Web-based access to experimental and predicted data for environmental fate, transport and toxicity data

Antony Williams¹, Todd Martin², Valery Tkachenko³, Kamel Mansouri⁴ and Chris Grulke¹

1) National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC 2) National Risk Management Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, OH 3) Science Data Software, LLC, Rockville, MD 20850

4) Integrated Laboratory Systems, Research Triangle Park, North Carolina, United States

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

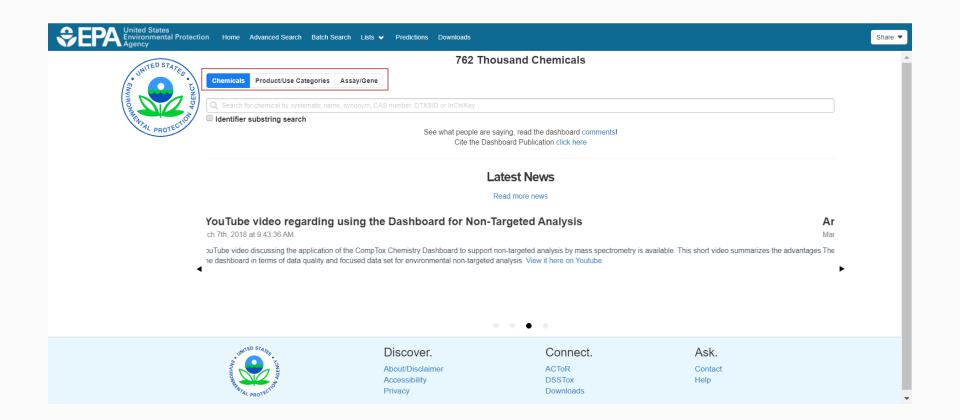
August 2018 ACS Fall Meeting, Boston

Abstract

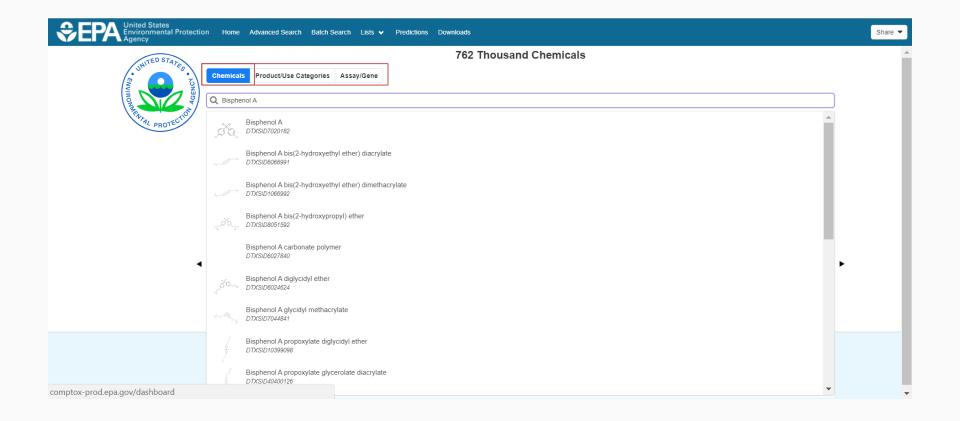
The EPA CompTox Chemistry Dashboard provides access to data associated with ~760,000 chemical substances. The available data includes experimental and predicted physicochemical properties, environmental fate and transport data, *in vivo* and *in* silico toxicity data, *in vitro* bioassay data, exposure data and a variety of other types of information. The data are under continuous expansion and curation and the experimental data have been used to develop QSAR and QSPR models. A number of these models are available via a web interface so that users can submit a chemical structure and predict properties in real time. The dashboard also provides access to pre-compiled chemical lists and categories, including pesticides, and chemicals detected in the environment via non-targeted mass spectrometry analysis. The data are searchable using chemical identifiers (systematic names, trade names, CAS Registry Numbers), by structure, mass and formula. Batch searches allow for data associated with thousands of chemicals to be obtained in a few seconds, with just a few button clicks, and downloaded to the desktop. This presentation will provide an overview of the Dashboard and its applications to accessing source data associated with agriculturally related chemicals.

Who is NCCT?

- National Center for Computational Toxicology part of EPA's Office of Research and Development
- Research driven by EPA's Chemical Safety for Sustainability Research Program
 - Develop new approaches to evaluate the safety of chemicals
 - Integrate advances in biology, biotechnology, chemistry, exposure science and computer science
- Goal To identify **chemical exposures** that may disrupt biological processes and cause adverse outcomes.
- Prediction models and predicted data are some of our major outputs


The CompTox Chemistry Dashboard

- A publicly accessible website delivering access:
 - ~762,000 chemicals with related property data
 - Searchable by chemical, product use, gene and assay
 - Experimental and predicted physicochemical property data
 - "Bioactivity data" for the ToxCast/Tox21 project plus derived models
 - Generalized **Read-Across** (GenRA) module
 - "Batch searching" of **predicted** data for thousands of chemicals


