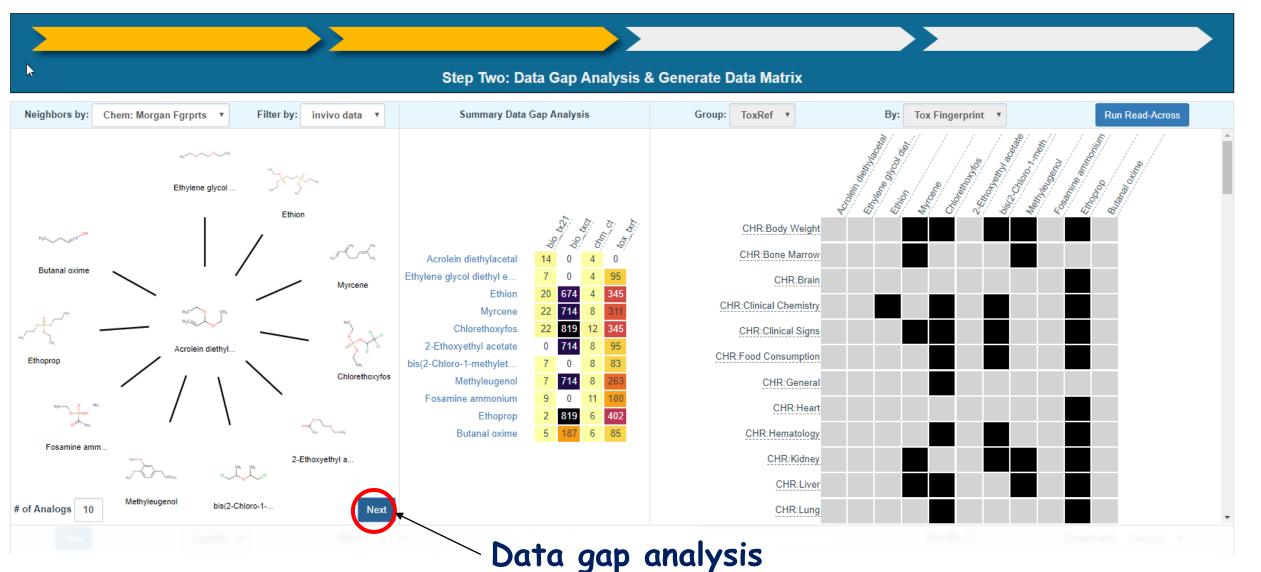
Predictions for the test chemical and for the most similar chemicals

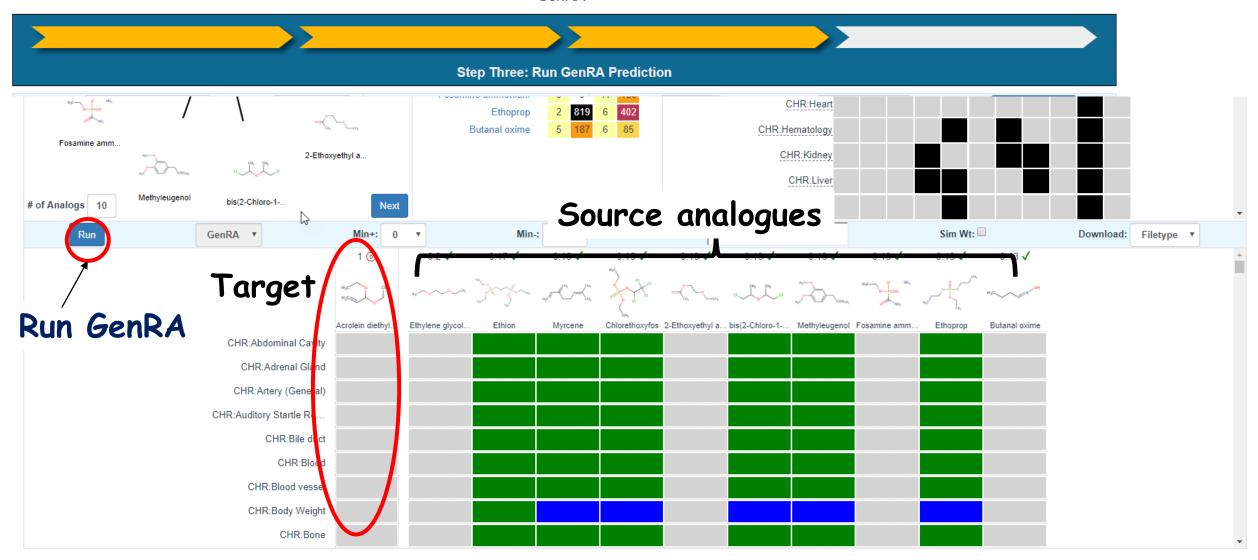
k Prediction results (colors defined in table below)



