

Examining the Utility of In Vitro Bioactivity as a Conservative Point of Departure: A Case Study

Katie Paul Friedman and Russell Thomas

Presented to the Tox Forum, July 9, 2018

Based on collaboration with A*STAR, ECHA, EFSA, EPA-OLEM, EPA-ORD, Health Canada, and the JRC

Acknowledgements: Advancing the Pace of Chemical Risk Assessment (APCRA) case study collaborators

A*STAR	ECHA	EFSA	EPA-OLEM	EPA-ORD	Health Canada	JRC
Lit-Hsin Loo	Mike Rasenberg	Jean-Lou Dorne	Kathleen Raffaele	Russell Thomas (NCCT)	Tara Barton- Maclaren	Maurice Whelan
Peiying Chuan	Tomasz Sobanski		Stiven Foster	Katie Paul Friedman (NCCT)	Matthew Gagne	
	Tatiana Netzeva			Tina Bahadori (NCEA)		
	Panagiotis Karamertzanis			Jill Franzosa (CSS)		
	Andrea Gissi			Jason Lambert (NCEA)		
				Michelle Angrish (NCEA)		

See the forest for the trees

The big question:

Can *in vitro* bioactivity be used to derive a conservative point-of-departure (POD) for prioritization and screening level risk assessment?

A retrospective look at using *in vitro* bioactivity data as a POD

- POD ratio: Do new approach methods (NAMs; in vitro bioactivity data) provide a conservative estimate of POD?
- Bioactivity-exposure ratio (BER): Useful for risk-based prioritization of chemicals for additional study and/or to serve as a low tier risk assessment approach?

POD ratio

Compare $POD_{traditional}$ to POD_{NAM} ; POD ratio > 0 means the POD_{NAM} was a conservative estimate of $POD_{traditional}$

- When was POD ratio > 0?
- When POD ratio < 0, are there clear areas for improvement?

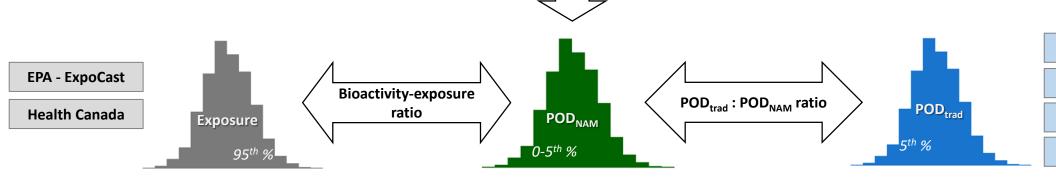
BER

Compare POD_{NAM} to ExpoCast exposure estimate; BER > 0 indicates POD_{NAM} was at a higher dose than predicted exposure

- When was BER ratio > 0?
- When BER ratio < 0, where there any distinguishing factors?

Case study workflow

ASTAR HIPPTox EC10s (μM)

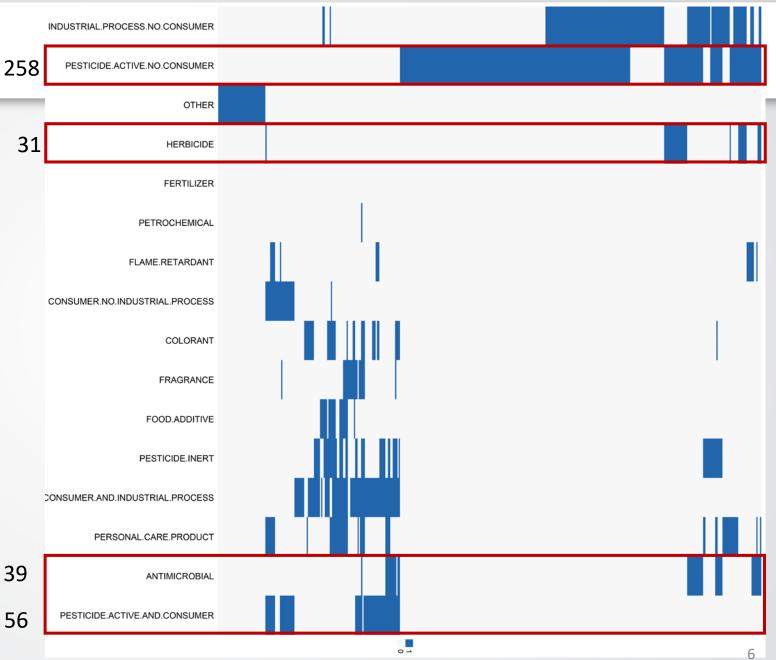

ToxCast AC50s (μM)