CompTox Dashboard https://comptox.epa.gov/dashboard

CompTox Dashboard Chemicals

Detailed Chemical Pages

Batch Search nol A

SSTox Substan

DETAILS

EXECUTIVE SUMMARY

PROPERTIES

ENV. FATE/TRANSPORT

HAZARD

ADME

- EXPOSURE
- BIOACTIVITY

SIMILAR COMPOUNDS

GENRA (BETA)

RELATED SUBSTANCES

SYNONYMS

LITERATURE

LINKS

COMMENTS

h Batch Search Lists v Predictions Downloads	Copy ▼ Share ▼ Submit Comment Q Search all data	
nol A DTXSID7020182 SSTox Substance Id.		
	Wikipedia	•
H ₃ C CH ₃	Bisphenol A (BPA) is an organic synthetic compound with the chemical formula (CH ₃) ₂ C(C ₆ H ₄ OH) ₂ belonging to the group of diphenylmethane derivatives and bisphenols, with two hydroxyphenyl groups. It is a colorless solid that is soluble in organic solvents, but poorly soluble in water. It has been in commercial use since 1957. BPA is a starting material for the synthesis of plastics, primarily Read more	
	Intrinsic Properties	•
	Structural Identifiers	•
OH	Linked Substances	•
	Presence in Lists	•
	Record Information	•
	Quality Control Notes	•

Physicochemical properties

m

Property

Summary

Summary LogP: Octanol-Water Melting Point Boiling Point Water Solubility Vapor Pressure Elash Point Surface Tension Index of Refraction Molar Refractivity Polarizability Density Molar Volume Thermal Conductivity Viscosity Henry's Law LogKoa: Octanol-Air

Summary

Search query

d average 🗘 🕈	Experimental median	Predicted median +	Experimental range	Predicted range	<u>Unit</u>
		3.43	3.32	2.40 to 3.64	
	156	138	153 to 156	125 to 157	°C
		360	200	343 to 401	°C
		1.00e-3	5.26e-4	5.44e-4 to 1.31e-3	mol/L
		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg
		190	-	188 to 192	°C
			-	46.0	dyn/cm
			-	1.60	
			-	68.2	cm^3
			-	27.0	Å^3
		1.17	-	1.14 to 1.20	g/cm^3
			-	200	cm^3
			-	150	mW/(m*K)

OPERA Predicted Properties

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

To cite this article: K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams (2016) An automate datasets use DOI: 10.108

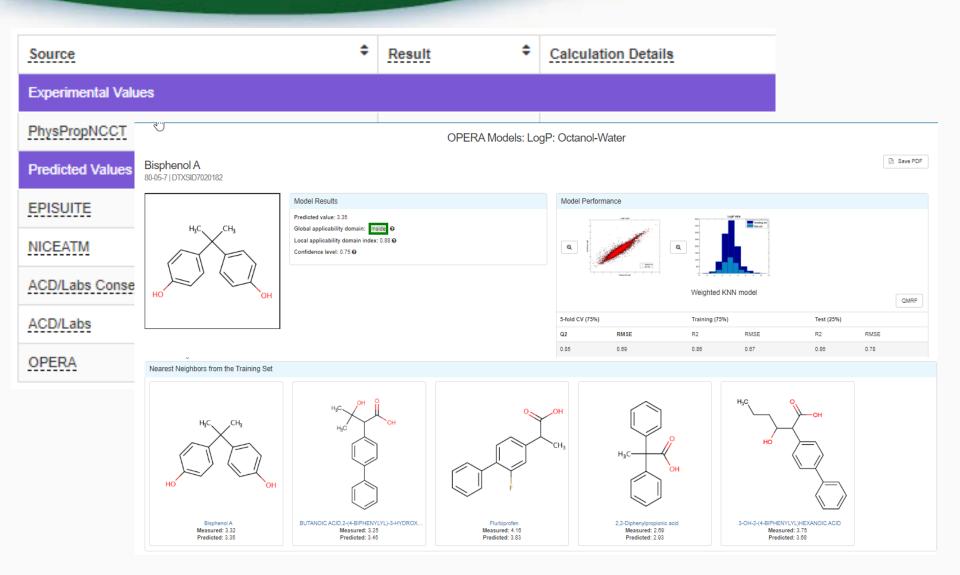
To link to th

RESEARCH ARTICLE

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri^{1,2,3*}^(D), Chris M. Grulke¹, Richard S. Judson¹ and Antony J. Williams¹

Journal of Cheminformatics


Curation to QSAR Ready Files

Property	Initial file	Curated Data	Curated QSAR ready
AOP	818	818	745
BCF	685	618	608
BioHC	175	151	150
Biowin	1265	1196	1171
BP	5890	5591	5436
HL	1829	1758	1711
KM	631	548	541
KOA	308	277	270
LogP	15809	14544	14041
MP	10051	9120	8656
PC	788	750	735
VP	3037	2840	2716
WF	5764	5076	4836
WS	2348	2046	2010

