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wEPA Why can’t we use traditional toxicology for all
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<EPA Goals of computational toxicology

- |dentify biological pathways of toxicity (AOPS)

-Develop high-throughput in vitro assays to test chemicals
-|dentify “Human Exposure Chemical Universe” to test
-Develop models that link in vitro to in vivo hazard

-Use pharmacokinetic models to predict activating doses
-Develop exposure models for all chemicals

«Add uncertainty estimates

Create high-throughput risk assessments




<EPA High-throughput toxicology answers
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scientific and regulatory needs

- We face many environmental challenges:
—Chemicals, disease, crop-failure, climate change

- Data alone cannot answer all necessary questions:
—Data can be expensive and noisy
—Cause and effect relationships are multivariate and non-linear

- Needed: mathematical and statistical models, approximations, and other tools
that increase safety and efficiency.

- Example of a regulatory application: Endocrine Disruptor Screening Program
(EDSP/EDSP21)

C. Mifepristone

mMd plot

BRI §

Estrogen receptor pathway model Androgen receptor pathway model Steroidogenesis HT-H295R model

National Center for
Computational Toxicology




<EPA Chemical Risk = Hazard x Exposure
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Risk

Hazard X Exposure

In vitro bioactivity

High-throughput
X exposure
prediction

Screening-level
risk

High-throughput

toxicokinetics
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on a bioactivity:exposure ratio
mg/kg BW/day

Potential
Hazard:
In Vitro + HTTK

Potential
Exposure:
ExpoCast

Low Medium High
Priority  Priority  Priority
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Padilla et al., 2015, 2016, in preparation
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Sipes et al., 2013 PMID 236
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The ToxCast program and data
pipeline

ToxCast Dashboard (current most-detailed assay information interface):
https://actor.epa.gov/dashboard/

CompTox Dashboard (many data streams, currently centered on chemistry; Williams et al. 2017
PMID 29185060): https://comptox.epa.gov/dashboard

Data downloads (download databases and supporting data files):
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data

National Center for
Computational Toxicology
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< EPA High-Throughput Hazard Screening Component:
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ToxCast Tox21
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» All Tox21 data are analyzed by multiple partners
 Tox21 data is available analyzed in the ToxCast Data Pipeline

National Center for
Computational Toxicology




SEPA ToxCast: high-throughput bioactivity
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Information

Vendor source file

Custom processing because
data are heterogeneous

\

Level O: raw data in standard format
|

v
D S R Y p———————

Level 1: assay endpoint-specific normalization Level 1: define replicate and concentration indices

Level 2: sample processing and hit-calling Level 2: assay component-specific corrections
Level 3: assay endpoint-specific normalization
Level 4: model fitting
Level 5: model selection and hit-calling
Level 6: caution flagging on the fitting

Level 7: uncertainty estimation

National Center for
Computational Toxicology
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Uncertainty in bioactivity data

gency

« Some sources of uncertainty in fitting high-
throughput screening (HTS) data include:

—Biological variance
/ —Systematic error in measurement

! —Contribution of experimental design, e.g.
L I dose-spacing and dose #
' « Not quantified in tcpl currently.

« Uncertainty could be incorporated into
predictive models, e.g. QSAR, hybrid
descriptor sets, etc., and likely impacts
predictivity of these models.

| « Quantifying uncertainty may support more
100 robust screening level risk assessment.
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An example of uncertainty in ToxCast data

ASSAY: AEID754 (OT_FKR_FXRSRCL_1440)
NAME : Mifepristone

CHID: 23322 CASRN: 84371-65-3
SPID(S): TPOOO0759D12

M41ID: 8795482

HILL MODEL (in red):

tp ga gw
val: 89.9 0.817 0.973
sd: 24.4 0.305 0.389

GAIN-LOSS MODEL (in blue) :
tp ga ogw la 1w

val: 175 1.48 0.735 2.02 10.4

sd: NaN NaN NaN NaN NaN
CNST HILL GNLS3

ATC: 403.91 345.89 348.64

PROB: 0 0.8 0.2

RMSE: 64.8 27.91 26.62

MAX MEAN: 100 MAX MED: 103 BMAD: 8.17

COFF: 40.9 HIT-CALL: 1 FITC: 42 ACTP: 1

FLAGS:

HIT-PCT: 1 MED-GA: 1.1354 GA-CI: 1.4462

« Toxboot: resamples datapoints from the curve for an m4id, with added noise (0 mean)

(Watt et al., submitted).

 Tcpl level 4 (mc4) fitting of resampled data.

» Repeat x1000.

- Store the information from each resampled fit in ToxCast/invitrodb (Brown et al., in prep).