- If the sum of hitcalls across the ToxCast DB > 5, then the 5^{th} percentile on the distribution of AC50 values was used.
- If the sum of hitcalls across the ToxCast DB \leq 5, the lowest AC50 was used.
- Flag-filtering by removing AC50 values from fits with 3+ caution flags and hitpct <= 0.5

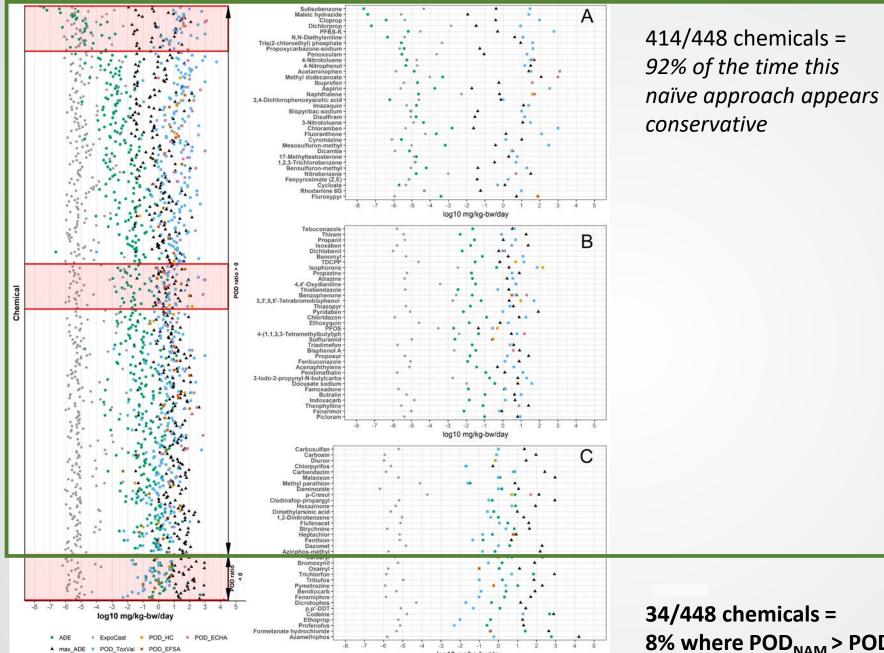
Apply highthroughput toxicokinetics (httk) to get mg/kg/day

- Using httk v1.8 values for humans
- Default to a simple model with no partition coefficients and use of steadystate concentration.
- Assume 100% bioavailability and restrictive clearance.

Is BER useful for prioritization?
Are there addressable weaknesses?


Is POD ratio > 0 for most chemicals? Can we learn from POD ratio < 0?

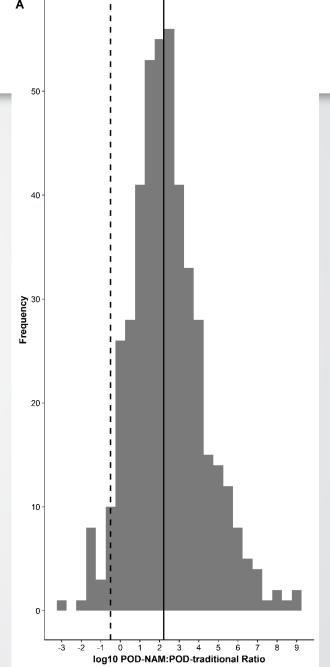
- EPA ToxValDB
- **Health Canada**
 - **EFSA**
 - ECHA
- NOEL, LOEL, NOAEL, or LOAEL
- Oral exposures
- Mg/kg/day


The functional use space of chemicals in the study

- This analysis used the simplistic use types available via AcTOR that are applied qualitatively.
- ~314/448 total have use as pesticide actives (~70%).