Detailed OPERA Prediction Reports

Prediction Details and QMRF Report

File Edit View Window Help				
Global applicability domain insite Applicability domain using the leverage approach. All training set space considered. More details in OMRF: Local applicability domain index: 0.9 Image: Construction of the Cons	Model Results			
Image: Second	Global applicability domain	details in QMRF.		
Control Cutomize Control 1 / 10 Control Pill & Sign Control <td< td=""><td>Confidence level: 0.65 🕜</td><td></td><td></td><td></td></td<>	Confidence level: 0.65 🕜			
Image: Construction of the state of organic QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (JRC Inventory): To be entered by JRC QMRF identifier (Itel): Investment of the				ze 🔹 📝
QMRF identifier (JRC Inventory): To be entered by JRC QMRF Title:MP: Melting point prediction from the NCCT Models Suite. Printing Date:May 4, 2016 I.QSAR identifier I.I.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. I.I.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. 1.2 Other related models I.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic			1	1
Image: Constraint of the state of organic QMRF Title:MP: Melting point prediction from the NCCT Models Suite. Printing Date:May 4, 2016 I.QSAR identifier 1.1.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. 1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic			is Fill & Sign	Comment
1.1.QSAR identifier (title): MP: Melting point prediction from the NCCT_Models Suite. 1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic		Image: Second state of the second s		
MP: Melting point prediction from the NCCT_Models Suite. 1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
from the NCCT_Models Suite. 1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
1.2.Other related models: No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
No related models 1.3.Software coding the model: NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
NCCT_models V1.02 Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
Suite of QSAR models to predict physicochemical properties and environmental fate of organic				
			anic	

EPA T.E.S.T

https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test

SEPA US ETW	ironmental Protection Agency		Espa	añol │ 中文:繁體版	│ 中文:简体版 │ Tiếng Vi) 한 한국(
Learn the Issues	Science & Technology	Laws & Regulations	About EPA		Search EPA.gov	۹
Related Topics:	Safer Chemicals Res	earch			Contact Us	Share
Toxicity On this page:	Estimatior	n Software	Tool (TEST)		
 <u>QSAR Methodo</u> <u>What's New in 1</u> <u>Prior Version Hi</u> System Require 	Version 4.2? istory					

- Installation Instructions
- <u>Publications</u>
- Get Email Alerts

The Toxicity Estimation Software Tool (TEST) was developed to allow users to easily estimate the toxicity of chemicals using Quantitative Structure Activity Relationships (QSARs) methodologies. QSARs are mathematical models used to predict measures of toxicity from the physical characteristics of the structure of chemicals (known as molecular descriptors). Simple QSAR models calculate the toxicity of chemicals using a simple linear function of molecular descriptors:

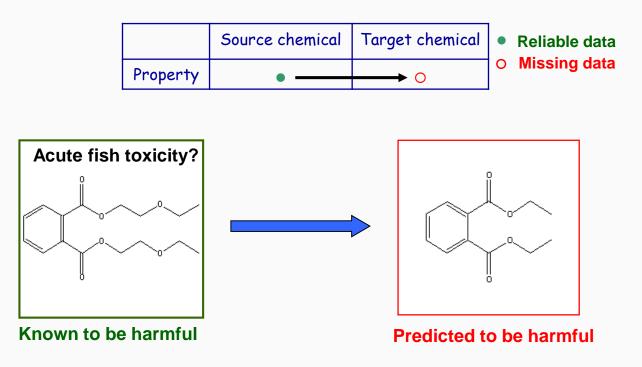
Ask a Technical Expert

Got a question about our research model? Want to give us feedback? Contact a technical expert about <u>TEST</u>.

Physical properties in TEST

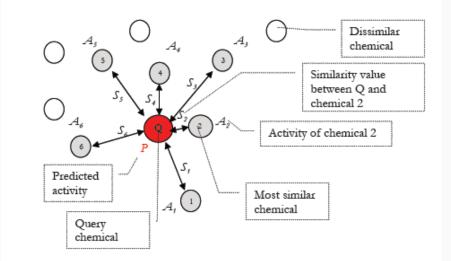
Endpoint	Definition
Viscosity	A measure of the resistance of a fluid to flow (cP) defined as the proportionality constant between shear rate and shear stress
Surface tension	A property of the surface of a liquid (dyn/cm) that allows it to resist an external force
Water solubility	The amount of a chemical (mg/L) that will dissolve in liquid water to form a homogeneous solution

