

Accessing information for Per- & Polyfluoroalkyl Substances using the US EPA CompTox Chemistry Dashboard

Antony Williams¹, Andrew McEachran², Mark Strynar³, Chris Grulke¹, Kamel Mansouri⁴, Grace Patlewicz¹, Reeder Sams¹, Emma Schymanski⁵ and Ann Richard¹

National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 2) ORAU
 3) NERL
 4) ILS
 5) University of Luxembourg

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

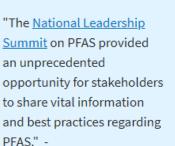
August 2018 ACS Fall Meeting, Boston

Abstract

EPA's National Center for Computational Toxicology is developing automated workflows for . curating large databases within the DSSTox project, and providing accurate linkages of data to chemical structures, exposure and hazard information. The data are made available via the EPA's CompTox Chemistry Dashboard (https://comptox.epa.gov/dashboard), a publicly accessible website providing access to data for ~760,000 chemical substances, the majority of these represented as chemical structures. The web application delivers a wide array of computed and measured physicochemical properties, in vitro high-throughput screening data and in vivo toxicity data, as well as integrated chemical linkages to a growing list of literature, toxicology, and analytical chemistry websites. In addition, several specific search types are in development to directly support the mass spectrometry non-targeted screening community, enabling cohesive workflows to support data generation for the detection and assessment of environmental exposures to chemicals contained within DSSTox. The application provides access to segregated lists of chemicals that are of specific interest to relevant stakeholders, including, for example, scientists interested in Per- & Polyfluoroalkyl Substances (PFAS). Added lists include those sourced from the European Union as well as developed in-house and now containing thousands of chemicals. A procured testing library of hundreds of PFAS chemicals annotated into chemical categories has been integrated into the dashboard with a number of resulting benefits: a searchable database of chemical properties, with hazard and exposure predictions, and links to the open literature. This presentation will provide an overview of the dashboard, the developing library of PFAS chemicals and associated categorization, and new physicochemical property and environmental fate and transport QSAR prediction models developed for these chemicals. The application of the dashboard to support mass spectrometry non-targeted analysis studies for the identification of PFAS chemicals will also be reviewed.

EPA activities around PFAS chemicals

https://www.epa.gov/pfas



Per- and Polyfluoroalkyl Substances (PFAS)

What are PFAS?

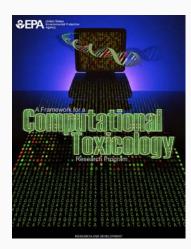
PFAS is a category of man-made chemicals that are found in everyday items including food packaging, nonstick products, and stain repellent fabrics. Learn more about PFAS, what they are, how people are exposed and what EPA is doing.

Former Administrator Pruitt

- <u>Community Events</u>
- Infographic

Basic Information

- What are PFAS?
- Why are PFAS important?
- How people are exposed?


EPA Actions to Address PFAS

- EPA actions
- <u>National leadership summit and</u> engagement

Tools and Resources

- EPA data and tools
- State information
- Site-specific resources

National Center for Computational Toxicology

National Center for Computational Toxicology established in 2005 to integrate:

mental Protection

- High-throughput and high-content technologies
- Modern molecular biology
- Data mining and statistical modeling
- Computational biology and chemistry
- Researching computational approaches to quickly evaluate the safety of chemicals for potential risk.
- Outputs: a lot of data, models, algorithms and software applications
- How can these efforts support research into PFAS chemicals?

The CompTox Dashboard

• A publicly accessible website delivering access:

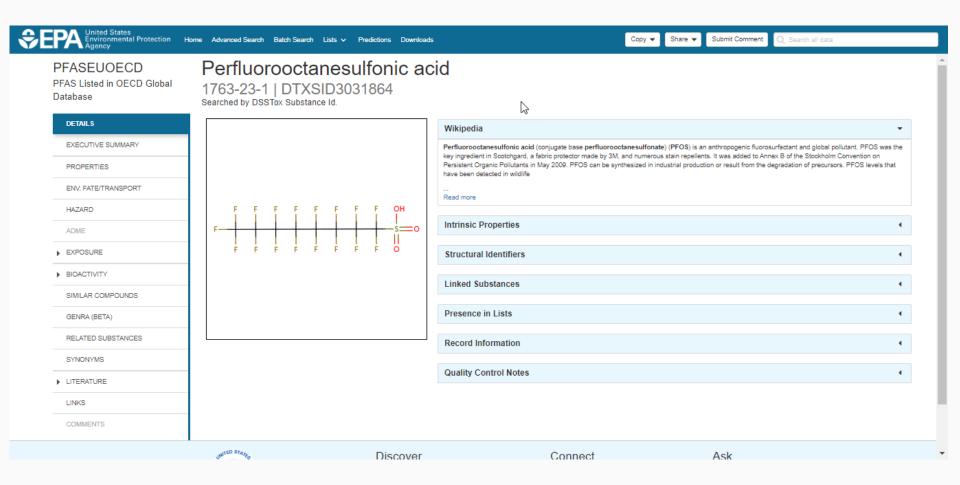
- ~762,000 chemicals with related property data
- Experimental and predicted physicochemical property data
- Experimental Human and Ecological hazard data
- Integration to "biological assay data" for 1000s of chemicals
- Information regarding consumer products containing chemicals
- Links to other agency websites and public data resources
- "Literature" searches for chemicals using public resources
- "Batch searching" for thousands of chemicals
- Real time prediction of physchem and toxicity endpoints