Preliminary results

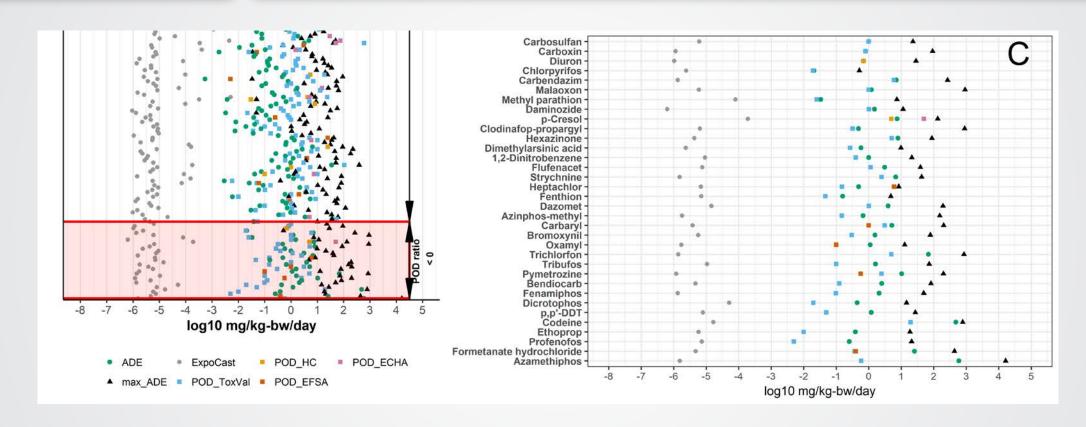
POD_{NAM} < POD_{traditional}


(most of the time)

8% where POD_{NAM} > POD_{traditional}

Distribution of the POD ratio demonstrates conservatism

The median POD-NAM:POD-traditional ratio is 2.2 (so approximately 100 mg/kg/day separation between values)



Conceptual consideration of uncertainties

Uncertainty sources	ToxCast AC50 values	httk model	In vivo PODs	ExpoCast predictions
Biological and Systematic	 Incomplete biological coverage Assay and curve modeling limitations. In vitro disposition and/or chemical purity Is the assay response "adverse," compensatory, or of unknown importance? Most assay data are "human" and POD_{traditional} are in animals. 	 In vitro data for intrinsic hepatic clearance and plasma protein binding subject to assay limitations, limit of detection, and in vitro disposition issues. Currently assume 100% bioavailability. Inter-individual variability. IVIVE concordance. 	 The reproducibility of the PODs, and the inherent variance in POD derivation, is not described here. Human relevance of the animal data. 	 Heuristic model, trained using assumptions and limitations of NHANES data. Specific use scenarios are not defined. Inter-individual variability not currently captured.
Added by interpretation and use in this case study	Use of AC50 instead of another modeled activity level.	 Default to a model with no partition coefficients and use of steady-state concentration which may not be appropriate for all chemicals. Evaluation of AUC and C_{max} could be added at a later date. 	 Lack of a controlled vocabulary for study type. PODs were limited to NOEL/LOEL/NOAEL/LOAEL. 	NA
How it is considered	 Caution flag + hit pct filtering. 5%-ile of the distribution of all available AC50s was taken. A rat-only example was generated with similar results in terms of % library. 	 Interindividual variability in toxicokinetics is incorporated via a Monte Carlo simulation; we take the 95%-ile (lower dose). 	 We derived a distribution of PODs for each chemical and took the 5%-ile. 	 We take the 95%-ile on the CI for the median for the total population (adds about 2 log's of conservatism)

Are there key drivers of examples where POD ratio ≤ 0?

$POD_{NAM} : POD_{traditional} \le 0$

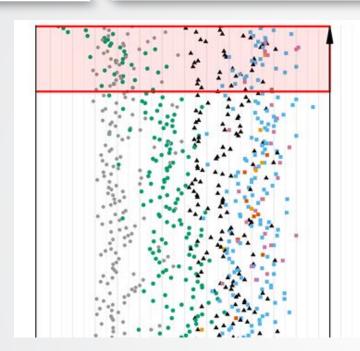
- Are some in vivo toxicity types poorly captured by ToxCast?
- Are some study types enriched in this space, and difficult to predict from bioactivity?

