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Overview: a talk in 3 parts

• Part I: Brief overview of the ToxCast Data Pipeline (tcpl).
• Part II: Example of using both tcpl and external analysis for the CEETOX 

high-throughput H295R (HT-H295R) steroidogenesis assay.
• Part III: Adding context for use of ToxCast data: exploring uncertainty in 

ToxCast.
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Part I: Overview of ToxCast and 
the ToxCast Pipeline
ToxCast Dashboard (current most-detailed assay information interface): https://actor.epa.gov/dashboard/
CompTox Dashboard (many data streams, currently centered on chemistry; Williams et al. 2017 PMID 
29185060): https://comptox.epa.gov/dashboard
Data downloads (download databases and supporting data files): 
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data

https://actor.epa.gov/dashboard/
https://comptox.epa.gov/dashboard
https://www.epa.gov/chemical-research/toxicity-forecaster-toxcasttm-data


High-Throughput Bioactivity Screening: ToxCast and 
Tox21

ToxCast

Concentration

Re
sp

on
se

~600 Cell & 
biochemical 

assays

~1,000 
Chemicals

Tox21

~30 Cell & 
biochemical 

assays

~8,000 
Chemicals

Set Chemicals Assays Completion

ToxCast Phase I 293 ~600 2011

ToxCast Phase II 767 ~600 2013

ToxCast Phase III 1001 ~100 Ongoing

E1K (endocrine) 880 ~50 2013

• All Tox21 data are analyzed by multiple partners
• Tox21 data is available analyzed in the ToxCast Data Pipeline



Organization of data entering invitrodb
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…continued 
through 
multiple 

levels

invitrodb

• Assay sources or vendors may send many files, which are pre-processed.
• The mc0 data in invitrodb is at the assay component level.
• At mc1, assay endpoints are defined, but it is not until normalization at 

mc3 that data are retrieved by assay endpoint.

Example: asid to acid to aeid. 
acid can be 1:1 or 1:many with aeid.

How data moves from vendor to the database.



Outline of the ToxCast pipeline
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Level 0: raw data in standard format

Vendor source file

Custom processing because 
data are heterogeneous

Level 1: define replicate and concentration indices

Level 2: assay component-specific corrections

Level 3: assay endpoint-specific normalization

Level 4: model fitting

Level 5: model selection and hit-calling

Level 6: caution flagging on the fitting

Level 7: uncertainty estimation

Level 1: assay endpoint-specific normalization

Level 2: sample processing and hit-calling

Single concentration: pre-screen for efficacy Multi-concentration: efficacy and potency

Coming soon



Part II: Example using tcpl and 
methods outside tcpl – high-
throughput H295R (HT-H295R)
Derik Haggard, Woody Setzer, Richard Judson, and Katie Paul-Friedman
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Steroidogenesis is critical for several physiological 
processes and modeled in the H295R cell-based assay

Fig 1 in Haggard et al. (2017).
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• Maximized screening resource efficiency.
• 2012 unique test chemicals have been screened 

at a high concentration.
• # steroid hormones affected in single 

concentration (along with other considerations) 
were used to select 656 chemicals for multi-
concentration screening.

Steroidogenesis pathway: relevant biology High-throughput adaptation of H295R assay



Problem: How to compress 11-dimensional data to a single 
prioritization metric for regulators?

Figure 2 Haggard et al. (2018). 9



Using our maximum Mahalanobis distance 
approach to get a single prioritization metric

Mifepristone strongly modulated progestagens with significant effects on progesterone 
and OH-progesterone and moderate but non-significant trends on corticosteroids and 
androgens, resulting in a relatively high adjusted maxmMd of 33. 

maxmMd

---- ± 1.5-fold vehicle control

---- critical limit

Figure 5, Haggard et al. (2018).
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• Reduced an 11-
dimensional question 
to a single dimension.

• Selection of the 
maxmMd appeared to 
provide a reproducible, 
quantitative 
approximation of the 
magnitude of effect on 
steroidogenesis.