National Center for
Computational Toxicology



wEPA Can level 5 fit iInformation, level 6 caution
meo o flags, level 7 uncertainty information, and
human curation help to build a model to

predict data that is fit “well?”

caution flags
Most hitcall=1 return evident, but hard to

’ 7 . . use flag patterns
& hlgh hlt_pCt alone to remove fits

based on noise or
overfitting.

e Most hitcall=1
return a high
hit_pct, but some
borderline
candidates could
easily be removed.

— I — » Several patterns of

=

Brown et al., in prep

National Center for
Computational Toxicology




Connecting in vitro bioactivity to an
administered dose equivalent and to
exposure
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Incorporating Dosimetry and Uncertainty into In Vitro Screening

ToxCast Chemicals

} { A m .

Liver Plasma Protein  Tissue Partition
Metabolism Binding Coefficients

I I |
v v

Population-Based
IVIVE Model

Population-Based
PBPK Model

Link Steady-State Blood
Concentration to
Administered Dose

Link Blood and Tissue
Concentrations (Cmax, AUC)
to Administered Dose

National Center for
Computational Toxicology

Toxicokinetics Modeling

Literature Cy (mg/L)

Wetmore, Rotroff, Wambaugh et al., 2013, 2014, 2015
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wEPA Steady state in vitro-in vivo extrapolation assumption:
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Adancy blood::tissue partitioning = cells::medium partitioning
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Steady-state Concentration (uM) = in vitro AC50
C.= oral dose rate = Swap the axes (this is the “reverse” part of reverse dosimetry)
(GFR*Fub)+(Q|*Fub*Q +Sm;c:|. ] = Can divide bioactive concentration by C for fora 1
B mg/kg/day dose to get oral equivalent dose
Wetmore et al. (2012)
- National Center for Slide from John Wambaugh
Computational Toxicology




wEPA Comparing Bioactivity with Exposure Predictions
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menroso for Risk Context
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EDSP21: example of fit-for-purpose
tools

ER Pathway Model (Judson et al., 2015; Browne et al. 2015)

AR Pathway Model (Kleinstreuer et al., 2017)
Steroidogenesis Model (Karmaus et al., 2016; Haggard et al., 2017)

National Center for
Computational Toxicology
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« EDSP: Endocrine Disruptor Screening Program
—Mandated by U.S. Congress
—“Tier 1 battery” — 11 in vitro and in vivo assays (estrogen, androgen, thyroid)

« EDSP has a mismatch between resources needed for Tier 1 and number of chemicals
to be tested

—~10,000 chemicals in EDSP Universe
—~$1M per chemical for Tier 1, 50-100 year backlog

- Demonstrate new approach: Estrogen Receptor (ER)
—Multiple high-throughput in vitro assays
—Prioritize chemicals and replace selected Tier 1 assays

National Center for
Computational Toxicology




“EPA In Vitro Estrogen Receptor Model
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« Use multiple assays per pathway

» Different technologies
 Different points in pathway

 No assay is perfect

* Assay Interference -
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 Use model to integrate assays

Tox21 BLA
Tox21 LUC

« Evaluate model against reference chemicals

 Methodology being applied to other pathways

Judson et al: “Integrated Model of Chemical Perturbations of a Biological Pathway
allong! Genlerdgt. Using 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor” (EHP 2015)




<EPA

United States
Environmental Protectior
Agency

and negatives

Assays cluster by technology,
suggesting technology-specific non-
ER bioactivity
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Assays

Judson et al: ToxSci (2015); slide from Richard Judson

All In vitro assays have false positives

Much of this “noise” is reproducible

- “assay interference”

- Result of interaction of chemical
with complex biology in the assay

EDSP chemical universe is structurally
diverse

-Solvents

-Surfactants

-Intentionally cytotoxic compounds
-Metals
-Inorganics
-Pesticides
-Drugs




wEPA Most chemicals display a “burst” of potentially non-
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wEPA Schematic explanation of the burst
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Specific Non-specific
O CIA
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Oxidative Stress ER stress

DNA Reactivity Cell membrane disruption

Protein Reactivity Specific apoptosis

[T] Mitochondrial stress

7
w w

National Center for Judson et al. Tox.Sci. (2016); slide from Richard Judson
Computational Toxicology
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1000

-
o
o

LEL or MTD (ma/kg/day)

In vivo guideline study uncertainty
26% of chemicals tested multiple times in the

uterotrophic assay gave discrepant results

Immature Rat: BPA
: @
@ ®
:0.. 000e
@ 000
000
000
@
[
000000
Uterotrophic
e Active
@ ® [nactive
Injection Oral