– Over 5,000 of the chemicals are classed as PFAS Chemicals

CompTox Dashboard https://comptox.epa.gov/dashboard

TAL PROTECT

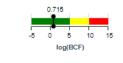
Separation United States	ection Home Advanced Search Batch	Search Lists 🛩 Predictions Downloads			Share 🔻
UNITED STATES , DINOT	Chemicals Product/Use Categories	762 Tho Assay/Gene	usand Chemicals		
AL FRANCE CTON	Identifier substring search		aying, read the dashboard comments! Iboard Publication click here		
			atest News Read more news		
	March 7th, 2018 at 8:59:16 AM	\searrow			
	utility of the dashboard to help in the proc	ess of identifying chemicals is highlighted.	cuses on ouspect screening and non-target	ou analysis of uninning water using point or use inters. I	Þ
			• • •	of-use filters" uses the Dashboard ed analysis of drinking water using point-of-use filters. The Ask. Contact Help	
	Styling to States	Discover. About/Disclaimer Accessibility Privacy	Connect. ACToR DSSTox Downloads	Contact	


CompTox Dashboard https://comptox.epa.gov/dashboard

EPA United States Environmental Protect	ction Ho	ome Advanced Search Batch Search Lists 🕶 Predictions Downloads	Share •
		762 Thousand Chemicals	
UNITED STATES	Chemica	Is Product/Use Categories Assay/Gene	
	Q Perflu)
RANAL PROTECTION		Perfluorinated compounds DTXS/D4031859	
	₽-{	Perfluoro alkanes (linear) DTXS/D30894934	
		Perfluoro compounds, C5-18 DTXS/D5029059	
		Perfluoro diacyl amides DTXSID10893889	
•	滅	Perfluoro dimethylethylpentane DTXSID50198289	•
	私	Perfluoro iso n:p acrylates DTXSID60893637	
	效	Perfluoro tert-butylcyclohexane DTXSID70233868	
	HANK HANK	Perfluoro-(2,5,8-trimethyl-3,6,9-trioxadodecanoic)acid DTXSID70276659	
		Perfluoro-(C6-18)-alkylphosphonic acid (Fluowet® PL 80, 80% aqueous solution) DTXSID20881914	

1 of ~762,000 Chemical Pages

Executive Summary


6 ed States intal Protection Hom • PFASEUOECD PFAS Listed in OECD Global Database V DETAILS EXECUTIVE SUMMARY PROPERTIES ENV. FATE/TRANSPORT HAZARD ADME EXPOSURE BIOACTIVITY • SIMILAR COMPOUNDS GENRA (BETA) RELATED SUBSTANCES SYNONYMS LITERATURE \mathbf{x} LINKS COMMENTS

- Reproductive Toxicology 13 Reproductive toxicity PODs available Chronic Toxicology 15 Chronic toxicity PODs available 2 Subchronic Toxicology 1 Subchronic toxicity PODs available Developmental Toxicology 8 Developmental toxicity PODs available Acute Toxicology 65 Acute toxicity PODs available 🗹 Subacute Toxicology No subacute toxicity data available. Neurotoxicology No neurotoxicology data available. Endocrine System
- Endocrine Disruption Potential. Significant Estrogen Receptor activity seen. Chemical was positive in 5 ER assays (out of 17) and was positive in 2 AR assays (tested in 10).

Submit Comment Q Search all data

loa(VP)

Physicochemical properties

Im

Property

Summary

Summary

LogP: Octanol-Water Melting Point Boiling Point Water Solubility Vapor Pressure Elash Point Surface Tension Index of Refraction Molar Refractivity Polarizability Density Molar Volume Thermal Conductivity Viscosity Henry's Law LogKoa: Octanol-Air

Summary

Search query

erage 🗘	Experimental median +	Predicted median +	Experimental range	Predicted range 🕈	Unit +
		3.43	3.32	2.40 to 3.64	
	156	138	153 to 156	125 to 157	°C
		360	200	343 to 401	°C
		1.00e-3	5.26e-4	5.44e-4 to 1.31e-3	mol/L
		3.43e-7	-	6.83e-8 to 2.59e-6	mmHg
		190	-	188 to 192	°C
			-	46.0	dyn/cm
			-	1.60	
			-	68.2	cm^3
			-	27.0	Å^3
		1.17	-	1.14 to 1.20	g/cm^3
			-	200	cm^3
			-	150	mW/(m*K)

OPERA Predicted Properties

An automated curation procedure for addressing chemical errors and inconsistencies in public datasets used in QSAR modelling

K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams

To cite this article: K. Mansouri, C. M. Grulke, A. M. Richard, R. S. Judson & A. J. Williams (2016) An automate datasets use DOI: 10.108