Chemicals	MAE*	
Entire set	0.58	
Similarity coefficient ≥ 0.5	0.34	

*Mean absolute error in -Log10(mol/L)

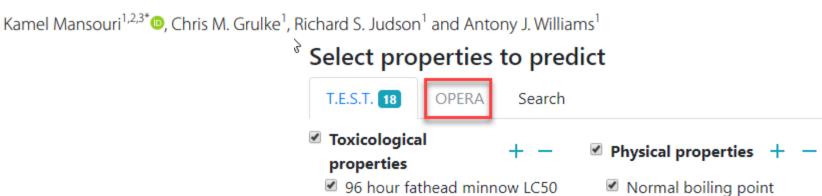

CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/L)	Predicted value -Log10(mol/L)
OC(C=1C=CC=CC1)COCCCCC (test chemical)			N/A	2.46
<u>104-40-5</u>	Û	0.68	4.50	4.60
1219-38-1		0.67	4.22	4.26


SEPA Future Development: GenRA-Read-across tool

GenRA

SEPA Future Development: GenRA-Read-across tool

GenRA



Mansouri et al. J Cheminform (2018) 10:10 https://doi.org/10.1186/s13321-018-0263-1 Journal of Cheminformatics

RESEARCH ARTICLE

OPERA models for predicting physicochemical properties and environmental fate endpoints

Future Search Possibilities

SEPA United States Environmental Protection Home	Advanced Search Batch Search Lists Predictions Downloads	
Chemistry Dashboard		Aa 🕶 Aa Aa 🔺
UNITED STATES	761 Thousand Chemicals	A
ž 🦲 ty [Search a chemical by systematic name, synonym, CAS number, or InChIKey	Q
ENVIRONMENTAL PROTECTION	Chemical Assay Gene Product	
TWTAL PROTECTIO	Search Assay Endpoint Name	Q
	Identifier substring search	
	Read more news	
	An article regarding an Excel Version of the Abstract Sifter is published. March 7th, 2018 at 9:21:27 AM	
	The abstract sifter that is integrated into the Dashboard (for example here for Atrazine) is available as an Excel add-in. Our recent article on the Abstract Sifter for Excel has been published.	
	0 0 • 0	
		-

Agency

EPA Summary remarks on the Dashboard

- The CompTox Chemistry Dashboard provides access to data for ~760,000 chemicals
- High quality data from ongoing curation efforts
- An integration hub for multiple "modules"
 - Experimental and predicted properties
 - Human and Ecological Hazard data
 - Exposure data products, data in the environment
 - In vitro bioassay data ToxCast/Tox21
 - Literature searching Google Scholar and PubMed
 - Specialized searches mass/formula for analytical support
 - Batch searching and Real Time Predictions
- The primary architecture for NCCT data

Take home messages

- Outlined Regulatory Drivers
- What Integrated Approaches to Testing and Assessment (IATA) are and how they have evolved taking into account Adverse Outcome Pathways (AOPs)
- How different decision contexts impact the types of NAMs applied
- Practical workflow where and what approaches (including NAMs) can be used with reference to the US EPA Chemistry Dashboard

- The NCCT CompTox Chemistry Dashboard Development Team
- Ann Richard, Chris Grulke
- NERL scientists (Jon Sobus, Elin Ulrich) Mass Spectrometry
- Kamel Mansouri OPERA models
- Todd Martin TEST predictions
- Nancy Baker Abstract Sifter
- George Helman, Imran Shah, Grace Patlewicz GenRA

Antony Williams US EPA Office of Research and Development National Center for Computational Toxicology (NCCT) <u>Williams.Antony@epa.gov</u> ORCID: https://orcid.org/0000-0002-2668-4821