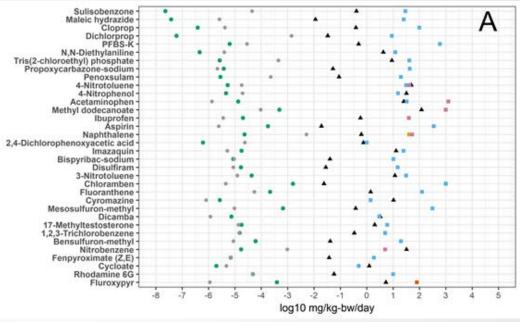
It does not seem like particular study types are driving the minimum(POD) when POD ratio ≤ 0.

Condition	Dev/Repro is minPOD	Dev/Repro is not minPOD
POD ratio < 0	1	33
POD ratio > 0	44	370

Condition	Chronic is minPOD	Chronic is not minPOD
POD ratio < 0	23	11
POD ratio > 0	249	165

Hypothesis	Fisher's exact test results	Caveats		
Reproductive and/or developmental studies over-represented when POD ratio ≤ 0?	Nop-value = 0.98;odds-ratio = 0.26	Some ambiguity or error expected in assigning study classes; preference given to: DNT, neuro, dev/repro, acute,		
Carcinogenicity or chronic studies over-represented when POD ratio ≤ 0?	Nop-value = 0.25;odds-ratio=1.4	repeat, chronic (in that order) in the event of a min POD tie		


Chemical structure features associated with organophosphate pesticides are enriched in the set with POD ratio ≤ 0 .


- 17 of 34
 chemicals with
 POD ratio ≤ 0
 are
 organophospha
 te pesticides.
- 20 of 34
 chemicals
 corresponded
 to these
 chemotype
 enrichments.

ChemoType Information		Appea	Appearance of the ToxPrint		Metrics		ChemoType Information		Appearance of the ToxPrint			Metrics			
Label	ToxPrint	Total	POD ratio ≤ 0	POD ratio > 0	ВА	OR	p-value	Label	ToxPrint	Total	POD ratio ≤ 0	POD ratio > 0	ва	OR	p-value
bond:CS_sulfide	c	53	11	42	0.57	4.2	0.000847	bond:P=O_ phosphorus_oxo	O	17	8	9	0.70	14	7.67E-06
bond:CX_halide_ alkyl-Cl_trichloro_ (1_1_1-)	a c	4	2	2	0.71	13	0.031009	bond:P~S_generic	S	27	9	18	0.64	7.8	5.48E-05
bond:P=O_ phosphate_thio	0 5	3	3	0	0.96	NA	0.000413	bond:C(=O)N_ carbamate	N 0	20	6	14	0.62	6.1	0.002294
bond:P=O_ phosphate_thioate	o o	9	3	6	0.63	6.5	0.025108				la o Channa	T	: ala		ra warkflow

Are there key drivers of examples where BER < 0?

BER < 0

- Do some ToxCast assay AC50s drive a much lower AC50?
- Are some ExpoCast predictions overly conservative?
- The chemicals for which BER < 0 should be reviewed to understand the difference between the *in vivo* POD information and the in vitro bioactivity information [ongoing work].

Only ~6% of chemicals in the case study have BER < 0 using the more conservative estimate of exposure.

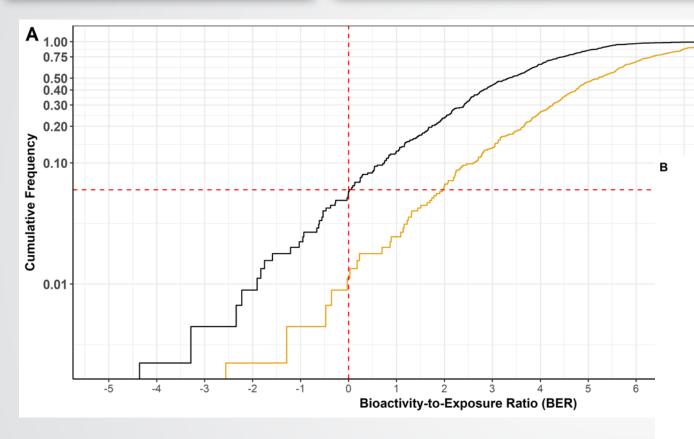


Figure 10, Paul Friedman et al. in prep.