Other Dashboard Predictions

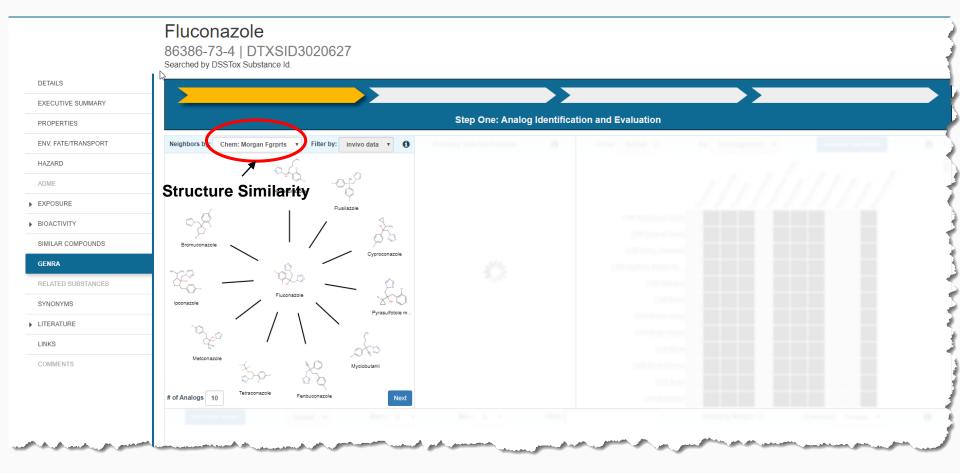


- Predictions and models expand outside of simply physicochemical and environmental fate and transport
- Examples
 - Read-across for Toxicity Endpoints
 - Quantitative Structure-Use Relationship (QSUR) models
 - High-Throughput ToxicoKinetics (HTTK)
 - Models based on high throughput bioactivity data

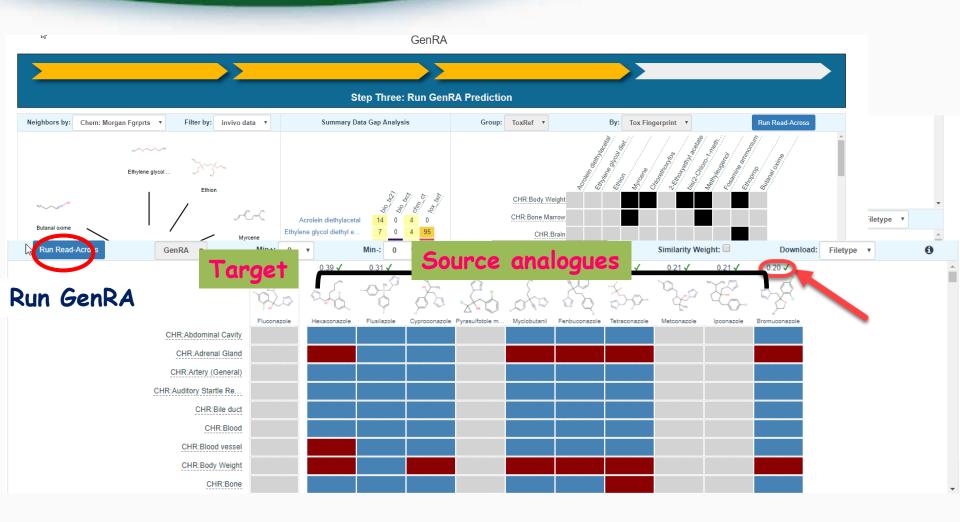
Definitions: Read-Across



 Known information on the property of a substance (source) is used to make a prediction of the same property for another substance (target) that is considered "similar"


- Predicting toxicity as a similarity-weighted activity of nearest neighbors based on chemistry and/or bioactivity descriptors
- Goal: to systematically evaluate read-across performance and uncertainty using available data
- The approach enabled a performance baseline for readacross predictions of toxicity effects within specific study outcomes to be established

Fluconazole 86386-73-4 | DTXSID3020627 Searched by DSSTox Substance Id. DETAILS Wikipedia EXECUTIVE SUMMARY Fluconazole is an antifungal medication used for a number of fungal infections. This includes candidiasis, blastomycosis, coccidiodomycosis, cryptococcosis, histoplasmosis, dermatophytosis, and pityriasis versicolor. It is also used to prevent candidiasis in those who are at high risk such as following organ transplantation, low birth weight babies, and those with low blood neutrophil counts. It is given either by mouth or by injection into a vein. PROPERTIES Common side effects include vomiting ENV. FATE/TRANSPORT Read more HAZARD ADME Intrinsic Properties EXPOSURE Molecular Formula: C13H12F2N80 & Mol File Q Find All Chemicals BIOACTIVITY Average Mass: 306.277 g/mol Lill Isotope Mass Distribution SIMILAR COMPOUNDS HC Monoisotopic Mass: 306.104065 g/mol GENRA Structural Identifiers RELATED SUBSTANCES SYNONYMS Linked Substances LITERATURE Presence in Lists LINKS **Record Information** COMMENTS **Quality Control Notes**



