

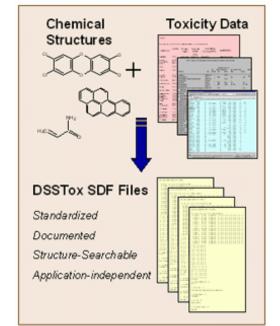
Integration of Markush Structures into EPA's DSSTox Database to Represent and Enumerate UVCB Substances

<u>Christopher Grulke</u>† Antony Williams Ann Richard

NCCT, U.S. EPA

American Chemical Society Meeting, Spring 2018

18 March 2018, New Orleans, LA


The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

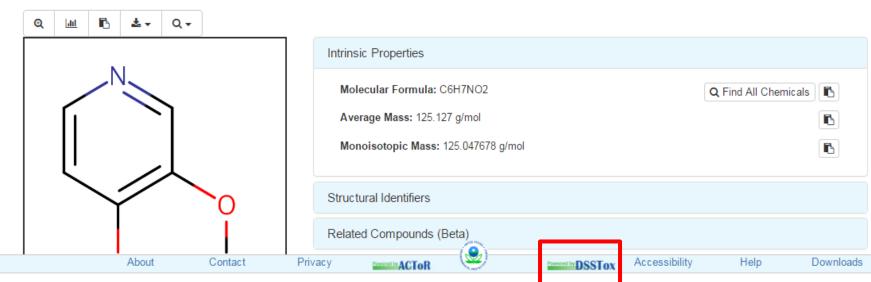
DSSTox Ancient History

Goal: Linking chemical structures to data enabling SAR

- First release of data files in 2004
- Focused on high impact sets of data
 - -Carcinogenic Potency Database
 - -Drinking water disinfection by-products
 - -EPA's Integrated Risk Information System
 - -FDA's Maximum Daily Dose dataset
 - -EPA's Fat Head Minnow Toxicity dataset
 - -etc...
- Managed all chemical registration for ToxCast and Tox21 chemicals
- By 2014, roughly 20K manually curated substance records

DSSTox Current History

- 761K substance records (27.5K manually curated)
- Central database for the Comptox Chemical Dashboard
- More Goals:
 - Become a hub for all chemical data relevant to an environmental scientist
 - -Provide batch extraction of chemical data for our user community
 - -Offer chemical list based views of our data
 - -Provide list specific search capabilities
- Check out: https://comptox.epa.gov/dashboard

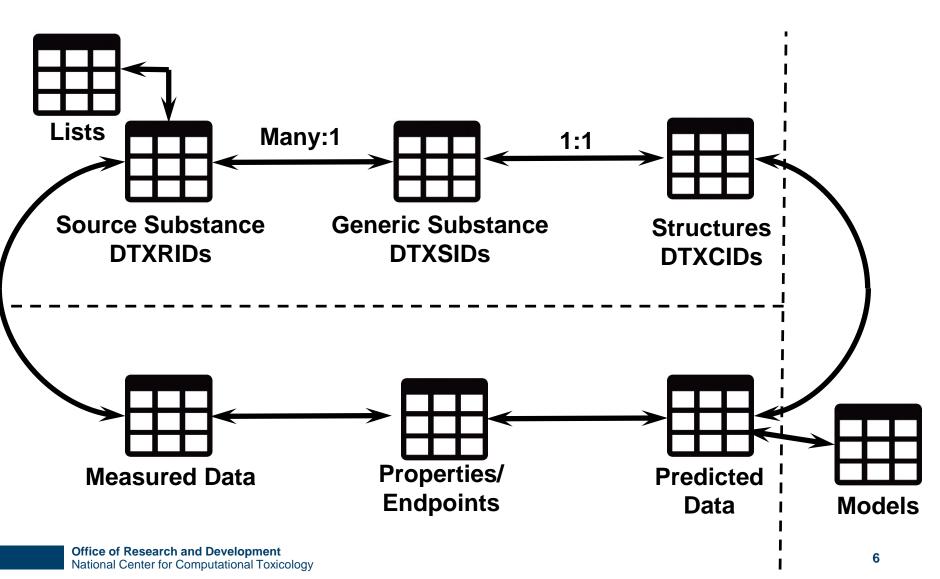

Comptox Chemistry Dashboard

United States Environmental Protection Agency	Home	Advanced Search	Lists		Search (Chemistry Da	shbo	card
Chemistry Dashboard				Submit Comment	Share 🗸	Сору 🗸		Aa

4-Hydroxy-3-methoxypyridine

62885-41-0 | DTXSID80198757

Searched by CAS-RN: Found 1 result for '62885-41-0'.



Comptox Chemistry Dashboard (Cont.)

