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Why can’t we use traditional toxicology for all 
of our problems?

Why?
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Goals of computational toxicology

•Identify biological pathways of toxicity (AOPs)

•Develop high-throughput in vitro assays to test chemicals

•Identify “Human Exposure Chemical Universe” to test 

•Develop models that link in vitro to in vivo hazard

•Use pharmacokinetic models to predict activating doses 

•Develop exposure models for all chemicals

•Add uncertainty estimates

•Create high-throughput risk assessments
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High-throughput toxicology answers 
scientific and regulatory needs

• We face many environmental challenges:
–Chemicals, disease, crop-failure, climate change

• Data alone cannot answer all necessary questions:
–Data can be expensive and noisy
–Cause and effect relationships are multivariate and non-linear

• Needed: mathematical and statistical models, approximations, and other tools 
that increase safety and efficiency.

• Example of a regulatory application: Endocrine Disruptor Screening Program 
(EDSP/EDSP21)

Estrogen receptor pathway model Androgen receptor pathway model Steroidogenesis HT-H295R model
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Chemical Risk = Hazard x Exposure

Hazard Exposure Riskx =

In vitro bioactivity

High-throughput 
toxicokinetics

High-throughput 
exposure 
prediction

Screening-level 
riskx =
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Screening level risk assessments depend 
on a bioactivity:exposure ratio

Potential 
Exposure:
ExpoCast

mg/kg BW/day

Potential 
Hazard: 

In Vitro + HTTK

Low
Priority

Medium
Priority

High
Priority
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The ToxCast program and data 
pipeline
ToxCast Dashboard (current most-detailed assay information interface): 
https://actor.epa.gov/dashboard/
CompTox Dashboard (many data streams, currently centered on chemistry; Williams et al. 2017 
PMID 29185060): https://comptox.epa.gov/dashboard
Data downloads (download databases and supporting data files): 
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data

Padilla et al., 2015, 2016, in preparation

Sipes et al., 2013 PMID 23611293

https://actor.epa.gov/dashboard/
https://comptox.epa.gov/dashboard
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data
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High-Throughput Hazard Screening Component: 
ToxCast and Tox21

ToxCast

Concentration

R
es

po
ns

e

~600 Cell & 
biochemical 

assays

~1,000 
Chemicals

Tox21

~30 Cell & 
biochemical 

assays

~8,000 
Chemicals

Set Chemicals Assays Completion

ToxCast Phase I 293 ~600 2011

ToxCast Phase II 767 ~600 2013

ToxCast Phase III 1001 ~100 Ongoing

E1K (endocrine) 880 ~50 2013

• All Tox21 data are analyzed by multiple partners
• Tox21 data is available analyzed in the ToxCast Data Pipeline
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ToxCast: high-throughput bioactivity 
information

Level 0: raw data in standard format

Vendor source file

Custom processing because 
data are heterogeneous

Level 1: define replicate and concentration indices

Level 2: assay component-specific corrections

Level 3: assay endpoint-specific normalization

Level 4: model fitting

Level 5: model selection and hit-calling

Level 6: caution flagging on the fitting

Level 7: uncertainty estimation

Level 1: assay endpoint-specific normalization

Level 2: sample processing and hit-calling

Single concentration: pre-screen for efficacy Multi-concentration: efficacy and potency
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Uncertainty in bioactivity data

• Some sources of uncertainty in fitting high-
throughput screening (HTS) data include:  
–Biological variance
–Systematic error in measurement
–Contribution of experimental design, e.g. 

dose-spacing and dose #
• Not quantified in tcpl currently.
• Uncertainty could be incorporated into 

predictive models, e.g. QSAR, hybrid 
descriptor sets, etc., and likely impacts 
predictivity of these models.

• Quantifying uncertainty may support more 
robust screening level risk assessment.
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An example of uncertainty in ToxCast data

• Toxboot: resamples datapoints from the curve for an m4id, with added noise (0 mean) 
(Watt et al., submitted).