GenRA Step Two: Data Gap Analysis & Generate Data Matrix 3 Summary Data Gap Analysis Generate Data Matrix Group: ToxRef • By: Tox Fingerprint 🔻 0 6 Neighbors by: Chem: Morgan Fgrprts V Filter by: invivo data 🔻 bio 427 bio dec chin ci top they Character and ^{yrasufo}lole, Melconezole Heteconeto Tettaconeto onazole Flusile2016 Myclobular Ethylene glycol Ethion uconazole 3 15 0 CHR:Abdominal Cavity Hexaconazole 43 819 18 34 CHR:Adrenal Gland Flusilazole 28 <mark>819</mark> q 345 Butanal oxime Myrcene CHR:Artery (General) Cyproconazole 819 16 408 14 H,C 04) CHR:Auditory Startle Re. Pyrasulfotole metabolite 0 0 18 CHR:Bile duct Acrolein diethyl. Myclobutanil 15 818 15 Ethoprop CHR:Blood Chlorethoxyfos 34 819 17 Fenbuconazole CHR:Blood vessel 35 819 20 Tetraconazole CHR:Body Weight 35 15 82 Metconazole Fosamine amm. CHR:Bone 2-Ethoxyethyl a .. 180 Ipconazole 46 16 CHR:Bone Marrow Bromuconazole 24 13 345 Methyleugenol CHR:Brain bis(2-Chloro-1-... # of Analogs 10 Next nchus Data gap analysis

• Singleton searches are useful but we work with thousands of chemicals!

- Typical questions
 - What are the SMILES strings for a list of 1000 chemicals?
 - Do any of this list of chemicals have XXX type of data?
 - What are the predicted logP values for a list of chemicals?
 - Can I get lists of predicted properties in Excel files? In SDF files?

Batch Searching

InChIKey Skeleton 🚯

Exact Formula(e)

Monoisotopic Mass

MS-Ready Formula(e)

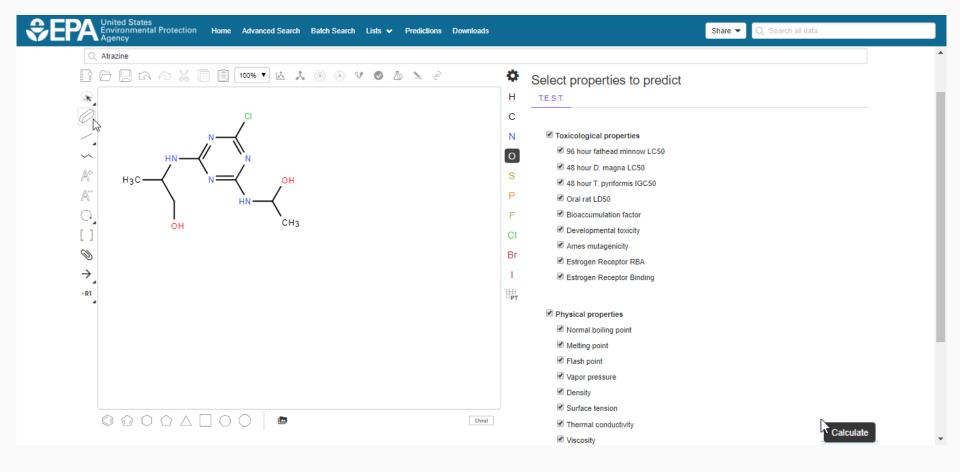
Batch Search@

Please enter one identifier per line Enter Identifiers to Search (searches should be limited to <5000 identifiers) Select Input Type(s) Fuel oil, no. 1 Ethylene oxide **Identifiers** Chloromethane 1-Chloropropan-2-one Chemical Name 📢 n-Hexane Ammonia CASRN 6 Nickel carbonyl Phosgene Potassium cyanide InChlKey 🚺 Chlorodimethylsilane DSSTox Substance ID 🚯

mical Data

Batch Searching

Select Output Format: 📩 Download Excel \sim Presence in Lists: Customize Results ICCVAM test method evaluation report: in vitro ocular toxicity test methods Select All 40CER355 Select All in Lists A list of all PBDEs (Polybrominated diphenyl ethers) Chemical Identifiers A list of all PCBs (Polychlorinated biphenyls) DTXSID 6 A list of polycyclic aromatic hydrocarbons Chemical Name 6 Acute exposure guideline levels CAS-RN Algal Toxins InChlKev 6 Androgen Receptor Chemicals IUPAC Name 6 APCRA Chemicals for Prospective Analysis APCRA Chemicals for Retrospective Analysis Structures Mol File 6 APCRA Chemicals for Retrospective Analysis App List 448 Chemicals SMILES 6 ATSDR Minimal Risk Levels (MRLs) for Hazardous Substances InChl String 1 ATSDR Toxic Substances Portal Chemical List MS-Ready SMILES 1 Bisphenol Compounds QSAR-Ready SMILES (1) California Office of Environmental Health Hazard Assessment Chemicals with interesting names Intrinsic And Predicted Properties CMAP Molecular Formula 6 DNT Screening Library Average Mass 6 Drinking Water Suspects, KWR Water, Netherlands TEST Model Predictions EDSP Universe EPA Chemicals associated with hydraulic fracturing OPERA Model Predictions 🚯