Submit Comment Summary Download as: TSV Excel SDF Property Average Median Regrimental Predicted Experimental Pred	Search Chem								
Chei	mistry Dashboard	bboard Submit Comment Stare - Cather perties Env. Fate/Transport Synonym External Links Toxicity Values (Beta) Exposure Bioassays Simlar Molecules (Beta) Literature Comments mol-Water For External Links Toxicity Values (Beta) Exposure Bioassays Simlar Molecules (Beta) Literature Comments mol-Water ToV Excel SDF Property Averse Median Predicted Experimental Predicted Experiment							
	Chemical Properties En	v. Fate/Transport Synonyms	External Links	Toxicity ∀alue	es (Beta) Exposure	Bioassays	Similar Molecules (Beta) Literature	Comments
	Summary	Download as: TSV	Excel SDF						
	LogP: Octanol-Water	Property	Av	erage	Median		Dance		Unit
	Water Solubility			-			Experimental	5	
	Density	LogP: Octanol-Water	2.61 (1)	2.76 (4)	2.61 to 2.61	2.76	2.61	2.50 to 3.05	-
	Donoty	Water Solubility	1.30e-04 (1)	1.46e-02 (4)	1.30e-04 to 1.30e-04	1.46e-02	1.30e-04	1.50e-04 to 5.71e-02	mol/L
	Melting Point	Density	-	1.27 (1)	-	1.27	-	-	g/cm^3
	Boiling Doint	Melting Point	174 (6)	151 (3)	173 to 177	151	173 to 177	114 to 185	°C
	Doning Point	Boiling Point	-	312 (3)	-	312	-	284 to 339	°C
	Surface Tension	Surface Tension	-	53.8 (1)	-	53.8	-	-	dyn/cm
	Vapor Pressure	Vapor Pressure	7.21e-11 (1)	4.47e-06 (3)	7.21e-11 to 7.21e-11	4.47e-06	7.21e-11	2.06e-07 to 1.27e-05	mmHg
	vapor Pressure	LogKoa: Octanol-Air	-	8.38 (1)	-	8.38	-	-	-
	LogKoa: Octanol-Air	Henry's Law	-	4.20e-10 (1)	-	4.20e-10	-	-	atm-m3/r
	Uners de Levre	Index of Refraction	-	1.61 (1)	-	1.61	-	-	-
	Henry's Law	Molar Refractivity	-	58.5 (1)	-	58.5	-	-	cm^3
	Index of Refraction	pKa Basic Apparent	-	2.27 (1)	-	2.27	-	-	-
		Molar ∀olume	-	170 (1)	-	170	-	-	cm^3
	Molar Retractivity	Polarizability	-	23.2 (1)	-	23.2	-	-	Å^3
	pKa Basic Apparent								

General Data Model

So Where is the Data?

C10-16 Alcohols

67762-41-8 | DTXSID4028331

Searched by Approved Name: Found 1 result for 'C10-18 Alcohols'.

Presence in Lists							
Federal Safer Choice Chemical List							
US State							
International							
Other TSCAACTIVE							
Record Information							
Quality Control Notes							

Related Substances	Synonyms Links	Bioassays Exposure	Hazard Comments	Chemical Properties	Literature
--------------------	----------------	--------------------	-----------------	---------------------	------------

No Chemical Properties Found.

UVCB Chemicals

Environmental Topics

Environmental Protection

Agency

Laws & Regulations About EPA

Search EPA.gov

SHARE (f)

P) (🖂

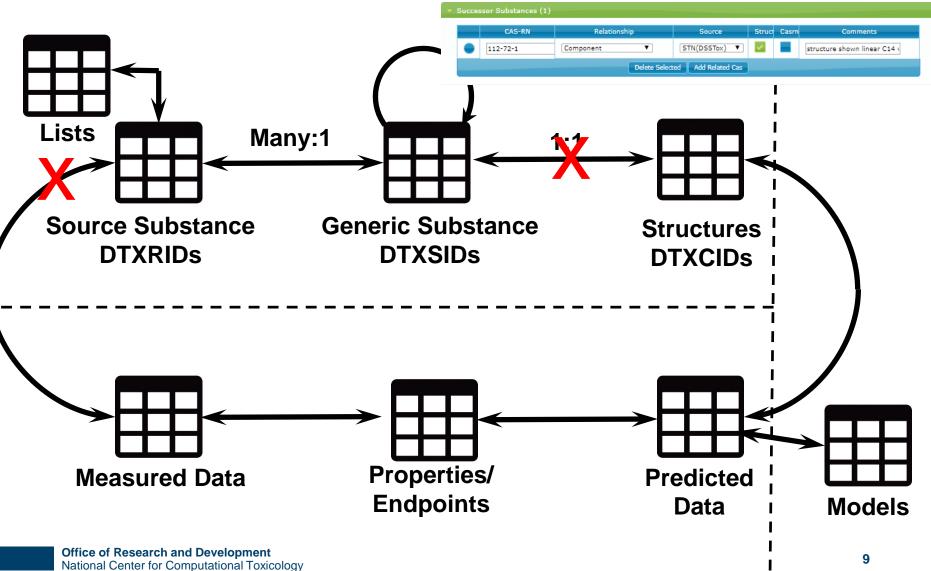
CONTACT US

TSCA Chemical Substance Inventory

TSCA Inventory Home

About the Inventory

Access the Inventory Policy and Guidance Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCB Substance) on the TSCA Inventory


This paper is a compendium of information related to the broad class of chemical substances referred to as UVCBs for the Toxic Substances Control Act (TSCA) Chemical Substance Inventory. These chemical substances cannot be represented by unique structures and molecular formulas.

