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• National Research Council (1983) identified 
chemical risk as a function of both inherent hazard 
and exposure

• To address thousands of chemicals, we need new 
approach methodologies that can prioritize those 
chemicals most worthy of additional study

• High throughput risk prioritization needs:
1. high throughput hazard characterization (Dix et 

al., 2007, Collins et al., 2008)
2. high throughput exposure forecasts (Wambaugh 

et al., 2013, 2014)
3. high throughput toxicokinetics (i.e., dose-

response relationship) linking hazard and 
exposure
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Chemical Risk = 
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured 
in clinical trials 
(Wang, 2010)
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured 
in clinical trials 
(Wang, 2010)

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002)

Rapid Equilibrium 
Dialysis (RED) 
Waters et al. 

(2008)

Environmental chemicals:
Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~300 chemicals
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-base 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Honda et al, in prep.

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)
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Optimizing HTTK-based IVIVE

Honda et al, in prep.
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Chemicals Monitored by CDC NHANES

High Throughput Screening + HTTK can estimate doses 
needed to cause bioactivity  (Wetmore, et al., 2012, 2015)

High Throughput Risk Prioritization

Ring et al. (2017)

Exposure 
intake rates  
can be 
Inferred 
from 
biomarkers
(Wambaug
h et al., 
2014)
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National Health and Nutrition Examination Survey (NHANES) is an ongoing 
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)
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Life-stage and Demographic Specific Predictions

Change in Activity : Exposure Ratio

• We use HTTK to 
calculate margin 
between bioactivity 
and exposure for 
specific populations

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from 
in vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

Ring et al. (2017)

NHANES Demographic Groups

N
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Toxicokinetic Triage

 Through comparison to existing in 
vivo data, a cross-validated (random 
forest) predictor of success or failure 
of HTTK was constructed

 We added categories for chemicals 
that do not reach steady-state or for 
which plasma binding assay fails

 All chemicals can be placed into one 
of seven confidence categories

 Plurality of chemicals end up in the 
“on the order” bin (within a factor of 
3.2x) which is consistent with Wang 
(2010)

Wambaugh et al. (2015)
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New Data for Evaluation

Absorption

Distribution

Metabolism

Excretion

Clearance

Uncertainty

Standardized 
Statistical Analysis

45 chemicals

•Determine 1- vs. 
2-compartment  

•Estimate Vd, kelim

•If oral data then 
also estimate Fbio, 
kgutabs

New in vivo
toxicokinetics on 26 
non-pharmaceutical 

chemicals

•Standardized design
•Oral and iv dosing (N=3-4)
•Conc. vs. time
•20 chemicals at EPA
•8 chemicals at RTI
•2 overlap chemicals

Literature TK Data 
on 19 Chemicals
Wambaugh et al., (2015)

In Silico Fbio
From GastroPlus

Lucakova et al. (2009)

HTTK Volume of 
Distribution

Pearce et al. (2017b)

HTTK Total Clearance
Pearce et al. (2017a)

Toxicokinetic Triage
Wambaugh et al. (2015)

Wambaugh et al. (2018)

Available literature in vivo TK evaluation data was heavily biased toward pharmaceuticals
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Evaluating HTTK

100% Bioavailability Assumed
We evaluate HTTK by comparing 
predictions with observations for as 
many chemicals as possible

Wambaugh et al. (2018)
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Evaluating HTTK

13

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Wambaugh et al. (2018)

Impact of Oral Bioavailability Data



Office of Research and Development14 of 15

Evaluating HTTK

14Greg Honda (NCCT) made a SOT2018 presentation on 
using Caco2 in vitro data to predict absorption for ~300 

ToxCast chemicals

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Impact of Oral Bioavailability Data
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 EPA is developing a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

 Curation and development ongoing, but 
to date includes:
• 175 analytes (EPA, National 

Toxicology Program, literature)
• Routes: Intravenous, dermal, oral, 

sub-cutaneous, and inhalation 
exposure

In Vivo TK Database

15

Work led by Risa Sayre and Chris Grulke

 Database will be made available through web interface and through the “httk” R package

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to 
all data:

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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• We would like to know more about the risk 
posed by thousands of chemicals in the 
environment – which ones should we start with?

• HTTK NAMs are being evaluated through 1) 
uncertainty analysis and 2) comparison between 
in vitro predictions and in vivo measurements of 
both plasma concentrations and doses 
associated with the onset of effects (i.e., “points 
of departure”). 

• Comparison between HTTK predicted time 
course concentrations in plasma and in vivo data 
indicate that some properties (e.g. average and 
maximum concentration) can be predicted with 
confidence.

Conclusions

• Comparison between in vitro bioactivity data and HTTK-adjusted internal dose predictions for in 
vivo points of departure has refined assumptions of the HTTK NAMs. 

• NAMs for TK allow risk-based prioritization of large numbers of chemicals. 

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA
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