Excel Output

	Α	В	С	D	E	F
1	DTXSID	PREFERRED_NAME	VAPOR_PRESSURE	WATER_SOLUBILITY	ATMOSPHERIC_HYDRO)	BIOCONCENTRATIOIE
2	DTXSID0020523	2,4-Dinitrophenol	0.000058479	0.0055847	8.57649E-13	5.31642
3	DTXSID0021256	Sulfasalazine	6.85488E-14	1.07895E-06	1.05999E-11	13.1817
4	DTXSID0021333	Tetramethylthiuram mon	-	0.0076913	2.89566E-11	5.1961
5	DTXSID0021337	Thiabendazole	7.06318E-07	0.000156675	4.3347E-11	7.89835
6	DTXSID0022436	Diphenolic acid	3.40408E-08	0.00125893	1.70869E-11	2.94716
7	DTXSID0023745	D-Xylose	7.60326E-08	3.52371	3.57198E-11	1.66292
8	DTXSID0023901	Bentazone	-	5.40754E-05	1.67809E-11	1.4173
9	DTXSID0023951	Carboxin	1.06905E-07	0.000304789	1.79673E-11	10.2339
10	DTXSID0024216	Nitrapyrin	0.0107895	0.000162181	2.28302E-11	661.452
11	DTXSID0024345	Triasulfuron	1.47231E-11	0.00022856	1.3866E-11	11.1975
12	DTXSID0027983	Dipropylene glycol mono	-	-	-	
13	DTXSID0032493	Triadimenol	1.58489E-07	0.000267301	1.65682E-11	111.018
14	DTXSID0032520	Azoxystrobin	9.4189E-11	1.53815E-06	1.6811E-11	12.6717
15	DTXSID0032601	Cyproconazole	5.24807E-08	0.000289734	1.66415E-11	43.1754
16	DTXSID0032655	Triticonazole	9.88553E-09	0.000014388	2.98831E-11	102.292
17	DTXSID0039223	Aldicarb	0.000138676	0.0254683	1.5544E-11	5.90478
18	DTXSID0040707	4-Pentylaniline	0.00272898	0.000567545	2.73005E-11	94.115
19	DTXSID0041270	3,5,5-Trimethylhexyl ace	0.21727	0.000521195	1.32332E-11	43.3424
20	DTXSID0044361	Hexanedihydrazide	-	0.341193	5.54119E-12	1.78013
21	DTXSID0044494	2-Phenylethyl phenylace	0.000101859	0.000628058	1.43965E-11	342.896

Real-Time Predictions

Real-Time Predictions

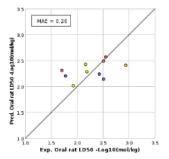
United States Environmental Protection Agelmy	Home Advanced Search	Batch Search Lists 🗸 Pred	ictions Downloads		Share 🔻	Q Search all data
Provider: T.E.S.T.						Calculate
🛓 Download Summary 🔻						
Property	Experimental Value	Consensus	Hierarchical clustering	Single model	Group contribution	Nearest neighbor
96 hour fathead minnow LC50		3.358 -Log10(mol/L) 108.625 mg/L	3.378 -Log10(mol/L) 103.737 mg/L	3.235 -Log10(mol/L) 144.209 mg/L	2.755 -Log10(mol/L) 435.012 mg/L	4.064 -Log10(mol/L) 21.394 mg/L
48 hour D. magna LC50		3.276 -Log10(mol/L) 131.155 mg/L	3.091 -Log10(mol/L) 201.017 mg/L	3.021 -Log10(mol/L) 235.873 mg/L	2.533 -Log10(mol/L) 725.991 mg/L	4.460 -Log10(mol/L) 8.596 mg/L
48 hour T. pyriformis IGC50			2.537 -Log10(mol/L) 718.880 mg/L			
Oral rat LD50		1.993 -Log10(mol/kg) 2514.643 mg/kg	1.888 -Log10(mol/kg) 3203.747 mg/kg			2.099 -Log10(mol/kg) 1973.760 mg/kg
Bioaccumulation factor		0.386 Log10 2.429	0.473 Log10 2.971	0.386 Log10 2.432	-0.290 Log10 0.512	0.974 Log10 9.409
Developmental toxicity		true	true	true		
Ames mutagenicity		false	true			false
Estrogen Receptor RBA						
Estrogen Receptor Binding		false	false	false	false	
Normal boiling point		371.7 °C	360.4 °C		470.4 °C	284.3 °C
Melting point		162.3 °C	163.0 °C		158.5 °C	165.3 °C
Flash point		225.4 °C	250.7 °C		249.9 °C	175.4 °C
Vapor pressure		-7.853 Log10(mmHg) 1.403*10^-8 mmHg	-7.672 Log10(mmHg) 2.126*10^-8 mmHg		-9.429 Log10(mmHg) 3.728*10^-10 mmHg	-6.458 Log10(mmHg) 3.486*10^-7 mmHg