UVCB chemical examples

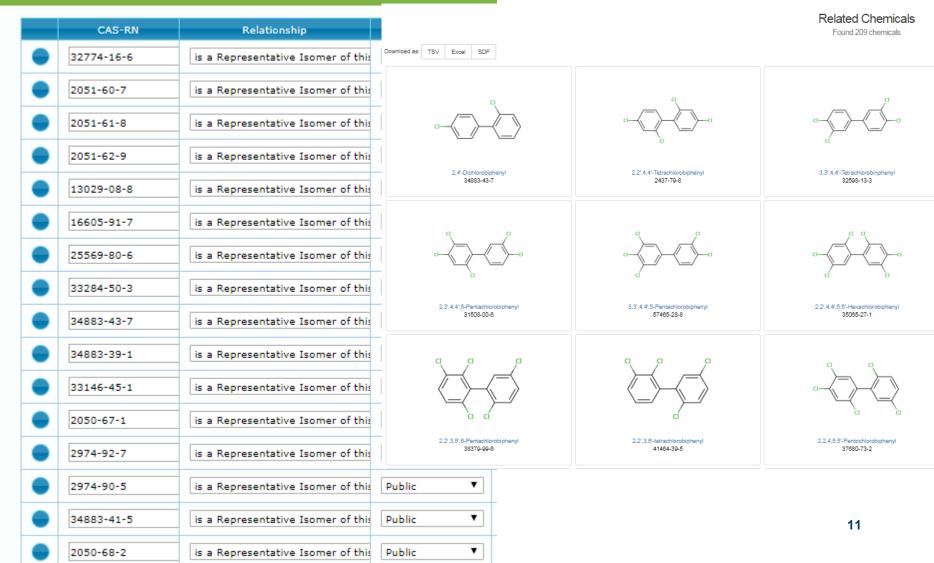
- -Surfactants with undefined composition
- -Petroleum Distillates
- -Gelatins, hydrozylates
- -Formaldehyde, reaction products with diethanolamine
- -Fatty acids, linseed-oil, compds. with triethylamine

Data linkage breakdown

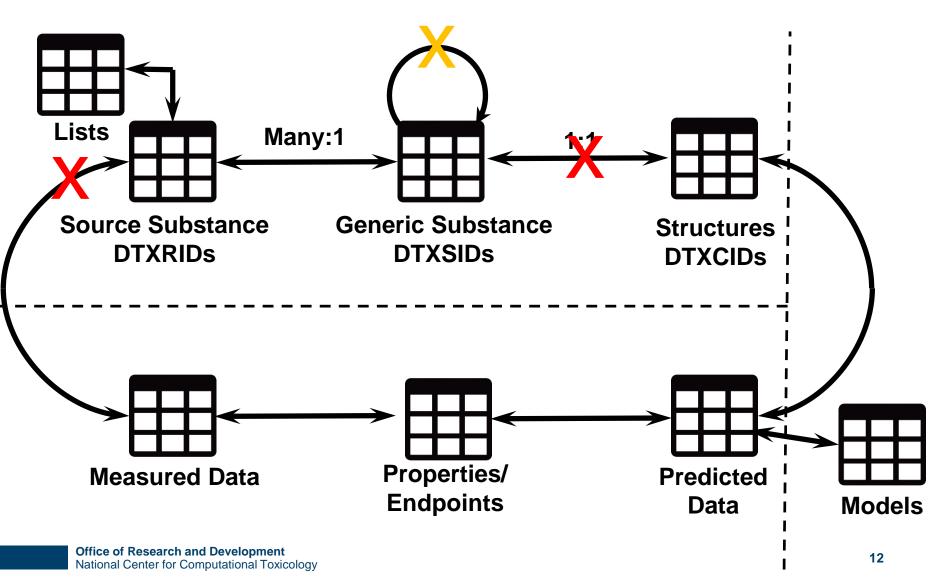
So Where is the Data?