• Tcpl level 4 (mc4) fitting of resampled data.
• Repeat x1000.
• Store the information from each resampled fit in ToxCast/invitrodb (Brown et al., in prep).
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Can level 5 fit information, level 6 caution 
flags, level 7 uncertainty information, and 
human curation help to build a model to 
predict data that is fit “well?”

1
1

7
Most hitcall=1 return 
a high hit_pct

• Several patterns of 
caution flags 
evident, but hard to 
use flag patterns 
alone to remove fits 
based on noise or 
overfitting.

• Most hitcall=1 
return a high 
hit_pct, but some 
borderline 
candidates could 
easily be removed.

Brown et al., in prep
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Connecting in vitro bioactivity to an 
administered dose equivalent and to 
exposure
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Toxicokinetics Modeling

Wetmore, Rotroff, Wambaugh et al., 2013, 2014, 2015

Incorporating Dosimetry and Uncertainty into In Vitro Screening 
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 Swap the axes (this is the “reverse” part of reverse dosimetry)
 Can divide bioactive concentration by Css for for a 1 

mg/kg/day dose to get oral equivalent dose

Slope = mg/kg/day per Css
1 mg/kg/day

Steady state in vitro-in vivo extrapolation assumption: 
blood::tissue partitioning ≈ cells::medium partitioning

Slide from John Wambaugh
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Comparing Bioactivity with Exposure Predictions 
for Risk Context

Wetmore et al., Tox Sci., 2015

Chemicals
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EDSP21: example of fit-for-purpose 
tools
ER Pathway Model (Judson et al., 2015; Browne et al. 2015)
AR Pathway Model (Kleinstreuer et al., 2017)
Steroidogenesis Model (Karmaus et al., 2016; Haggard et al., 2017)
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EDSP21 Project: Major Points

• EDSP: Endocrine Disruptor Screening Program
–Mandated by U.S. Congress
–“Tier 1 battery” – 11 in vitro and in vivo assays (estrogen, androgen, thyroid)

• EDSP has a mismatch between resources needed for Tier 1 and number of chemicals 
to be tested
–~10,000 chemicals in EDSP Universe
–~$1M per chemical for Tier 1, 50-100 year backlog

• Demonstrate new approach: Estrogen Receptor (ER)
–Multiple high-throughput in vitro assays
–Prioritize chemicals and replace selected Tier 1 assays
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In Vitro Estrogen Receptor Model

• Use multiple assays per pathway
• Different technologies
• Different points in pathway

• No assay is perfect
• Assay Interference
• Noise

• Use model to integrate assays

• Evaluate model against reference chemicals

• Methodology being applied to other pathways

Judson et al: “Integrated Model of Chemical Perturbations of a Biological Pathway
Using 18 In Vitro High Throughput Screening Assays for the Estrogen Receptor” (EHP 2015) 
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All in vitro assays have false positives 
and negatives

Much of this “noise” is reproducible
- “assay interference”
- Result of interaction of chemical 

with complex biology in the assay

EDSP chemical universe is structurally 
diverse
-Solvents
-Surfactants
-Intentionally cytotoxic compounds
-Metals
-Inorganics
-Pesticides
-Drugs

Assays cluster by technology,
suggesting technology-specific non-

ER bioactivity

Judson et al: ToxSci (2015); slide from Richard Judson
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Most chemicals display a “burst” of potentially non-
selective bioactivity near cytotoxity concentration
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Schematic explanation of the burst

Oxidative Stress
DNA Reactivity
Protein Reactivity
Mitochondrial stress

ER stress
Cell membrane disruption
Specific apoptosis
…

Specific Non-specific

Judson et al. Tox.Sci. (2016); slide from Richard Judson
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In Vitro Reference Chemical 
Performance
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Immature Rat: BPA

In vivo guideline study uncertainty
26% of chemicals tested multiple times in the 
uterotrophic assay gave discrepant results