26

 \mathbf{T}

Real-Time Predictions

Predicted Oral rat LD50 for ClC=1N=C(N=C(N1)NC(C)CO)NC(O)C from Consensus method


Prediction results							
Endpoint Experimental value Predicted value							
Oral rat LD ₅₀ -Log10(mol/kg)	N/A	1.99					
Oral rat LD ₅₀ mg/kg	N/A	2514.64					

Individual Pre		
Method	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Hierarchical clustering	~~~	
Nearest neighbor	óн `	

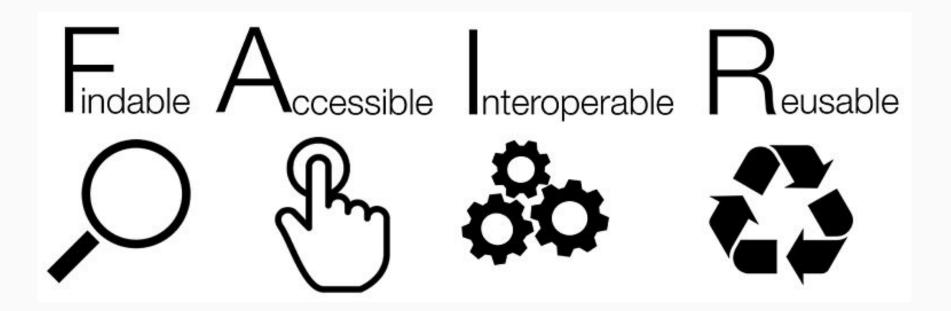
Predictions for the test chemical and for the most similar chemicals in the external test set

If the predicted value matches the experimental values for similar chemicals in the test set (and the similar chemicals were predicted well), one has greater confidence in the predicted value.

Prediction results (colors defined in table below)

Chemicals	MAE*
Entire set	0.43
Similarity coefficient ≥ 0.5	0.26
*Mean absolute error in -Log1	0(mol/kg)

o CAS	Structure	Similarity Coefficient	Experimental value -Log10(mol/kg)	Predicted value -Log10(mol/kg)
CIC=1N=C(N=C(N1)NC(C)CO)NC(O) (test chemical)			N/A	1.99
<u>1912-24-9</u>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0.84	2.51	2.15
<u>3004-71-5</u>		0.83	2.43	2.24
<u>139-40-2</u>	- t	0.82	1.78	2.20
<u>1610-17-9</u>	.Ac	0.76	2.16	2.43
<u>1014-69-3</u>	and a	0.74	2.19	2.28
<u>22936-75-0</u>	-file-	0.71	1.93	2.02


https://comptox.epa.gov/dashboard/web-test/WS?smiles=CCO&method=hc

JSON Raw Data Heade	rs
Save Copy	
uuid:	"55547f4f-f966-48e8-b831-a0d217998064"
predictionTime:	1520539090089
software:	"T.E.S.T (Toxicity Estimation Software Tool)"
softwareVersion:	"5.01"
condition:	"25°C"
endpoint:	"Water solubility at 25°C"
method:	"Hierarchical clustering"
▼ predictions:	
▼0:	
id:	"C_1520539090089"
smiles:	"OCC"
expValMolarLog:	"-1.337"
expValMass:	"1001180.703"
predValMolarLog:	"-1.338"
predValMass:	"1002625.241"
molarLogUnits:	"-Log10(mol/L)"
massUnits:	"mg/L"

Agency

United States Environmental Protection

Our support for FAIR Data

Downloadable Data

EPA United States Environmental Protectic Agency	n Home Advanced Search	Batch Search Lists 🗸	Predictions	Downloads	Share 🔻	Q Search all data
DSSTox Mapping File						Posted: 12/14/2016
The DSSTOX mapping file contains ma a Tab Separated Value (TSV) file with e DTXSID7020001 InChI=1S/C11H9N3				Ū		e file is made available as
DSSTox Predicted Property Data						Posted: 12/14/2016
A number of property prediction models and inconsistencies in public datasets u files include DTXSIDs, names and the p	ised in QSAR modelling". These pro	operty prediction models in	clude logP, water	r solubility, bioco	oncentration fact	or and many others. The

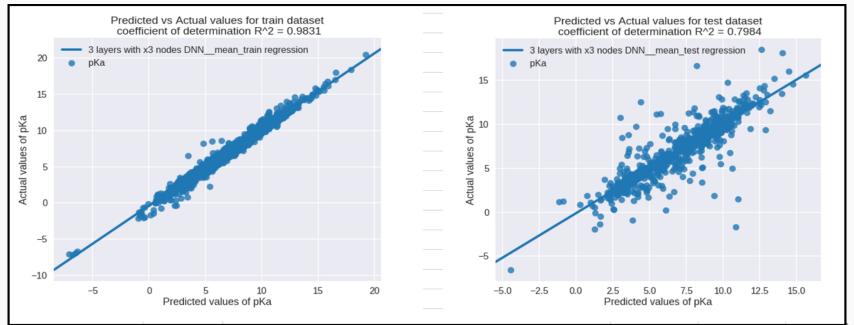
DSSTox Synonyms File

inorganics, organometallics and elements cannot be handled).