C10-16 Alcohols

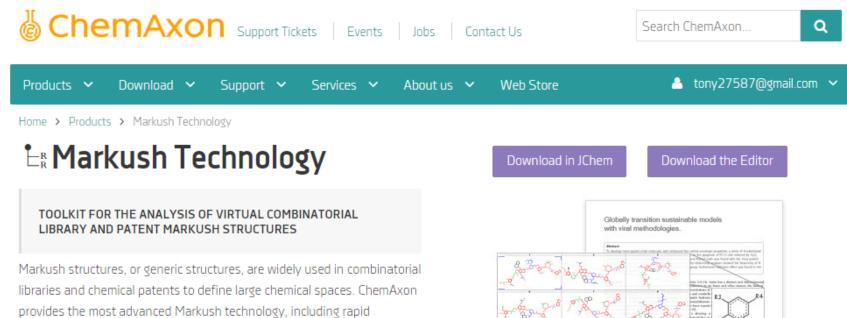
67762-41-8 | DTXSID4028331

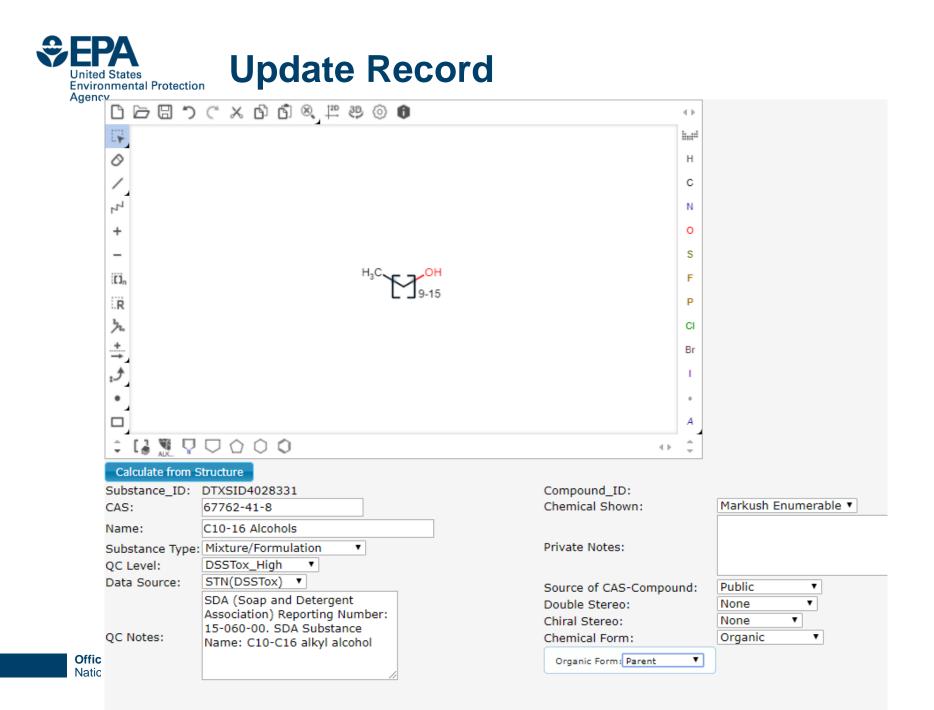

Searched by Approved Name: Found 1 result for 'C10-18 Alcohols'.

Presence in Lists										
Federal Safer Choice Chemi	ical List									
US State										
International										
Other TSCAACTIVE	Related Substances	Synonyms	Links	Bioassays	Exposure	Hazard	Comments	Chemical Properties	Literature	
Record Information Quality Control Notes	Download / Se	nd 👻	Sort by:	Relationship	- Û					
Related Substances Synonyms				Searched Che elated ch ucture w substar	emical ith this		-	ve Component		
No Chemical Properties Found. Inffice of Research and Developm lational Center for Computational				C10-16 Alcol 67762-41-	nols			adecanol I-72-1		1


Chemical Families (e.g. PCBs)

Successor Substances (209)