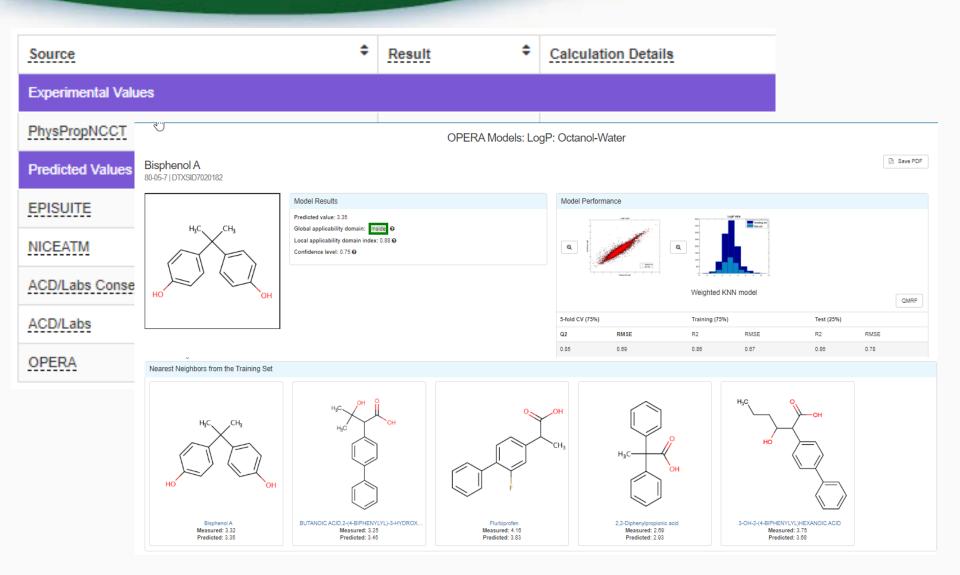
To link to th

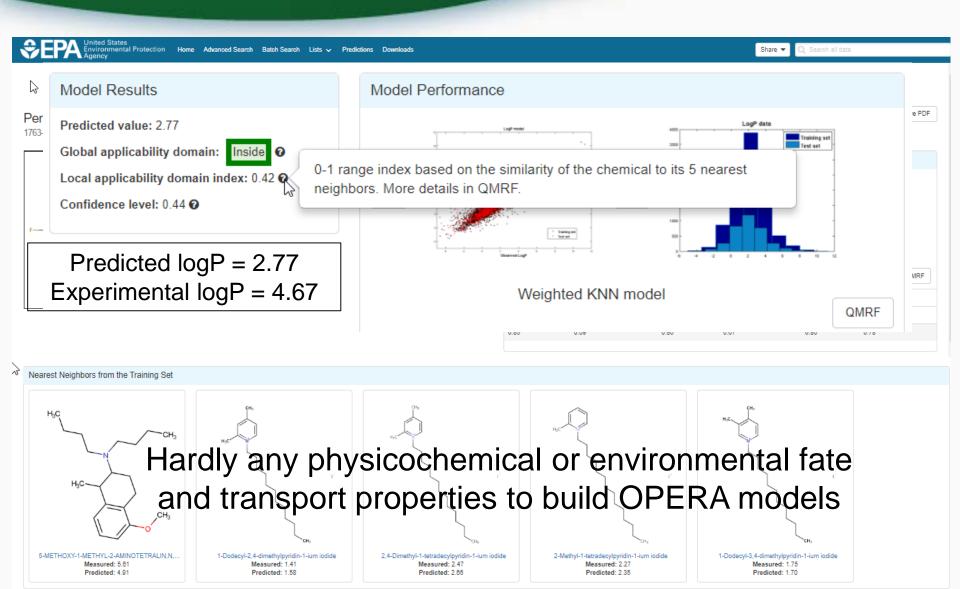
RESEARCH ARTICLE

OPERA models for predicting physicochemical properties and environmental fate endpoints

Kamel Mansouri^{1,2,3*}^(D), Chris M. Grulke¹, Richard S. Judson¹ and Antony J. Williams¹

Journal of Cheminformatics




Detailed OPERA Prediction Reports

Not much data for PFAS - yet

Literature Data Extraction

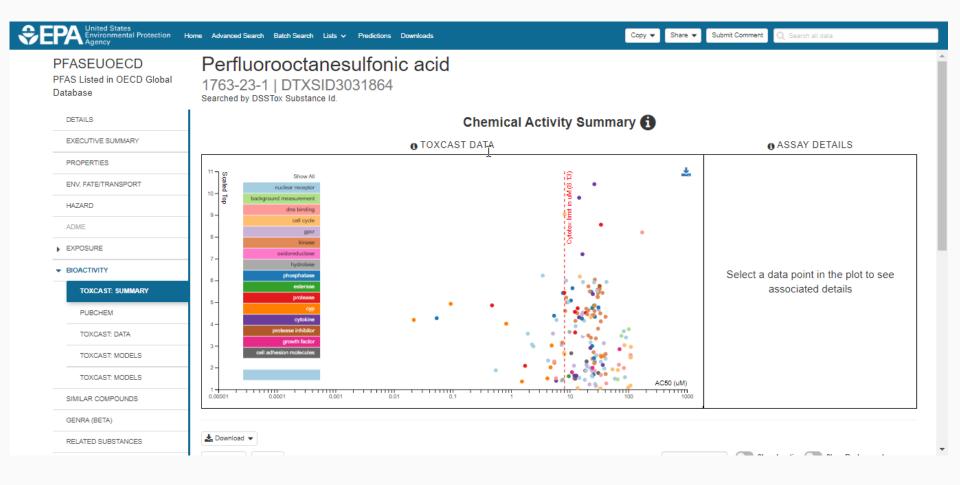
 Physicochemical property and environmental fate and transport data has been extracted from the literature