Posted: 12/14/2016

The DSSTox synonyms file is in SDF format and includes the DSSTox substance identifier (DTXSID). The preferred name, the CAS Registry Number and the list of associated synonyms for over 720,000 chemicals. In order to view an SDF file you will need to have access to the appropriate piece of software to open an SDF files. Examples include ChemAxon JChem, ACD/ChemFolder or ChemDraw.

Work in Progress



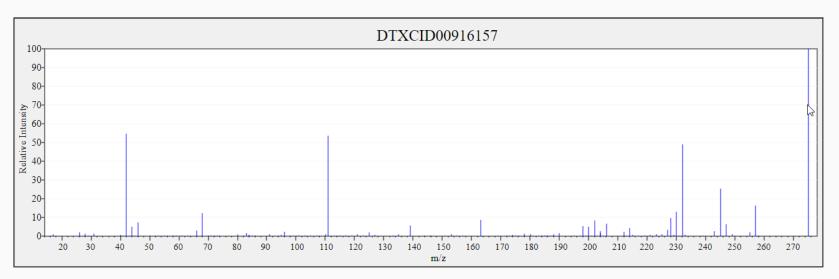
- Present work in development
 - Development of OPERA model web services
 - Development of pKa and logD prediction models
 - Display of TEST Toxicity endpoints predicted data
 - Analytical Data support
 - Spectral searching against predicted Mass Spectra

pKa Prediction Model

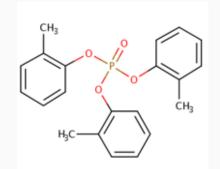
 pKa prediction models based on Open
 Data Set of 8000 chemicals – acidic, basic and amphoteric chemicals

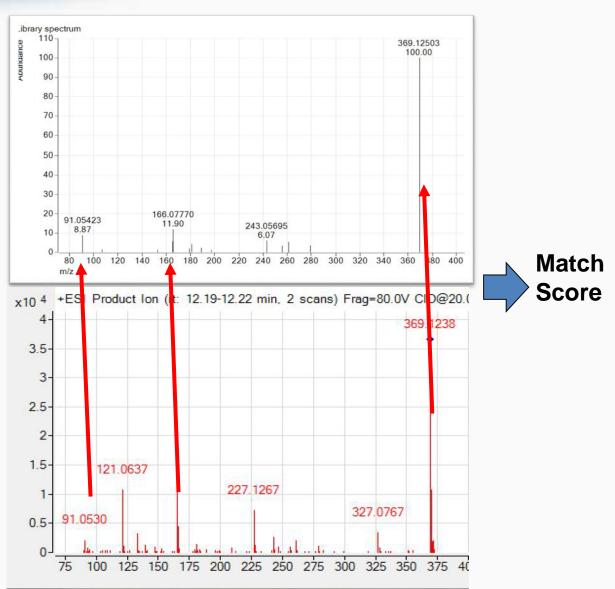
Toxicity Endpoints in TEST

Endpoint	Definition
96 hour fathead minnow LC ₅₀	Concentration in mg/L that causes 50% of fathead minnow to die after 96 hours
48 hour <i>Daphnia</i> <i>magna</i> LC ₅₀	Concentration in mg/L that causes 50% of Daphnia magna to die after 48 hours
48 hour <i>T. pyriformis</i> IGC ₅₀	Concentration in mg/L that causes 50% growth inhibition to <i>T. pyriformis</i> after 48 hours
Oral rat LD ₅₀	Amount of chemical in mg/kg body weight that causes 50% of rats to die after oral ingestion
Developmental toxicity	Whether or not a chemical causes developmental toxicity effects to humans or animals
Ames mutagenicity	A compound is positive for mutagenicity if it induces revertant colony growth in any strain of Salmonella typhimurium


Predicted Mass Spectra

http://cfmid.wishartlab.com/


- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >700,000 structures, to be accessible via Dashboard


Predicted Mass Spectra

Library Fragmentation Spectra (20eV)

Observed Fragmentation Spectra (20eV)

Search Expt. vs. Predicted Spectra

SEPA United States Environmental Protection Home Advan Agency	ed Search Batch Search Lists 🗸 Predictions Downloads	Share 🔻 🔍 Search all data
	Mass Search <u>± Min/Max</u> Mass Da <u>±</u> Error Da ppm Molecular Formula Search	
	Molecular Formula	
	Mass or Formula must be entered before searching spectrum Ionization Type	
	Spectra Input Single Energy Multiple	
	Peak Match Window: 0.02 Da ppm Search Search Search	

- The CompTox Dashboard provides access to data for ~762,000 chemicals
- Multiple prediction models available for data gap filling
 - OPERA models and TEST models PhysChem and Tox endpoints
 - Models based on *in vitro* data classification models
 - Generalized Read-Across delivered
- Real time prediction models expanding in number
- Web services available for some physchem and toxicity endpoints

Contact

Antony Williams

US EPA Office of Research and Development

National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821