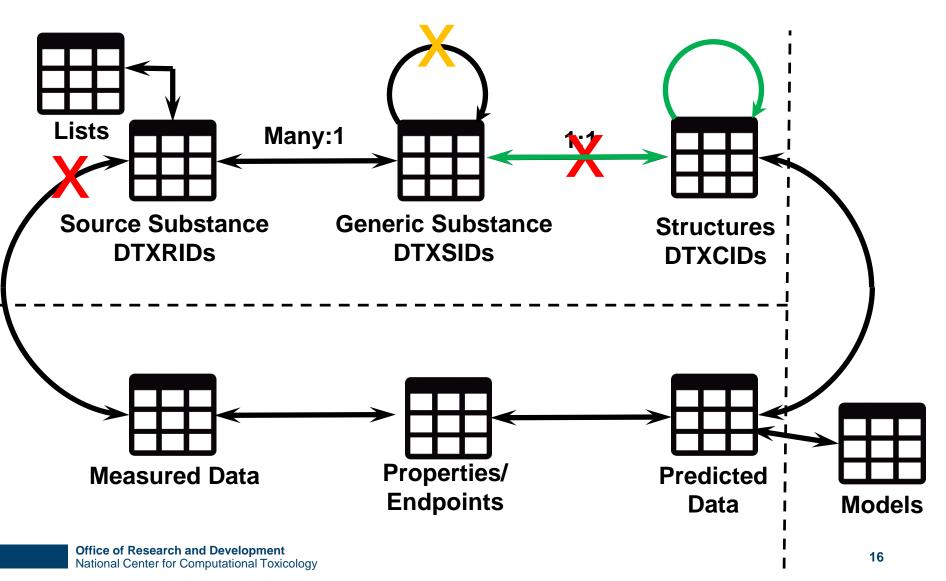

Data linkage breakdown

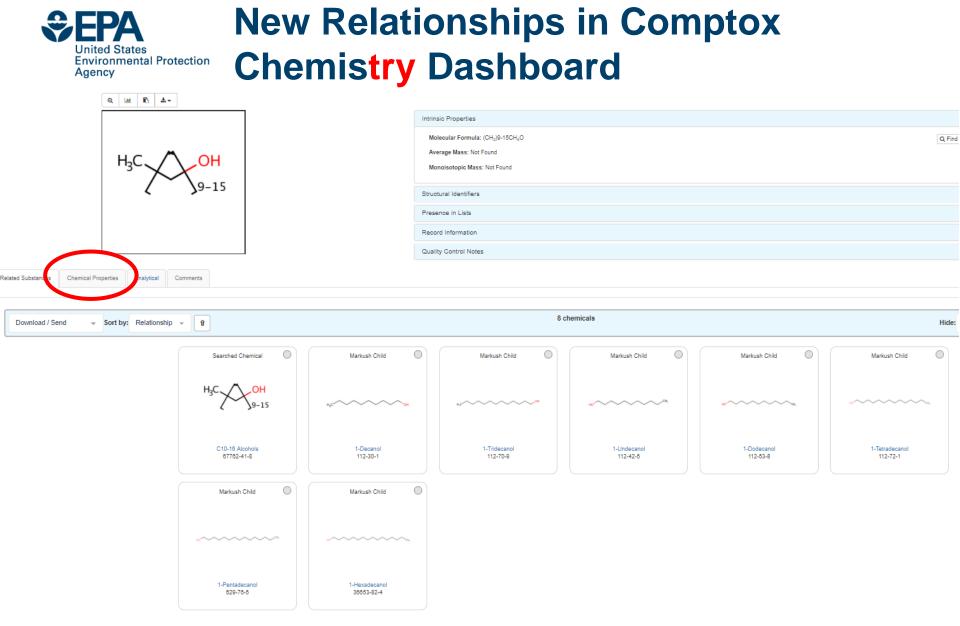


13

ChemAxon Markush Technology

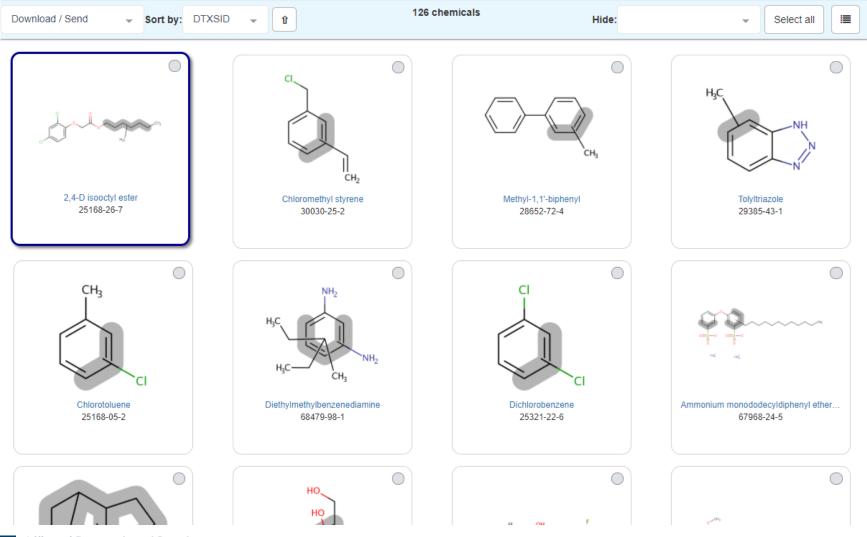
structure search in Markush space, enumeration, overlap analyses, and automatic Markush composition. All Markush analysis features are available as an add-on for ChemAxon's JChem technology (JChem Base, JChem Cartridge and Instant JChem).





Ż	EPA	
	United States	
	Environmental Protection	
	Agency	

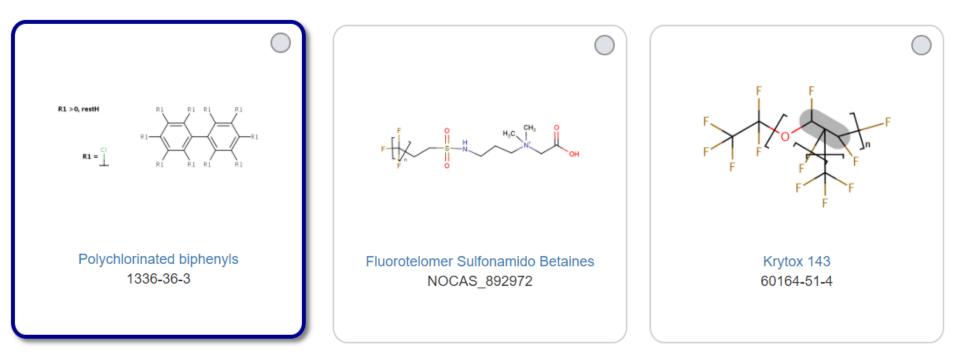
5	- scipis	44	for (Compound compound : compounds) {
	service		Calendar <pre>cal = Calendar.getInstance();</pre>
	💑 hibernate.cfg.xml		List <string> inchikeys = JChemMarkush.EnumerateInchi</string>
	hibernate-pg.cfg.xml		System.out.println(compound.getDsstoxCompoundId() +
	📊 log4j.properties		<pre>for(String key:inchikeys){</pre>
•	.gitignore		Compound newComp = compoundDAO.findByInchiKey(ke
ť			<pre>if(newComp!=null) { System.out.println("\t"+key+"\t" +newComp.ge</pre>
12	ChEBI_complete.sdf		CompoundRelationship cr = new CompoundRelati
1 ?	ChEBI_complete_3star.sdf		cr.setRelationship("Markush Child");
1			cr.setSource("ChemRegScripts/MarkushEnumerat
4	DocumentCategoryNOSlist1.txt		<pre>cr.setFkCompoundrelationshipTypeId(31);</pre>
省	DocumentCategoryNOSlist2.txt		<pre>cr.setPredecessorCompound(compound);</pre>
	DocumentCategoryNOSlist3.txt		cr.setSuccessorCompound (newComp);
	DocumentCategoryNOSlist4.txt		<pre>cr.setCreatedBy("cgrulke");</pre>
	DocumentCategoryNOSlist5.txt		cr.setUpdatedBy("cgrulke");
	DSSToxTOX21S_with ACDLABSPhysChem.sdf		<pre>sf.getCurrentSession().save(cr); }else{</pre>
	DSSTOXTOXE15_with ACDLABSPhysChem.sdf		System.out.println("\t"+key);
	mixtures2.sdf		}
	new_tox21_records.csv		
	tox21_qsur_predictions_in_domain.csv		
	TSCA_missing.xlsx		tx.commit();
l i	Updated_STAR_Flags_WS.sdf		
r IIII Ext	ernal Libraries		
🕞 🕨 📑	, < 9.0 > C:\Program Files\Java\jdk-9.0.4		
	.com.epam.indigo:indigo-inchi:1.2.3.r0		MarkushEnumeration → main()
tun 🔚 M	larkushEnumeration		
	\-[NAMED PARAM] ParameterNode: '?' {name=inchiKe	ev. expect	edTune=org hibernate tune StringTune@6ed166571
	([MIIID_IMUII] FUTURE OF INGLET . [MIIIE=INGINA	-17 cmpcoo	carpe-orginizeraderosperodringispeddarodors
■ +	DEBUG [main] (ErrorCounter.java:113) - throwQueryException	n(): no e	rrors
<u>5</u>	DEBUG [main] (QueryTranslatorImpl.java:263) - HQL: from da	atabase.Co	mpound where jchemInchikey = :inchiKey
	DEBUG [main] (QueryTranslatorImpl.java:264) - SQL: select	compound0	id as idl_20_, compound0acd_index_name as acd_inde2_20_, com
	DEBUG [main] (ErrorCounter.java:113) - throwQueryException	n() : no e	rrors
1 🖬	MWKFXSUHUHTGQN-UHFFFAOYSA-N DTXCID501946		
 	KJIQQYGWTQBHNH-UHFFFAOYSA-N DTXCID706915		
	LQZZUXJYWNFBMV-UHFFFAOYSA-N DTXCID906918		
e .	XFRVVPUIAFSTFO-UHFFFAOYSA-N DTXCID901947		
	HLZKNKRTKFSKGZ-UHFFFAOYSA-N DTXCID406926 REIUXOLGHVXAEO-UHFFFAOYSA-N DTXCID207270		
×	BXWNKGSJHAJOGX-UHFFFAOYSA-N DIXCID207270		
?	blandbollaboon ontrikorba a bincibeerioor		
	Process finished with exit code 0		