Part II conclusions: tcpl is a first tier analysis, and 
some data undergo separate analysis or modeling.
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tcpl invitrodb

Mc0 for 11 acid’s 
(hormones)

Pre-processing

Derivation of 
covariance matrix

Calculation of mean 
Mahalanobis distance 
at each concentration 

screened

Invitrodb
model results

EDSP21 DashboardDashboards

Example: CEETOX high-
throughput H295R data

New version 
coming soon

Haggard et al. (2018) 
Toxicological Sciences. High-
Throughput H295R Steroidogene
sis Assay: Utility as an 
Alternative and a Statistical 
Approach to Characterize Effects 
on Steroidogenesis.

Also on: 
https://github.com/USEPA/Comp
Tox-ToxCast-EDSPsteroidogenesis

https://github.com/USEPA/CompTox-ToxCast-EDSPsteroidogenesis


Part III: Research on uncertainty in 
ToxCast data
Jason Brown, Eric Watt, Woody Setzer, Richard Judson, and Katie Paul-Friedman
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Why is defining the uncertainty in curve-fitting 
important?

• Appropriate conservatism in using in vitro bioactivity data as a surrogate 
for an in vivo point-of-departure.

• Each active chemical has a distribution of AC50s.
• The confidence interval around the lowest AC50 may produce a lower bound that is 

truly the most conservative value.
• Does larger uncertainty, or a wider confidence interval for the AC50, indicate less 

certainty in the hitcall? Not always, but it is one important feature we could use to 
filter data.

• Accuracy of biological modeling: Using in vitro activity data in the 
development of models for specific toxicities.

• Don’t want to include AC50 (or hitcall) from noise or overfit curves.
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• Some sources of uncertainty in fitting high-
throughput screening (HTS) data include:  

• Biological variance
• Systematic error in measurement
• Contribution of experimental design, e.g. concentration-spacing 

and number of concentrations

• Not quantified in tcpl currently.
• Uncertainty could be incorporated into predictive 

models, e.g. QSAR, hybrid descriptor sets, etc., and 
likely impacts predictivity of these models.

• Quantifying uncertainty may support more robust 
screening level risk assessment.

• Uncertainty from fitting is often conflated with 
uncertainty regarding the selectivity (or specificity) of 
a response.

Defining uncertainty in curve-fitting

How do we determine this? (Among other things)



Fit categories (fitc) follow a hierarchical tree and could 
potentially be used to sort curve fits.
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• Highest number of curves are inactive
• First, separate by hitcall (-1, 0, 1)
• For hitcall=1 [actives]: 

• separate by winning model (hill, gnls)
• For each model, separate curves by 

efficacy (<1.2coff or ≥1.2coff)
• Separate by position of AC50 with 

respect to the screened concentration 
range

• May have less confidence in the 
reproducibility of curves where AC50 
predicted is less than the concentration 
range tested; but what about reference 
chemicals or potent acting chemicals?

Figure 1: Relative distribution of curves 
by fit category in invitrodb_v2.



Caution flags have also been suggested as a way to 
filter curves for reliability.
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D) 6: Look for single point hits with 
activity only at the highest 

concentration tested

E) 16: hit-calls that would get 
changed after doing the small N 

correction to the aic values

F) 11: Look for actives 
with borderline activity

C) 12: Look for inactives with 
borderline activity

A) 10: Look for noisy curves, 
relative to the assay

B) 8: Look for inactives with 
multiple medians above 

baseline

• Do specific flags or numbers of flags 
for a specific curve fit indicate a less 
reliable curve fit?

• How do we benchmark the 
“uncertainty” in the fit to 
understand if flag-based filtering is 
only removing “poor” or “less 
reliable” curve fits?

Figure 2: Curve behavior for flags associated 
with active curves.