 OPERA models will be rebuilt with these data for new predictions

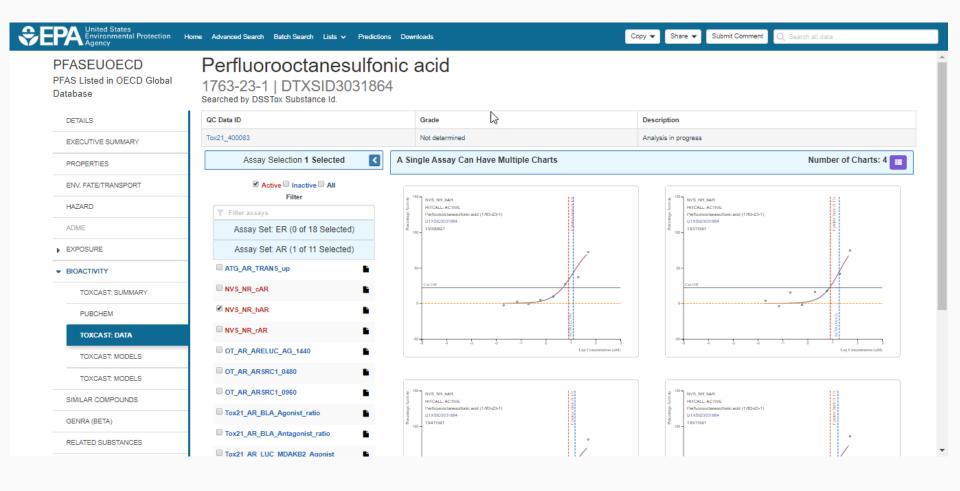
• Data and predictions available Spring 2019

Hazard Data – Human and Eco

DETAILS	DataTyp	e											
EXECUTIVE SUMMARY		otox Effect L	evel 💙										
PROPERTIES						\square	ŵ	Human 🗴	Eco				
ENV. FATE/TRANSPORT	Colum	ns ~										Search query	
HAZARD					Dielessesses								
ADME	More ¢	Priority \$	Toxval type ¢	Subtype \$	Risk assessment class	\$ Valu	teres Units teres teres tere	Study type	Exposure route	Species	Subsource	\$	Sc
EXPOSURE		6	EC10	-	growth:acute	2.6	mg/L	growth	static	sea urchin, echinoderm	J. Environ. Monit.14(5):	1375-1382	EC
► BIOACTIVITY		6	EC10	-	mortality:acute	3.2	mg/L	mortality	static	mysid	J. Environ. Monit.14(5):	1375-1382	EC
SIMILAR COMPOUNDS		6	EC50	-	mortality:acute	141.	′ mg/L	mortality	renewal	black sandshell	Environ. Toxicol. Chem. 1620	31(7): 1611-	EC
GENRA (BETA)		6	EC50	-	mortality:acute	158.	mg/L	mortality	renewal	lamp-mussel	Environ. Toxicol. Chem.	31(7): 1611-	EC
RELATED SUBSTANCES							-				1620		
SYNONYMS		6	EC50	-	mortality:acute	6.9	mg/L	mortality	static	mysid	J. Environ. Monit.14(5):	1375-1382	EC
LITERATURE		6	EC50		mortality:acute	158.	mg/L	mortality	renewal	lamp-mussel	Environ. Toxicol. Chem. 1620	31(7): 1611-	EC
LINKS		6	EC50	-	growth:acute	20	mg/L	growth	static	sea urchin, echinoderm	J. Environ. Monit.14(5):	1375-1382	EC
COMMENTS		6	EC50	-	mortality:acute	158.	mg/L	mortality	renewal	black sandshell	Environ. Toxicol. Chem.	31(7): 1611-	EC


Hazard Data from "ToxVal_DB"

- ToxVal Database contains following data:
 - -30,050 chemicals
 - -772,721 toxicity values
 - -29 sources of data
 - -21,507 sub-sources
 - -4585 journals cited
 - -69,833 literature citations


Bioactivity Data

Boactivity Data

What is PFOS Called?

 $\overline{\Sigma}$

SEPA United States Environmental Protection Hor		Perfluorooctanesulfonic acid	Share - Submit Comment O Searc	h all data	
	P	Heptadecafluorooctane-1-sulfonic acid		i an Gala	
	17 Seal	1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-	_		
DETAILS				Search query	
EXECUTIVE SUMMARY	Syn	1763-23-1 Active CA 8-RN	•	Quality	;
PROPERTIES	Per			Valid	-
ENV. FATE/TRANSPORT	Hep	Heptadecafluorooctanesulfonic acid		Valid	
HAZARD	1-0			Valid	
ADME	176	1-Octanesulfonic acid, 1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-heptadecafluoro-		Valid	
	Hep	-		Valid	
EXPOSURE	1-0	1-Octanesulfonic acid, heptadecafluoro-		Valid	
BIOACTIVITY	1-0			Valid	
SIMILAR COMPOUNDS	EF	EF 101		Valid	
GENRA (BETA)	hep			Valid	
RELATED SUBSTANCES	hep	heptadecafluorooctane-1-sulfonic acid		Valid	
SYNONYMS	PF(neptadecandorooctarie-r-sunome acid		Good	. 1
LITERATURE	EIN	hand a floor of a stable is said		Other	
	1,1,	heptadecafluorooctane-1-sulphonic acid		Other	
LINKS	1-P)			Other	
COMMENTS	Efto	PFOS		Other	
	UNI			Other	
	Perl	EINECS 217-179-8		Other	
	hep			Other	

1,1,2,2,3,3,4,4,5,5,8,6,7,7,8,8,8-Heptadecafluoro-1-octanesulfonic acid

Literature Searching - PubMed

Perfluorooctanesulfonic acid

1763-23-1 | DTXSID3031864

Searched by Synonym from Valid Source.

1) Select PubMed starting point query then 2) click on Retrieve.

Hazard 🔻	Retrieve Articles	0
Select a Query Term		
Hazard		
Fate and Transport		
Metabolism/PK/PD		
Chemical Properties		
Exposure		
Mixtures		
Male Reproduction		
Androgen Disruption		
Female Reproduction		
GeneTox		
Cancer		
Clinical Trials		
Embryo and embryonic development		
Child (infant through adolescent)		
Dust and Exposure		
Food and Exposure		
Water and Exposure		
Algae		
Disaster / Emergency		

Optionally, edit the query before retrieving.