Collecting Property Distributions for Markush Children

Molting Doint									
Melting Point	Experimental								
Boiling Point	Source								
Surface Tension	PhysPropNCCT	Result 2.52e-05 mmHg							
Vapor Pressure		2.020 00 mm .g	Predicted						
LogKoa: Octanol-Air	Source	Result	Calcu						
Henry's Law	NICEATM	5.23e-05 mmHg	Not Available						
Index of Refraction	ACD/Labs	1.24e-04 mmHg	Not Available						
Malar Dafractivity	TEST	1.24e-05 mmHg	TEST Report						
Molar Refractivity	OPERA	1.33e-05 mmHg	OPERA Model Report						
Molar Volume									

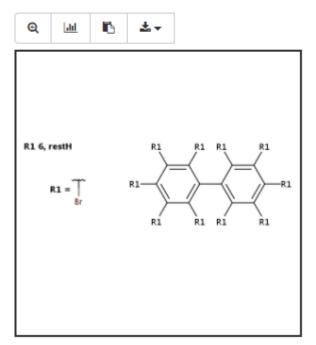
Polarizability

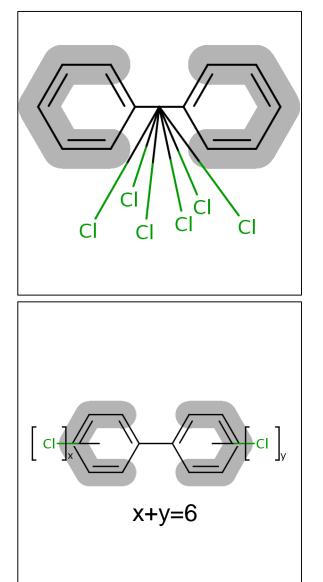
Markush in DSSTox


Office of Research and Development National Center for Computational Toxicology

Span of Predicted Properties for UVCBs

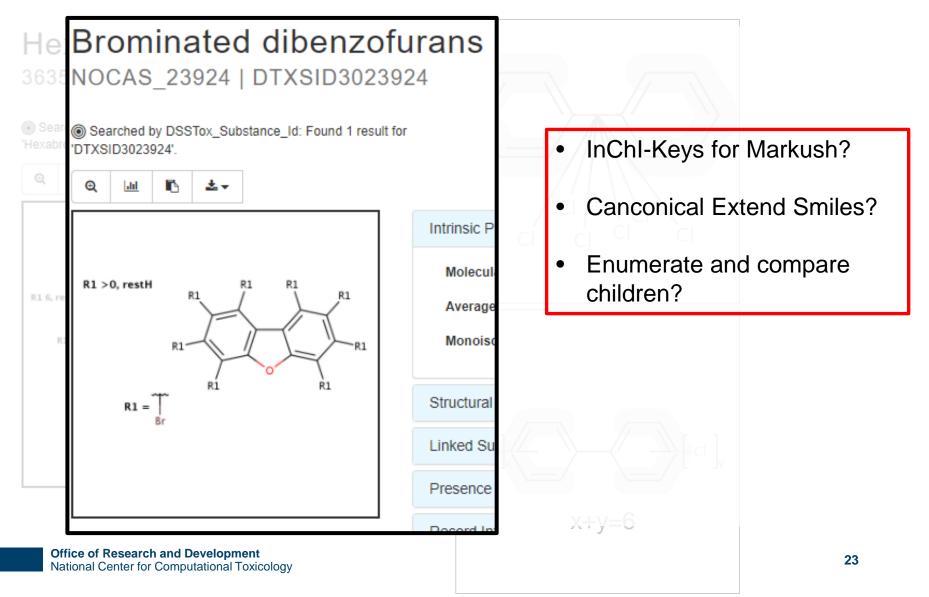
Problems: Queryable, but Not Enumerable




Problem: Human Readable or Computable

Hexabromobiphenyl 36355-01-8 | DTXSID3025382

Searched by Approved Name: Found 1 result for 'Hexabromobiphenyl'.