Kleinstreuer et al. EHP 2016

species /
study 1

rat SUB

rat CHR

rat CHR

rat SUB

rat SUB
mouse CHR
mouse CHR
dog CHR
dog CHR
rat CHR
mouse CHR
rat SUB
dog CHR

mouse CHR

species /
study 2

rat CHR
dog CHR
rat SUB

rat SUB
dog CHR
rat CHR

rat SUB

rat SUB

rat CHR
mouse CHR
dog CHR
mouse CHR
mouse CHR

mouse CHR

Phenotype X

Reproduce

18
13
18
16
11
11
13
11
13
11
6

13

Does Not
Reproduce

2
2

4

11

14

Fraction
Reproduce

0.90
0.87
0.82
0.80
0.73
0.73
0.65
0.65
0.62
0.50
0.50
0.48
0.43

0.40



Model predicts in vivo uterotrophic assay as well as
uterotrophic predicts uterotrophic

ER Agonist AUC
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Rank Order (ER Agonist AUC)
Browne et al. ES&T (2015)



wEPA AR Pathway Model (Kleinstreuer et al., 2017);
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* No assay is perfect

e Test different biology Qe »
e Cell system Op—

* Assay Interference e

{asp
faz}
T
[ J Signaling meChanism z antagonist pathway g
 Differential sensitivity A Yy
L

* Noise % e
= Here, different technologies cover e @ T i@ g
different points on AR pathway Y i g v
= Use a mathematical model to e e

integrate data from assays
* Model creates a composite dose-response curve for each chemical to

summarize results from all assays

National Center for
Computational Toxicology




wEPA Key Points of the AR (and ER) Model
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* Beginning Question: If any one AR assay is active, is the chemical an AR
agonist/antagonist?

—No: there can be false positive (and negative) activity
* Goal of the model is to distinguish true AR activity from false activity

» Mathematically / statistically test multiple sources of activity:
—True agonist, true antagonist, several interference modes
—Quantify each mode by AUC value (area under the dose-response curve)
—Mode with the highest AUC is selected

—AUC is not potency, but potency values are provided

National Center for
Computational Toxicology
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Steroidogenesis: progress of current
tool development

See also: Haggard et al., 2017; Karmaus et al., 2016; and EDSP SAP documents from November
2017.

National Center for
Computational Toxicology
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- Steroidogenesis: cholesterol - steroid
hormones.

 Important physiology: sexual differentiation
and development, reproduction, metabolism,
etc.

« 4 major classes of steroid hormones
synthesized largely in separate tissues in
Vivo: progestagens, corticosteroids,
androgens, and estrogens.

National Center for
Computational Toxicology

Steroidogenesis is critical for several
physiological processes.

cholesterol

i | orpi1al

H295R cell

pregnenolone —
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= H
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corticosterone cortisol
Legend ‘ progestagens ‘ | androgens ‘

Fig I in Haggard et al. (2017).
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Methods and Results:
Evaluation of the HT-
H295R assay

Compare HT-H295R
to the OECD inter-

A

.

Develop initial
HT-H295R assay

A 4

Implement staged
screening
approach

different from ER and AR pathway models

Assay background and methods

(Karmaus et al. (2016) Toxicological
Sciences. PMID 2678151 1)

Methods and results:
Development of
prioritization metric

Compress data

laboratory results

A

Analyze data per the
OECD TG to enable

comparison

\
Evaluate the
concordance of E2
and T responses

National Center for
Computational Toxicology

(Haggard et al. (2017) Toxicological Sciences. PMID

29216406.)

Y

from | | steroid

And more here...coming, T
Haggard et al., in prep prioritization

hormone panel

\ 4

Develop
prioritization
metric

\ 4
Evaluate

> metric




SEPA L 005R assay method
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Plate Cells 10 uM FSK Chemical Media to
(overnight) (48 hrs) (48 hrs) OpAns

H295R cells pre-treatment: 100 puM Cell viability HPLC-MS/MS
seeded to stimulate chemical 270% quantification

~50% steroidogenesis treatment else: 10x dilution of 13 hormones
confluency

« Maximized screening resource efficiency.
2012 unique test chemicals have been screened at a high concentration.
# steroid hormones affected in single concentration (along with other considerations) were

used to select 656 chemicals for multi-concentration screening.

National Center for
Computational Toxicology




SEPA Confusion matrices demonstrate good

United States

suamenaroceior - g@nSitivity, specificity, and accuracy for
reference chemicals.

Effect Revised Sensitivity Revised Specificity Revised Accuracy
Testosterone up 1.00 0.89 0.90
Testosterone dn 0.67 0.92 0.82
Estradiol up 0.75 0.83 0.80
Estradiol dn 0.80 1.00 0.95
Testosterone up revised Testosterone dn revised
t T
1 2 1 b 1 6
0 1 0 1
OECD OECD
Estradiol up revised Estradiol dn revised
= T
1 2 6 b 0 4
0 1 0 1
OECD OECD

Figure 6 Haggard et al. (2017).