("1763-23-1" OR "Perfluorooctanesulfonic acid" OR "perfluorooctane sulfonic acid") AND (NOAEL or NOEL OR LOEL or Rfd OR "reference dose" OR "reference concentration" OR "adverse effect level"[tiab] OR "cancer slope factor"[tiab])

Literature Searching - PubMed

0

Perfluorooctanesulfonic acid

1763-23-1 | DTXSID3031864

Searched by Synonym from Valid Source.

1) Select PubMed starting point query then 2) click on Retrieve.

Hazard

Retrieve Articles 0

23 of 23 articles loaded...

Optionally, edit the query before retrieving.

("1763-23-1" OR "Perfluorooctanesulfonic acid" OR "perfluorooctane sulfonic acid") AND (NOAEL or NOEL OR LOEL or Rfd OR "reference dose" OR "reference concentration" OR "adverse effect level"[tiab] OR "cancer slope factor"[tiab])

To find articles quickly, enter terms to sift abstracts.

Download / Send to... 🔻 🚺 Download Sifter for Excel

PMID	Year	Title	Authors	Journal	Rev	/
29525662	2018	Modeling avian exposures to perfluoroalkyl substances in aquatic habitats	Larson; Conder; Arblaster	Chemosphere		T
28521193	2017	Issues raised by the reference doses for perfluorooctane sulfonate and pe	Dong; Bahar; Jit; Kennedy; Priestly; Ng; Lamb; Liu;	Environment international		
24046276	2013	Dosimetric anchoring of in vivo and in vitro studies for perfluorooctanoate	Wambaugh; Setzer; Pitruzzello; Liu; Reif; Kleinstreu	Toxicological sciences : an official journal of the Soc		
22441698	2012	Perfluorooctane sulfonate increases β -oxidation of palmitic acid in chicke	Nordén; Westman; Venizelos; Engwall	Environmental science and pollution research intern		
21467747	2011	Induction of apoptosis and CYP4A1 expression in Sprague-Dawley rats e	Kim; Jun Kwack; Sik Han; Seok Kang; Hee Kim; Yo	The Journal of toxicological sciences		
21207445	2011	Aquatic predicted no-effect-concentration derivation for perfluorooctane s	Qi; Wang; Mu; Wang	Environmental toxicology and chemistry		
20879709	2010	Distribution of perfluorooctane sulfonate and other perfluorochemicals in t	Wang; Fu; Wang; Liang; Pan; Cai; Jiang	Environmental science & technology		
20709355	2010	Brominated flame retardants and perfluorinated compounds in indoor dust	D'Hollander; Roosens; Covaci; Cornelis; Reynders;	Chemosphere		
19569327	2009	Perfluoroalkyl contaminants in an Arctic marine food web: trophic magnific	Kelly; Ikonomou; Blair; Surridge; Hoover; Grace; Go	Environmental science & technology		
19343326	2009	Chronic effects of perfluorooctanesulfonate exposure on immunotoxicity i	Dong; Zhang; Zheng; Liu; Jin; He	Archives of toxicology		
19162172	2009	Gestational and lactational exposure to potassium perfluorooctanesulfona	Butenhoff; Ehresman; Chang; Parker; Stump	Reproductive toxicology (Elmsford, N.Y.)		
19110351	2008	Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata	Van Gossum; Bots; Snijkers; Meyer; Van Wassenbe	Environmental pollution (Barking, Essex : 1987)		•

Literature Searching - PubMed

Perfluorooctanesulfonic acid

1763-23-1 | DTXSID3031864

Searched by Synonym from Valid Source.

1) Select PubMed starting point query then 2) click on Retrieve.

Hazard

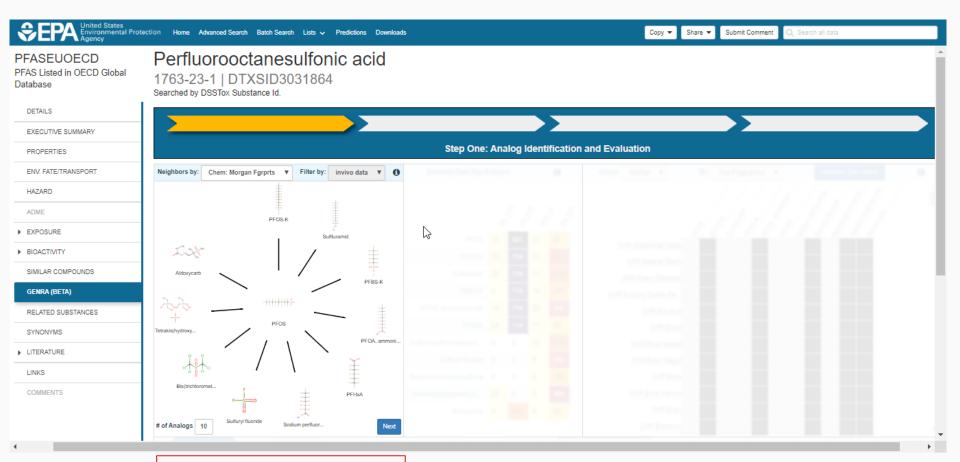
Retrieve Articles 0

23 of 23 articles loaded..

Optionally, edit the query before retrieving.