Kleinstreuer et al. EHP 2016

LE
L 

or
 M

TD
 (m

g/
kg

/d
ay

)

Injection Oral

Inactive
Active

Uterotrophic

species / 
study 1

species / 
study 2

Reproduce Does Not 
Reproduce

Fraction 
Reproduce 

rat SUB rat CHR 18 2 0.90

rat CHR dog CHR 13 2 0.87

rat CHR rat SUB 18 4 0.82

rat SUB rat SUB 16 4 0.80

rat SUB dog CHR 11 4 0.73

mouse CHR rat CHR 11 4 0.73

mouse CHR rat SUB 13 7 0.65

dog CHR rat SUB 11 6 0.65

dog CHR rat CHR 13 8 0.62

rat CHR mouse CHR 11 11 0.50

mouse CHR dog CHR 6 6 0.50

rat SUB mouse CHR 13 14 0.48

dog CHR mouse CHR 6 8 0.43

mouse CHR mouse CHR 2 3 0.40

Phenotype X
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Model predicts in vivo uterotrophic assay as well as 
uterotrophic predicts uterotrophic
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AR Pathway Model (Kleinstreuer et al., 2017); 
very similar to ER Pathway Model

 No assay is perfect
• Test different biology 

• Cell system
• Signaling mechanism
• Differential sensitivity

• Assay Interference
• Noise

 Here, different technologies cover 
different points on AR pathway
 Use a mathematical model to 

integrate data from assays
 Model creates a composite dose-response curve for each chemical to 

summarize results from all assays
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Key Points of the AR (and ER) Model

• Beginning Question: If any one AR assay is active, is the chemical an AR 
agonist/antagonist?
–No: there can be false positive (and negative) activity

• Goal of the model is to distinguish true AR activity from false activity

• Mathematically / statistically test multiple sources of activity:
–True agonist, true antagonist, several interference modes
–Quantify each mode by AUC value (area under the dose-response curve)
–Mode with the highest AUC is selected
–AUC is not potency, but potency values are provided
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Steroidogenesis: progress of current 
tool development
See also: Haggard et al., 2017; Karmaus et al., 2016; and EDSP SAP documents from November 
2017.
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Steroidogenesis is critical for several 
physiological processes. 

• Steroidogenesis: cholesterol  steroid 
hormones.

• Important physiology: sexual differentiation 
and development, reproduction, metabolism, 
etc. 

• 4 major classes of steroid hormones 
synthesized largely in separate tissues in 
vivo: progestagens, corticosteroids, 
androgens, and estrogens.

Fig 1 in Haggard et al. (2017).
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Steroidogenesis approach – a little 
different from ER and AR pathway models
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HT-H295R assay method

• Maximized screening resource efficiency.
• 2012 unique test chemicals have been screened at a high concentration.
• # steroid hormones affected in single concentration (along with other considerations) were 

used to select 656 chemicals for multi-concentration screening.
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Confusion matrices demonstrate good 
sensitivity, specificity, and accuracy for 
reference chemicals.

Figure 6 Haggard et al. (2017).
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Agreement among labs in the inter-laboratory 
validation: compounding the lesson that one 
must consider variance in the reference data

• For any effect on testosterone:
–Average concordance among labs was 0.88, 0.91, and 0.90 for the 12 core 

reference chemicals only, the 16 supplemental reference chemicals only, 
and the entire set.

• For any effect on estrogen:
–Average concordance among labs was 0.95, 0.84, and 0.89 for the 12 core 

reference chemicals only, the 16 supplemental reference chemicals only, 
and the entire set.
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Example of the 11-dimensional results for 
prochloraz

Figure 2 Haggard et al. (2017).
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Using our maximum mean Mahalanobis
distance approach to get a single 
prioritization metric

39

Mifepristone strongly modulated progestagens with 
significant effects on progesterone and OH-progesterone 
and moderate but non-significant trends on corticosteroids 
and androgens, resulting in a relatively high adjusted 
maxmMd of 33. 

maxmMd

---- ± 1.5-fold vehicle control

---- critical limit

Figure 5, Haggard et al. (2017).