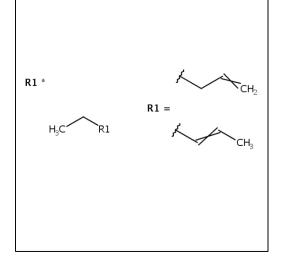


Office of Research and Development National Center for Computational Toxicology

Problem: Markush Uniqueness

Problem: Do We Know the Substance?

C10-16 Alcohols 67762-41-8 | DTXSID4028331


Searched by Approved Name: Found 1 result for 'C10-16 Alcohols'.

Q	<u>laid</u>	•	**	
	H₃C	7	\bigcirc	OH 9-15

Problem: Drawing Limitations

• Variable position bonds (e.g, Pentene)

Problems: Markush Structure

File Edit View Table Structure Tools Help

structure

and

ChemistryDashboard-Batch-Search_2018-03-16_13_19_53.sdf - MarvinView 18.5

DTXSID40891095

DTXSID90890210

Error

DTXS

DTXS

DTXSID4052184

FOUND_BY

DSSTox_Substance_Id

DSSTox_Substance_Id

Stack Trace

DSSTox_Substance_Id

Read error after molecule 126: Invalid counts line

OK

DTXSID

DTXSID40891095

DTXSID90890210

Copy to Clipboard

DTXSID4052184

Х

INPUT

Transfer

• Mol File

-	100 5 I 0 /
-1	V30 6 1 6 11
4	V30 7 1 6 12
4	V30 8 1 8 9
4	V30 9 2 8 10
4	V30 10 1 4 3
4	V30 11 1 3 13
4	V30 12 1 5 14
4	V30 13 2 14 16
4	V30 14 2 14 17
4	V30 15 1 14 15
4	V30 16 1 15 18
4	V30 17 1 18 19
4	V30 18 1 19 20
- 1	V30 19 1 6 20
- 4	V30 END BOND
4	V30 BEGIN SGROUP
4	V30 1 SRU 0 ATOMS=(3 1 2 3) XBONDS=(2 10 11) BRKXYZ=(9 -10.3158 -0.8296 0 -
4	V30 -10.3987 1.0166 0 0 0 0) BRKXYZ=(9 -8.7797 0.6021 0 -9.7037 -0.9984 0 -
4	V30 0 0) CONNECT=HT LABEL=n
4	V30 END SGROUP
4	V30 END CTAB
4	END

• CASIVILE	5						
DTXSID4024858 m,p-Cresol mixture	C*.OC1=CC=CC=C1 [c:4,6,t:2,lp:2:2,m:1:6.7]	<				×	
DTXSID3024364 Cresol	C*.OC1=CC=CC=C1 c:4,6,t:2,lp:2:2,m:1:6.7.8						
DTXSID5024396 Acetin	CC(*)=0.0CC(0)CO p:3:2,4:2,7:2,9:2,m:2:4.7						
DTXSID7024611 Bis(t-butyl dioxyisopropyl)benzene	CC(C)(C)OOC(C)(C)*.CC(C)(C)OOC(C)(C)C1=CC=CC=C1 c:20,22,t:18,lp	lp:4:2,5:2,14:2,15:2,m:9:21.22	1				
DTXSID6024701 tert-Butylphenyl diphenyl phosphate	CC(C)(C)*.O=P(OC1=CC=CC=C1)(OC1=CC=CC=C1)OC1=CC=CC=C1	c:9,11,17,19,25,27,t:7,15,23,	lp:5:2,7:2,14:2,21:2,m:4:11.	.12.13			
DTXSID6024703 Butyltin tris(isooctylmercaptoacetate)	C*.C*.C*.CCCCCCCCCC(=0)CS[Sn](CCCC)(SCC(=0)0CCCCCCC)SCC(=	(=O)OCCCCCCC lp:13:2,15:2	,17:2,23:2,26:2,27:2,35:2,38	3:2,39:2,m:1:7.8.9.10.11.12,	3:40.41.42.43.44.45,5:28.29	.30.31.32.33	
DTXSID3024861 Cresyl diphenyl phosphate	C*.O=P(OC1=CC=CC=C1)(OC1=CC=CC=C1)OC1=CC=CC=C1 c:6,8,14	4,16,22,24,t:4,12,20,lp:2:2,4:	2,11:2,18:2,m:1:6.7.8				
DTXSID4025082 Diisodecyl phthalate	C*.C*.CCCCCCCCCCCC(=0)C1=C(C=CC=C1)C(=0)OCCCCCCCCC c:16	6,18,t:14,lp:13:2,15:2,23:2,24	:2,m:1:5.6.7.8.9.10.11.12,3:	25.26.27.28.29.30.31.32			
	C*.C*.C1=CC2=C(C=C1)C=CC=C2 c:2,6,9,11,m:1:4.5,3:4.8.9.10.11.12.1	.13					
DTXSID3025172 Dioctyltin-S,S'-bis(isooctylmercaptoacetate)	C*.C*.CCCCCCCC[Sn](CCCCCCCC)(SCC(=0)OCCCCCCC)SCC(=0)OC	CCCCCCC lp:21:2,24:2,25:2,3	33:2,36:2,37:2,m:1:38.39.40	.41.42.43,3:26.27.28.29.30.	31		
DTXSID7025188 C.I. Direct Black 80	[Na+].[Na+].[Na+].NC1=CC=C2C=C(C(N=NC3=CC=C4C=C(C(N=NC5=C	CC=C(C=C5)N=NC5=CC=C(N)C6=C5C=CC=C6)=C(O)C4	=C3)S([O-])(=O)=O)=C(O)C	2=C1)S([O-])(=O)=O.[O-]S(*)(=O)=O c:5,14,21,23,33,36,38	i,44,54,t:1,3,10,12,
DTXSID2025216 Divinylbenzene	*C=C.C=CC1=CC=CC=C1 c:6,8,t:4,m:0:6.8						
DTXSID7025219 Sodium dodecylbenzenesulfonate	[Na+].CCCCCCCCCCC*.[O-]S(=O)(=O)C1=CC=CC=C1 c:18,20,t:16,lp	p:14:3,16:2,17:2,m:13:21.22.2	3				
DTXSID3025382 Hexabromobiphenyl	CI*.CI*.C1=CC=C(C=C1)C1=CC=CC=C1 c:2,4,6,11,13,t:9,lp:0:3,2:3,m:1	1:11.12.13.14.15,3:4.5.6.8.9,	Sg:n:0:x:ht,Sg:n:2:y:ht				
DTXSID9025295 2-Ethylhexenal	CC[*] \$;;_R0\$,RG:_R0={*C(CCC=C)C=O \$_AP1;;;;;;\$,lp:7:2]},{CCC=CC	C(*)C=O \$;;;;;_AP1;;\$,Ip:7:2	},{CCCCC(*)=C=O \$;;;;;_AF	P1;;\$,Ip:7:2 },{CC=CCC(*)C=	O \$;;;;;_AP1;;\$,Ip:7:2 },{CC	CC=C(*)C=O \$;;;;;_AP1;;\$,lp:7:	:2 }
DTXSID6024129 Hexabromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;;_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;6}	
DTXSID3024233 Nonabromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;;_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;9}	
DTXSID8024236 Octabromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;;_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;8}	
DTXSID2024246 Pentabromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;,_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;5}	
DTXSID8024319 Tetrabromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;;_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;4}	
DTXSID50881109 Tribromodiphenyl ether	[*]C1=C([*])C([*])=C(OC2=C([*])C([*])=C([*])C([*])=C2[*])C([*])=C1[*] \$_R	R1;;;_R1;;_R1;;,_R1;;_R1;;_R1;;_I	R1;;_R1;;_R1;;_R1;;_R1\$,c:	1,8,16,21,t:5,12,lp:7:2,RG:_	R1={Br* \$;_AP1\$,Ip:0:2 },L0	DG={_R1:;H;3}	
DTXSID6027923 Dodecylbenzenesulfonic acid	CCCCCCCCCCC*.OS(=O)(=O)C1=CC=CC=C1 c:18,20,t:16,lp:13:2,15:	5:2,16:2,m:12:20.21.22					
DTVOID0007000 D: F I IFI I II F IF I	THE JUNE J DODDODODODOT TO JOINT ON O TO JOINT ON O DIOL OD	- 00 04104 00 00 041 0	4 00 00 00 · 40 00 · 40 0 4	0 0 47 0 40 0 04 0 00 0 00 0	40.04.00.00.04.05.45.07	00.00.00.04.00.001	

