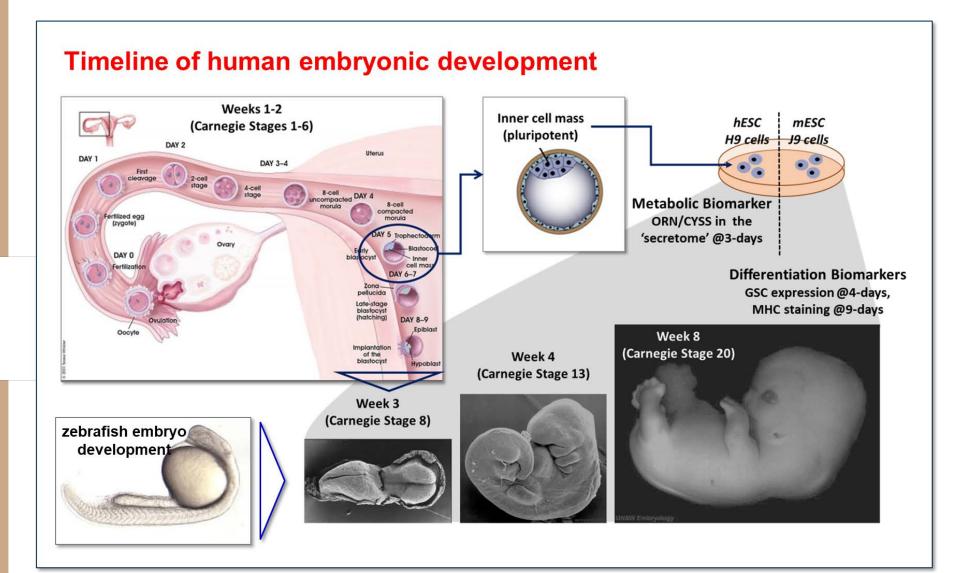


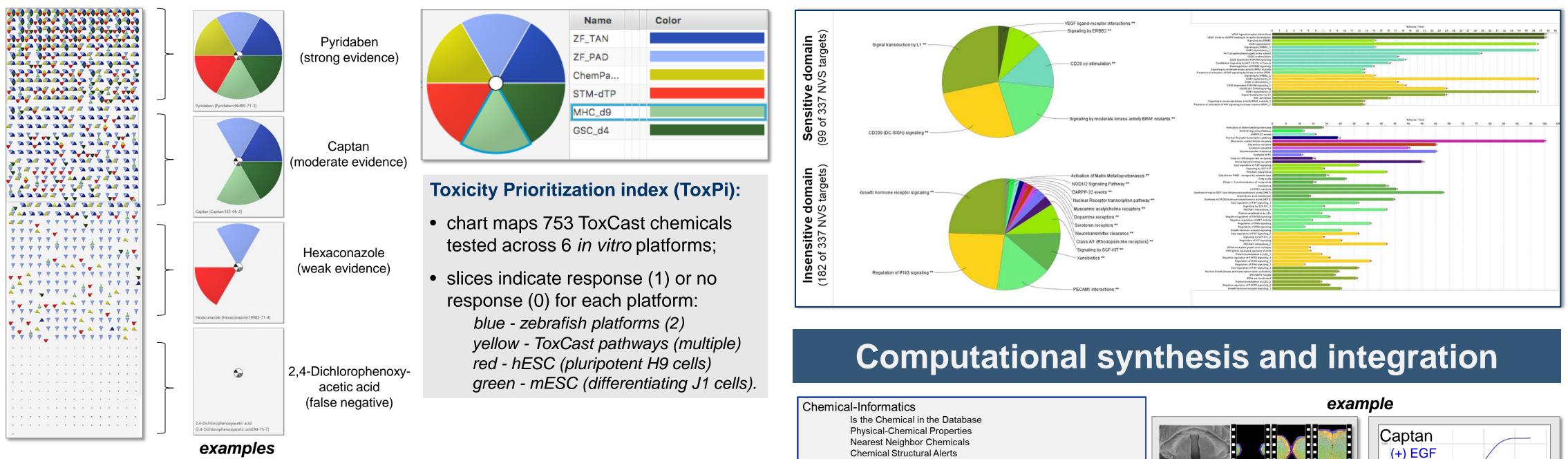
Framework for Predictive Developmental Toxicity of Chemicals Regulated under TSCA


Overview

OBJECTIVE: build a framework for pre-prioritizing chemicals for developmental toxicity (DevTox) for potential application to chemicals regulated under TSCA (amended 2016).

INPUTS: ToxCast data including new information on chemical effects in zebrafish embryos and in diverse mammalian embryonic stem cell lines (hESC, mESC).

OUTPUT: generalized workflow to sort compounds by their predicted potential for DevTox and in silico modeling of quantitative cellular, tissue and phenotypic responses.


Anatomical development

Specific aims

- assess qualitative performance of the predictive model;
- ii) set an exposure-based prediction of teratogenicity;
- iii) characterize sensitive response pathways; and
- iv) virtually reconstruct quantitative phenotypic response.