("1763-23-1" OR "Perfluorooctanesulfonic acid" OR "perfluorooctane sulfonic acid") AND (NOAEL or NOEL OR LOEL or Rfd OR "reference dose" OR "reference concentration" OR "adverse effect level"[tiab] OR "cancer slope factor"[tiab])

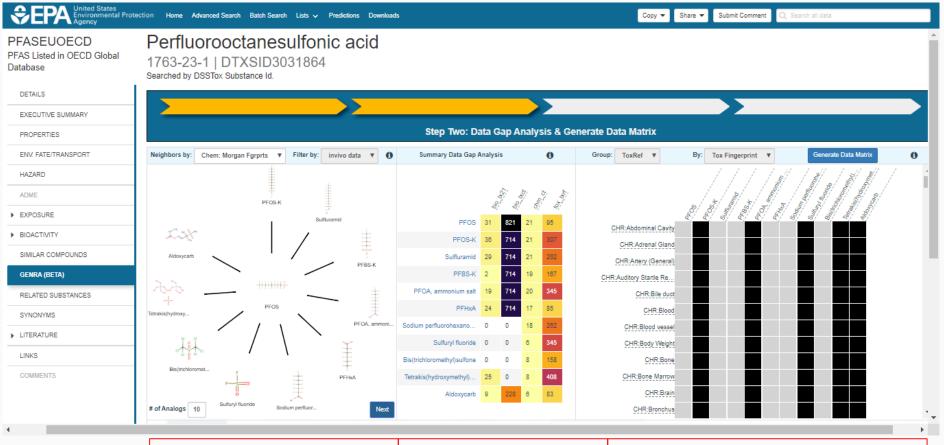
To find articles quickly, enter terms to sift abstracts.


exposure RfD			immunotox Clear Terms			Download / Send to V Download Sifter for E	xcel 🚺				
exposure	RfD	immunotox	Total	PMID	Year Title		Year Title		Authors	Journal	Rev
8	0	0	8	29525662	2018	Modeling avian exposures to perfluoroalkyl substan	Larson; Conder; Arblaster	Chemosphere			
2	5	1	8	28521193	2017	Issues raised by the reference doses for perfluoroo	Dong; Bahar; Jit; Kennedy; Priestly; Ng; Lamb; Liu;	Environment international			
0	0	0	0	24046276	2013	Dosimetric anchoring of in vivo and in vitro studies f	Wambaugh; Setzer; Pitruzzello; Liu; Reif; Kleinstreu	Toxicological sciences : an official journal of the Soc			
0	0	0	0	22441698	2012	Perfluorooctane sulfonate increases β -oxidation of	Nordén; Westman; Venizelos; Engwall	Environmental science and pollution research intern			
0	0	0	0	21467747	2011	Induction of apoptosis and CYP4A1 expression in S	Kim; Jun Kwack; Sik Han; Seok Kang; Hee Kim; Yo	The Journal of toxicological sciences			
0	0	0	0	21207445	2011	Aquatic predicted no-effect-concentration derivation	Qi; Wang; Mu; Wang	Environmental toxicology and chemistry			
0	0	0	0	20879709	2010	Distribution of perfluorooctane sulfonate and other p	Wang; Fu; Wang; Liang; Pan; Cai; Jiang	Environmental science & technology			
1	0	0	1	20709355	2010	Brominated flame retardants and perfluorinated co	D'Hollander; Roosens; Covaci; Cornelis; Reynders;	Chemosphere			
2	0	0	2	19569327	2009	Perfluoroalkyl contaminants in an Arctic marine food	Kelly; Ikonomou; Blair; Surridge; Hoover; Grace; Go	Environmental science & technology			
3	0	1	4	19343326	2009	Chronic effects of perfluorooctanesulfonate exposur	Dong; Zhang; Zheng; Liu; Jin; He	Archives of toxicology			
3	0	0	3	19162172	2009	Gestational and lactational exposure to potassium p	Butenhoff; Ehresman; Chang; Parker; Stump	Reproductive toxicology (Elmsford, N.Y.)			
2	0	0	2	19110351	2008	Behaviour of damselfly larvae (Enallagma cyathiger	Van Gossum; Bots; Snijkers; Meyer; Van Wassenbe	Environmental pollution (Barking, Essex : 1987)	-		

Issues raised by the reference doses for perfluorooctane sulfonate and perfluorooctanoic acid.

On 25th May 2016, the U.S. EPA released reference doses (RfDs) for Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) of 20ng/kg/day, which were much more conservative than previous values. These RfDs rely on the choices of animal point of departure (PoD) and the toxicokinetics (TK) model. At this stage, considering that the human evidence is not strong enough for RfD determination, using animal data may be appropriate but with more uncertainties. In this article, the uncertainties concerning RfDs from the choices of PoD and TK models are addressed. Firstly, the candidate PoDs should include more critical endpoints (such as immunotoxicity), which may lead to lower RfDs. Secondly, the reliability of the adopted three-compartment TK model is compromised: the parameters are not non-biologically plausible; and this TK model was applied to simulate gestation and lactation exposure, while the two exposure scenarios were not actually included in the model structure.