	Chemical Name	log10(ADE)	log10(ExpoCast 95%-ile)	BER, 95%-ile
1	Dichlorprop	-7.21	-2.85	-4.36
2	Sulisobenzone	-7.64	-4.35	-3.29
3	Naphthalene	-4.63	-2.29	-2.34
4	Tris(2-chloroethyl) phosphate	-5.58	-3.35	-2.23
5	Penoxsulam	-5.55	-3.64	-1.91
6	Maleic hydrazide	-7.42	-5.59	-1.83
7	Nitrobenzene	-4.76	-3.01	-1.75
8	2,4-Dichlorophenoxyacetic acid	-6.21	-4.62	-1.59
9	17alpha-Ethinylestradiol	-6.63	-5.42	-1.21
10	Cloprop	-6.41	-5.38	-1.03
11	Mirex	-4.76	-3.81	-0.95
12	N,N-Diethylaniline	-6.33	-5.40	-0.93
13	PFBS-K	-5.20	-4.54	-0.66
14	4-Nitrophenol	-5.33	-4.71	-0.62
15	Dioctyl phthalate	-2.73	-2.13	-0.61
16	PFOA, ammonium salt	-4.05	-3.49	-0.56
17	2-Phenoxyethanol	-3.07	-2.54	-0.53
18	4-Nitrotoluene	-5.27	-4.74	-0.53
19	Biphenyl	-4.44	-3.97	-0.47
20	Cycloate	-5.70	-5.33	-0.38
21	Resorcinol	-2.68	-2.40	-0.28
22	Tributyl phosphate	-2.66	-2.39	-0.27
23	Bispyribac-sodium	-5.06	-5.03	-0.03
24	Fenpyroximate (Z,E)	-5.15	-5.14	-0.01
25	17beta-Estradiol	-5.36	-5.35	-0.01
26	Rhodamine 6G	-4.31	-4.31	0.00

Were the ToxCast AC50 values just much lower for the chemicals with BER <0? No, not uniformly.

- Top distribution shows all AC50s for chemicals in the case study.
- For some chemicals, they did appear more potent (lower AC50 values).
- Others seemed to fall squarely along the aggregate distribution.
- We've taken a conservative approach with high-throughput toxicokinetics that favors lower POD-NAM values.
- In practice there are opportunities to refine the lowest AC50 used (particularly for smaller groups of chemicals) beyond the automated refinements in place.