State of the science: NCATS filters curves
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Using Efficacy: 
NCATS has used efficacy and data curve “quality”
(Huang 2016 DOI 10.1007/978-1-4939-6346-1_12 (below); Huang et al. 2014 DOI: 
10.1038/srep05664)

Using compressed efficacy + potency (AUC) 
and “noise-filtering”: 

NCATS has used Curvep and weighted AUC
(Hsieh et al. 2015 doi:10.1177/1087057115581317)



State of the science: ToxCast researchers filter curves, post-
release as fit-for-purpose
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Using AUC and selectivity filtering: 
ToxCast research has used AUC and distance from the “burst” or other indicators to indicate selectivity

(Paul-Friedman et al. 2016 doi: 10.1093/toxsci/kfw034, Judson et al. 2016 doi: 10.1093/toxsci/kfw092)



Possible solution: implement toxboot R package (Watt, et al. 
in review) for all of invitrodb
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• Toxboot (R package available on CRAN [2]) uses smooth nonparametric bootstrapping, a
statistical method that uses resampling and added noise (mean zero, standard deviation
equal to the median absolute deviation of the response at the lowest concentrations) to
determine uncertainty in a series.

• As hit-calls are binary (positive or negative), they are susceptible to variability and
uncertainty in curve-fitting.

• If following resampling with added random, normally-distributed noise to the series,
similar curve-fits and hit-calls are produced, one could be more confident in the results.



A bootstrap resampling approach to defining 
possible curve fits
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A

Example illustration of 1000 resamples for a given curve: blue
curve fits used a gain-loss function and red curve fits used a Hill
fit (from tcpl).

B

The same plot from Panel A is shown as a tcpl level 7
plot with the added AC50 95% confidence interval
width added to summarize the toxboot uncertainty
estimation.



Early implementation: Challenges and solutions
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• Challenge 1: Computational time. With 2.2 million concentration response series in invitrodb_v2, it
would take ~10 years on a single core machine to process 1000 resamples per curve.

• Solution 1: Parallel processing. By scaling the processing up to run on a server with ~200 cores, we
could reduce the amount of time to bootstrap the entire set of data to < 3 weeks.

• Challenge 2: Data size. For 2.2. million curves in invitrodb_v2, Toxboot results are ~ 1 Terabyte in size.
• Solution 2: Use a NoSQL type database such as MongoDB.
• Challenge 3: Key parameters to store. Each of the resampled series could be processed similarly to the

level 5 processing done in tcpl. This includes determining the wining model, hit-call determination,
calculating point-of-departure estimates, and fit category selection.

• Solution 3: Separate database resources. All resampled data are stored in MongoDB, and summary
parameters are stored back to a new level 7 table in invitrodb (pre-release).



Preparing for the next release of invitrodb: populating 
level 7 (mc7)
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Stored Parameter Description

Hit_pct Hit Percentage

Modl_ga_min, 
Modl_ga_max, 
Modl_ga_delta

Lower, upper, and width 
of the AC50 confidence 

interval

Modl_ga_med Median AC50 calculated 
from bootstrapping

Modl_gw_med Median hill coefficient 
calculated from 
bootstrapping

Example illustrations of toxboot results



Filtering by caution flags: may work

• Curves with multiple flags have a wide 
range of hit percents, but the median 
hit percent for 3+ flags appears to be 
~60-65%...

• So filtering by flag sum + hit-percent 
may remove “worst,” but may not be a 
complete approach.
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Specific flags: some patterns correspond to less 
reproducible fits than others? Still not “perfect”

24These 15 flag patterns cover over 95% of the different types of flag patterns in invitrodb_v2.



Part III: Conclusions

• We are actively quantifying uncertainty in the tcpl-derived curve fits.
• Use of this information may be fit-for-purpose, and so summary 

information for the user will be stored in mc7.
• Simple rules may work for filtering curve fits (flags, fitc, and hit-percent) 

depending on the purpose, but it may be ideal to try to build a model using 
these and other features.

• It may be that combinations of these features are more informative locally 
(e.g., for one assay or technology), rather than globally across the 
database.
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