Generalized Read-Across (GenRA)



Select and Review Analogs

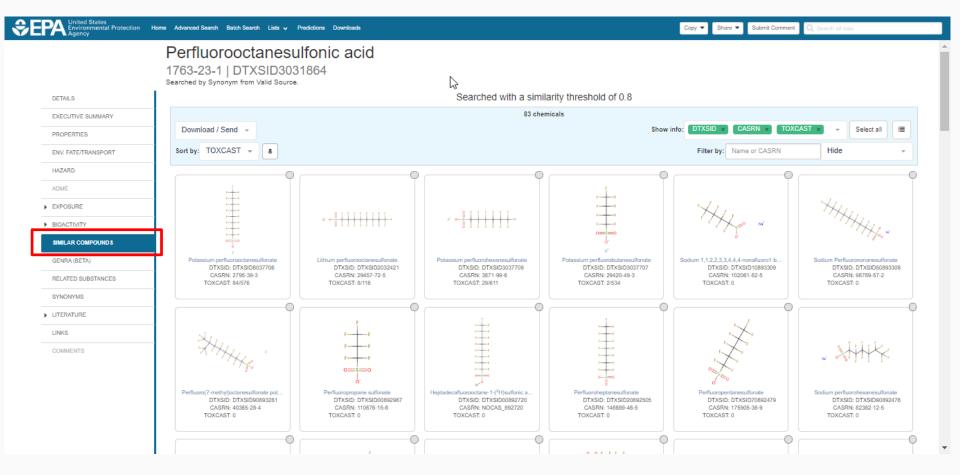
Generalized Read-Across (GenRA)

Select and Review Analogs Review A

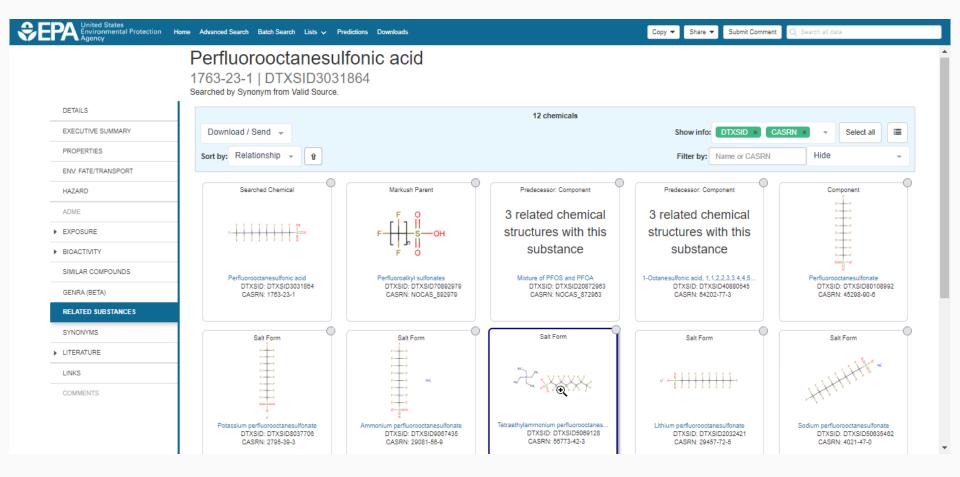
Review Available Data

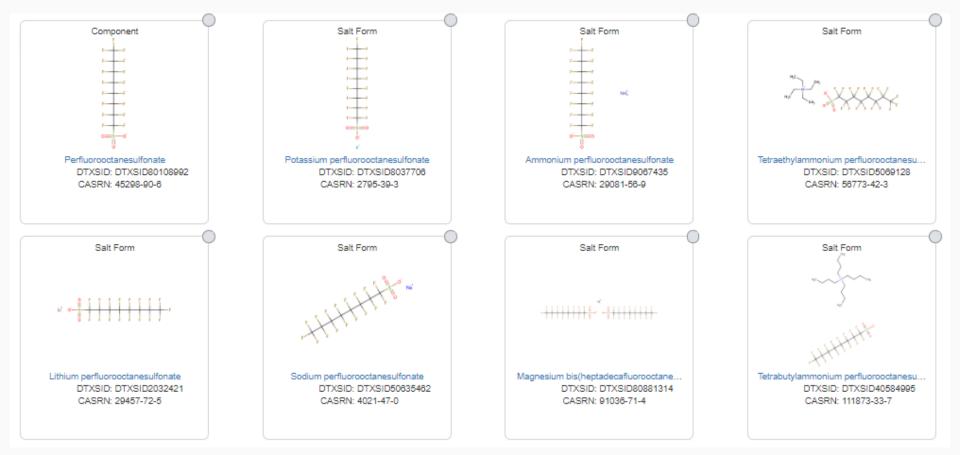
Fingerprint indicating available data

Generalized Read-Across (GenRA)

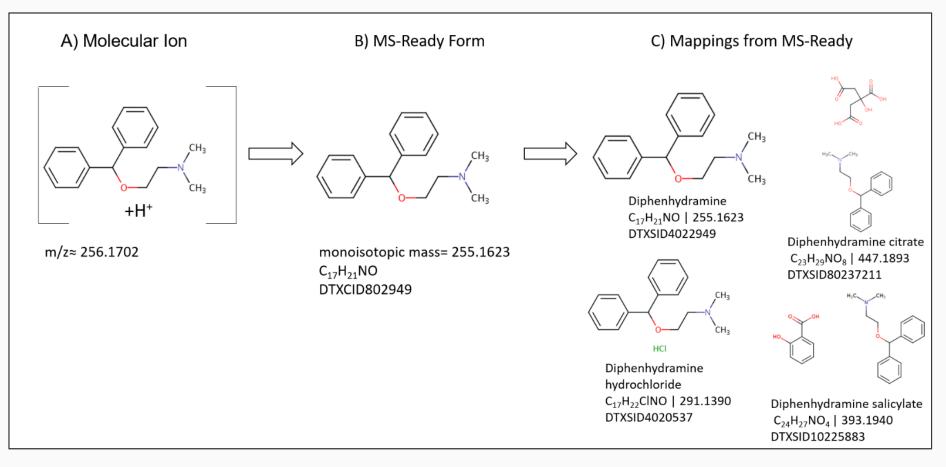


Red : Toxicity effects. Blue: No Toxicity effects Grey : Absence of data


Are there Similar Compounds?