_

4-[[4-[2-[4-(2-hydroxybutoxy)methylp] sodium salt (1:1)

PREFERRED_NAME

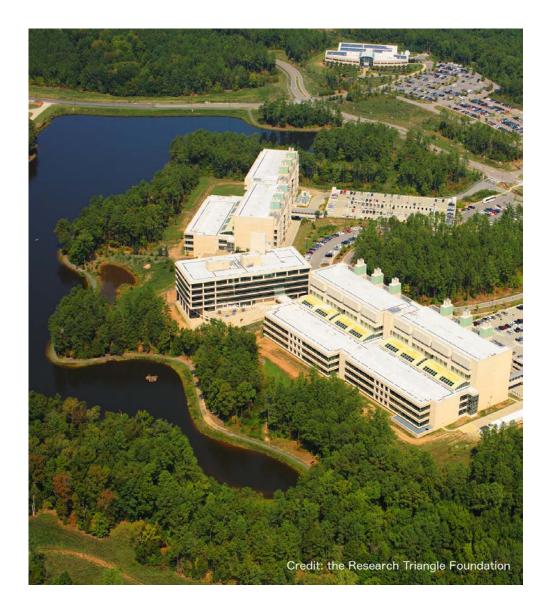
Benzenesulfonamide,

Benzenesulfonic acid, 3-[[4-amino-9,10-dihydro-9,10-dioxosodium salt (1:2)

2-Mercaptomethylbenzimidazole

Glyceryl dicaprate

Xylenes



Conclusions

- Use of Markush for UVCB enables linking
- A lot of UVCB cannot be depicted with Markush
- Integration of Markush Technology brings its own problems
 - -Best depiction vs current enumeration capabilities
 - -Determining uniqueness
 - -Actually understanding the chemical substance
 - -Overcoming limitations through willpower
 - -Sharing Markush

Acknowledgements

EPA NCCT IT Jeff Edwards Jeremy Dunne

<u>EPA NCCT Curation</u> David McKee Inthirany Thillainadarajah Sakuntala Sivasupramaniam

EPA NERL Curation Brian Meyer

Questions?

- The CompTox Chemistry Dashboard is the public interface into DSSTox chemical data (and everything that we can associate)
- Semi-automated curation is effective for expanding our data, while allowing appropriate correction via manual interaction
- We take care of our data
- We let you know how well we take care of our data
- We want your feedback to help us take care of our data!
 On United States
 Mited States

Submit Comment

Searc