Chemicals ranked by enumerated response

Low Stringency (any dLEL)						Moderate Stringency (rat or rabbit)					High Stringency (rat and rabbit)				
	<u>ZFISH-1</u>	ZFISH-2	<u>mESC-1</u>	<u>mESC-2</u>	<u>hESC</u>	ZFISH-1	ZFISH-2	<u>mESC-1</u>	<u>mESC-2</u>	<u>hESC</u>	ZFISH-1	ZFISH-2	<u>mESC-1</u>	<u>mESC-2</u>	<u>hESC</u>
TP	169	85	62	45	80	55	27	15	10	37	12	10	1	0	20
FP	68	35	23	21	12	67	35	23	21	12	57	26	19	17	9
FN	73	172	159	133	178	15	58	43	35	49	3	20	5	5	11
TN	32	75	71	59	99	31	73	69	57	97	24	65	57	56	83
n	342	367	315	258	369	168	193	150	123	195	96	121	82	78	123
SENS	0.698	0.331	0.281	0.253	0.310	0.786	0.318	0.259	0.222	0.430	0.800	0.333	0.167	0.000	0.645
SPEC	0.320	0.682	0.755	0.738	0.892	0.316	0.676	0.750	0.731	0.890	0.296	0.714	0.750	0.767	0.902
ACC	58.8%	43.6%	42.2%	40.3%	48.5%	51.2%	51.8%	56.0%	54.5%	68.7%	37.5%	62.0%	70.7%	71.8%	83.7%
МСС	0.018	0.012	0.037	-0.010	0.214	0.113	-0.007	0.010	-0.052	0.366	0.078	0.045	-0.051	-0.138	0.560

OBSERVATIONS:

- Model performance improves against more stringent *in vivo* criteria for DevTox.
- Overall accuracy approaches 62% (ZFISH), 72% (mESC), and 84% (hESC).
- The hESC model also predicts the critical concentration for human dosimetry.

DEFINITIONS:

Thomas B. Knudsen¹ and E. Sidney Hunter²

U.S. Environmental Protection Agency, Office of Research and Development ¹NCCT and ²NHEERL

Evaluating model performance

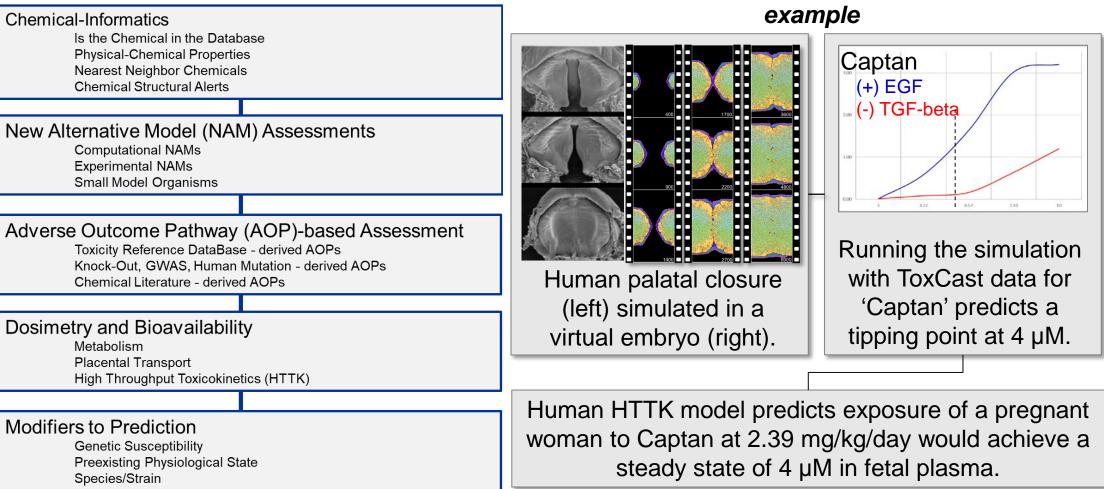
• ZFISH platforms were more sensitive but less specific than mESC or hESC platforms.

(a) LEL, lowest effect level (mg/kg/day) in ToxRefDB prenatal developmental toxicity study: dLEL (fetal endpoint) and mLEL (maternal endpoint) in the same ToxRefDB study for 'n' compounds; (b) evidence for DevTox: 'CLEAR' (dLEL < 200, dLEL < mLEL); 'SOME' (dLEL < 200, dLEL > mLEL); 'EQUIVOCAL' (dLEL> 200 but <1000); and 'NO' (dLEL>1000) in rat and/or rabbit study; (c) TP (true positive), FP (false positive), FN (false negative), TN (true negative); SENS, sensitivity [TP/(TP+FN)]; SPEC, specificity [TN/(TN+FP)]; ACC, accuracy [(TP+FN)/(TP+FP+FN+TN)].

Chemical-Informatics
Is the Chemical in the Da
Physical-Chemical Prope
Nearest Neighbor Chemic
Chemical Structural Alerts

New Alternative Model (NAM) Assessments **Computational NAMs** Experimental NAM Small Model Organisms

Toxicity Reference DataBase - derived AOPs Chemical Literature - derived AOPs


Dosimetry and Bioavailability Metabolism **Placental Transport** High Throughput Toxicokinetics (HTTK)

Modifiers to Prediction Genetic Susceptibility Preexisting Physiological State Species/Strain

Innovative Research for a Sustainable Future

knudsen.thomas@epa.gov | 919-541-9776 hunter.sid@epa.gov | 919-541-3490

Mining ToxCast to define sensitive pathways

Summary

• Assigning chemicals under amended TSCA to low and high priority comes with uncertainties in complexity of predicting toxicity during pregnancy.

• A DevTox predictive framework will implement data from *in vitro* assays assessing embryonic cell growth and differentiation.

• The framework will operationalize a defined interpretation protocol for computational synthesis and integration \rightarrow DevTox decision tree.

• Multiscale modeling and simulation will provide tools and approaches to virtually reconstruct and analyze complexity and quantitative prediction.