• Reduced an 11-
dimensional 
question to a 
single dimension.

• Selection of the 
maxmMd
appeared to 
provide a 
reproducible, 
quantitative 
approximation of 
the magnitude of 
effect on 
steroidogenesis.
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MaxmMd was reproducible and quantitatively 
distinguished chemicals with larger effects.

Bisphenol A

Negative maxmMd but 
variable steroid hit count

EDS v. finasteride; same hit 
count, very different maxmMd

Figure 8, Haggard et al. (2017).
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Steroidogenesis summary

•HT-H295R screening assay as an alternative for the OECD-
validated, low throughput H295R assay. 
–The ANOVA analysis and logic used herein for the HT-H295R dataset to 

determine effects on the steroid biosynthesis pathway enabled a direct comparison 
of the OECD inter-laboratory validation data and the HT-H295R data. 

•Novel integration of 11 steroid hormone analytes for pathway-
level analysis using the HT-H295R assay data.
–A mean Mahalanobis distance (mMd) was computed for each chemical 

concentration screened. 
–The mMd provided a set of unitless values from which the maximum mean 

Mahalanobis distance (maxmMd) could be calculated across the concentration 
range screened. This maxmMd may be a useful prioritization metric.
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Status of acceptance of these models

• EDSP FIFRA SAP Meeting in December 2014 (ER and AR pathway models)

• 2015 FR Notice: “EPA concludes that ER Model data are sufficient to satisfy the 
Tier 1 ER binding, ERTA and uterotrophic assay requirements.”

• AR Pathway model and HT-H295R model were reviewed at a recent SAP (November 
2017), awaiting report.
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• Technical limitations/obstacles associated with each technology (e.g., 
metabolism, volatiles, etc.)

• Moving from an apical to a molecular paradigm and defining adversity

• Predicting human safety vs. toxicity

• Combining new approaches to have adequate throughput and sufficiently 
capture higher levels of biological organization

• Systematically integrating multiple data streams from the new approaches in a 
risk-based, weight of evidence assessment

• Quantifying and incorporating uncertainty and variability

• Dealing with the validation
• Defining a fit-for-purpose framework(s) that is time and resource efficient 
• Performance-based technology standards vs. traditional validation
• Role of in vivo rodent studies and understanding their inherent uncertainty

• Legal defensibility of new methods and assessment products

Continuing challenges for all high-
throughput toxicology
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The big question: 

Can in vitro bioactivity be used 
to derive a conservative point-
of-departure (POD) for 
prioritization and risk 
assessment?
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A retrospective case study in screening level risk 
assessment

Paul Friedman et al., 2018; in prep
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Preliminary work to compare traditional PODs and new 
approach method PODs demonstrates the possibility and 
challenges
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 Total = 
380 chemicals

httk, ToxCast data, and POD 
value(s) currently available

POD ratio ≤ 0 
31/380 = 8% 
POD ratio < -1 
8/380 = 2% 

So for ~92% of the chemicals, 
without modifying simplistic  
assumptions in the workflow, 

PODNAM was conservative.

ExpoCast PODNAM (PODtraditional PODEFSA PODHC)

All but one chemical had a 
POD ratio > -2, which might 

suggest a UF of 100 (?) might 
be conservative.

Paul Friedman et al., 2018; in prep
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Thank You for Your Attention!

Tox21 Colleagues:
NTP Crew
FDA Collaborators
NCATS Collaborators

EPA Colleagues:
NERL
NHEERL
NCEA

Advancing the Pace of Chemical Risk 
Assessment Collaborators from EPA, 
Health Canada, ECHA, EFSA, and 
A*STAR

EPA’s National Center for Computational Toxicology
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