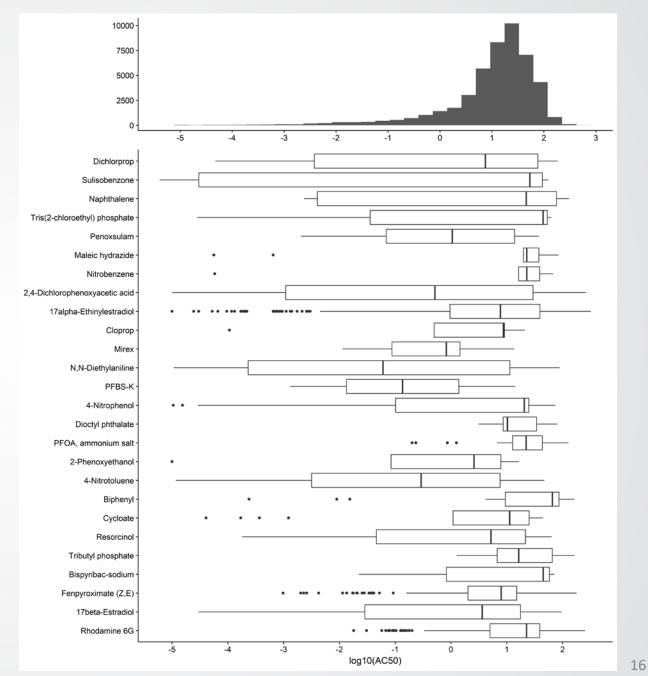
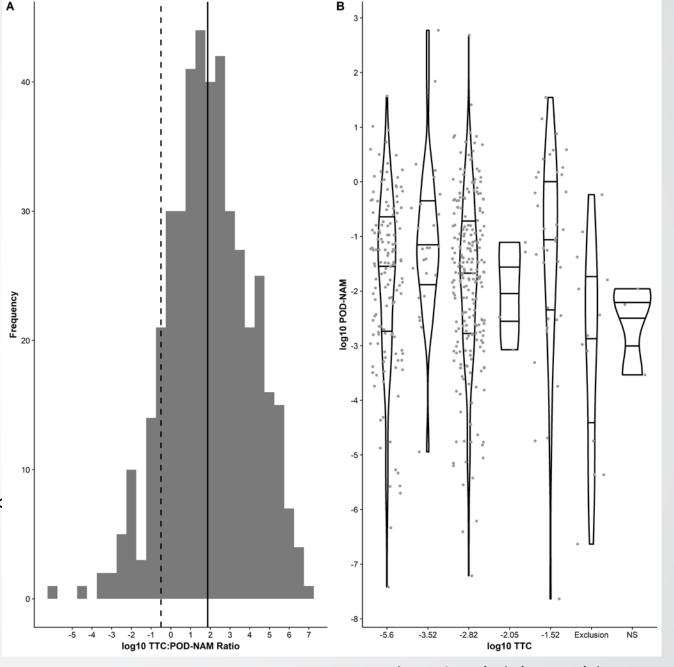


Figure 11, Paul Friedman et al. in prep.

Does using bioactivity as a conservative POD differ from using a TTC approach?


- Threshold of toxicological concern (TTC)
 = conservative
- Human exposure threshold value for (groups of) chemicals below which there would be no appreciable risk to human health.
- Relies on past accumulated knowledge regarding the distribution of NOELs of relevant classes of chemicals for which good toxicity data do exist.
- Useful substitute for substance-specific hazard information when human exposure is very low and there is limited or no information on the toxicity.

Cramer (1978) structural classes from non-cancer data

Structural Class	# of chem	5 th percentile NOEL (μg/kg-bw/day)	Human Exposure threshold (μg/kg-bw/day)
 Easily metabolized; low toxicity	137	2993	30
II Intermediate structures	28	906	9
Complex structures; Metabolism to reactive products suggestive of toxicity	447	147	1.5

TTC vs. POD-NAM

- The TTC:POD-NAM ratio distribution demonstrated median ratio of 1.88 on the log10 scale, suggesting that on average the TTC was more conservative by about 75 mg/kg/day
- Indeed 84% of the time, TTC was more conservative than POD-NAM.
- POD-NAM was possible in some cases for exclusions or "no structure" compounds in ToxTree.
- A combined approach, using the data available, might work for screening (e.g., one possibility might be to default to TTC if it is all that is available or if POD-NAM < TTC).

TTC values from ToxTree provided by Matthew Gagne and Tara Barton-Maclaren at Health Canada

Figure 12, Paul Friedman et al. in prep. $_{18}$

Conclusions and limitations

- A simplistic approach to using in vitro bioactivity data as a POD appears to be a conservative estimate > 90% of the time for 448 chemicals.
- POD_{NAM} estimates appear conservative with a margin of ~100.
- POD_{NAM} may provide a refinement of a TTC approach.
- When combined with high-throughput exposure estimates, this approach provides a reasonable basis for risk-based prioritization and screening level risk assessments.

- Specific types of chemicals may be currently outside the domain of applicability due to assay limitations, e.g., organophosphate insecticides: how do we identify these in the future?
- This is the largest retrospective look at this to-date; but what if new chemicals perform differently? What will be the prospective approach?
- Additional research to include expanded and improved highthroughput toxicokinetics and in vitro disposition kinetics may help improve POD_{NAM} estimates.