National Center for
Computational Toxicology
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\"quliA Agreement among labs in the inter-laboratory
Environmental Protectior

Agency validation: compounding the lesson that one
must consider variance in the reference data

 For any effect on testosterone:

—Average concordance among labs was 0.88, 0.91, and 0.90 for the 12 core
reference chemicals only, the 16 supplemental reference chemicals only,
and the entire set.

« For any effect on estrogen:

—Average concordance among labs was 0.95, 0.84, and 0.89 for the 12 core
reference chemicals only, the 16 supplemental reference chemicals only,
and the entire set.

National Center for
Computational Toxicology
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prioritization metric

Mifepristone

mMd plot

= 1 1
---- *= |.5-fold vehicle control Concentration (uM)

Figure 5, Haggard et al. (2017).

Mifepristone strongly modulated progestagens with

significant effects on progesterone and OH-progesterone
and moderate but non-significant trends on corticosteroids

and androgens, resulting in a relatively high adjusted
maxmMd of 33.

National Center for
Computational Toxicology

Using our maximum mean Mahalanobis
distance approach to get a single

e Reduced an 11-
dimensional
guestion to a

single dimension.

» Selection of the
maxmMd
appeared to
provide a
reproducible,
guantitative
approximation of
the magnitude of
effect on
steroidogenesis.
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wEPA MaxmMd was reproducible and quantitatively

United States
Environmental Protectior

Agency distinguished chemicals with larger effects.
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Figure 8, Haggard et al. (2017).
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*HT-H295R screening assay as an alternative for the OECD-

validated, low throughput H295R assay.

—The ANOVA analysis and logic used herein for the HT-H295R dataset to
determine effects on the steroid biosynthesis pathway enabled a direct comparison
of the OECD inter-laboratory validation data and the HT-H295R data.

*Novel integration of || steroid hormone analytes for pathway-
level analysis using the HT-H295R assay data.

—A mean Mahalanobis distance (mMd) was computed for each chemical
concentration screened.

—The mMd provided a set of unitless values from which the maximum mean
Mahalanobis distance (maxmMd) could be calculated across the concentration
range screened. This maxmMd may be a useful prioritization metric.

National Center for
Computational Toxicology
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« EDSP FIFRA SAP Meeting in December 2014 (ER and AR pathway models)

« 2015 FR Notice: “EPA concludes that ER Model data are sufficient to satisfy the
Tier 1 ER binding, ERTA and uterotrophic assay requirements.”

« AR Pathway model and HT-H295R model were reviewed at a recent SAP (November
2017), awaiting report.

National Center for
Computational Toxicology
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wEPA Continuing challenges for all high-

s sanaucls lasion throughput toxicology

 Technical limitations/obstacles associated with each technology (e.g.,
metabolism, volatiles, etc.)

* Moving from an apical to a molecular paradigm and defining adversity
e Predicting human safety vs. toxicity

e Combining new approaches to have adequate throughput and sufficiently
capture higher levels of biological organization

e Systematically integrating multiple data streams from the new approachesin a
risk-based, weight of evidence assessment

e Quantifying and incorporating uncertainty and variability

e Dealing with the validation
* Defining a fit-for-purpose framework(s) that is time and resource efficient
* Performance-based technology standards vs. traditional validation

* Role of in vivo rodent studies and understanding their inherent uncertainty

e Legal defensibility of new methods and assessment products
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The big question:

Can in vitro bioactivity be used
to derive a conservative point-
of-departure (POD) for
prioritization and risk
assessment?




wEPA A retrospective case study in screening level risk
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Case study workflow

Determine chemicals with high- Determine chemicals with
throughput toxicokinetics (httk) information in ToxCast
information (largest limiter) ‘

| i

| Beginning chemical set | Currently ~400 chemicals

Apply httk

EPA - ToxValDB

EPA - ExpoCast

Health Canada

Bioactivity-exposure

Health Canada )
ratio

PODyap : POD,, 4 ratio

Is this log10 ratio > 0 for the majority of

Is this log10 ratio useful for prioritizing
chemicals?

chemicals? ,' : , .
Are there weaknesses here that can be Can we learn frorT] ’f‘sra”?CES where this
<
addressed? ratio is < O:

National Center for

Computational Toxicology Paul Friedman et al., 2018;in prep
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Preliminary work to compare traditional PODs and new
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Chemical

approach method PODs demonstrates the possibility and
challenges
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All but one chemical had a
POD ratio > -2, which might
suggest a UF of 100 (?) might
be conservative.
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A*STAR

EPA’s National Center for Computational Toxicology
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