Relationships in the data

7 salt forms of PFOS (and the ion)

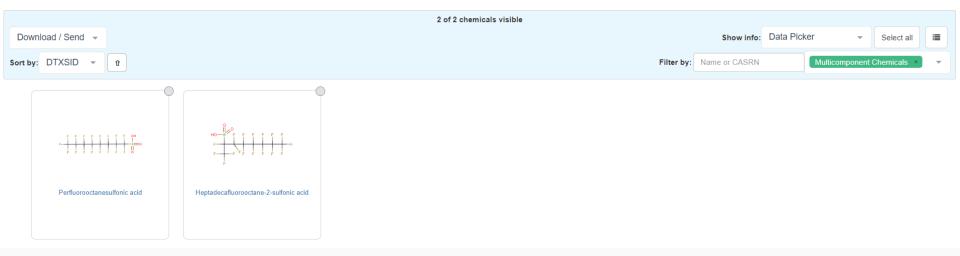


Using data relationships

We have purposely built relationships in the data. Specifically, "MS-Ready mappings"

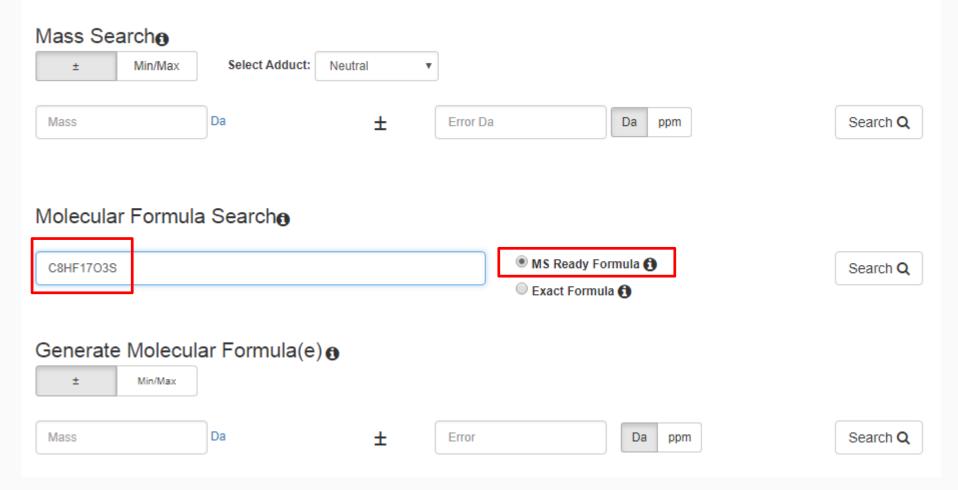
Advanced Search Supporting Target/Non-Target MS

Advanced Search@

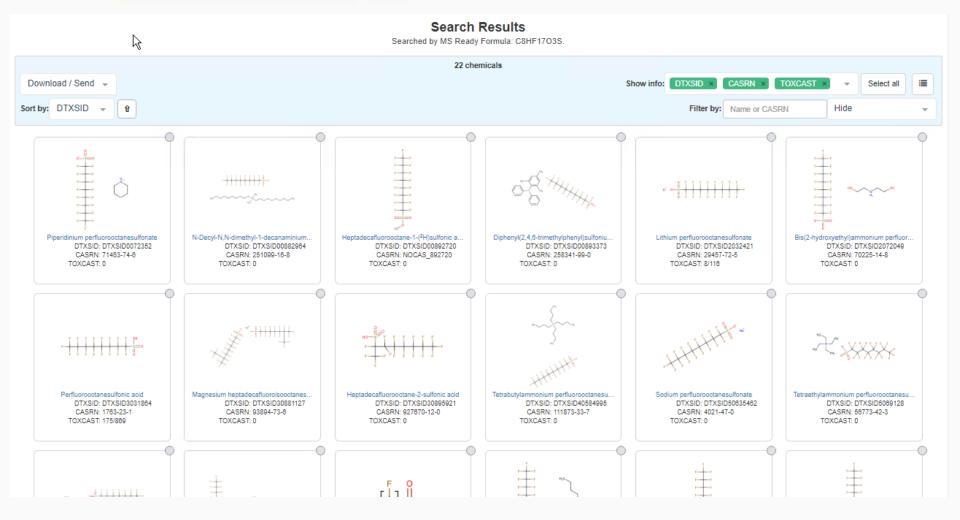

Mass Search					
± Min/Max	Select Adduct:	Neutral •			
Mass	Da	±	Error Da Da	ppm	Search Q
Molecular Formula	Search				
C8HF17O3S			MS Ready Formula Exact Formula	0	Search Q
Generate Molecula	r Formula(e) o				
Mass	Da	±	Error	a ppm	Search Q

2 Chemicals match the formula

Search Results


Searched by Exact Molecular Formula: C8HF17O3S.

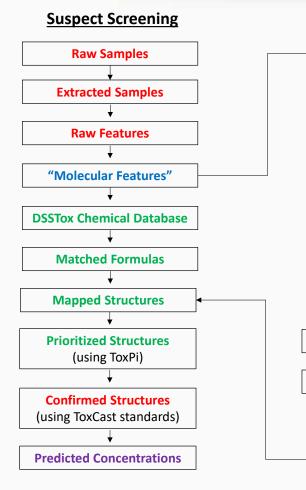
Advanced Search Supporting Target/Non-Target MS

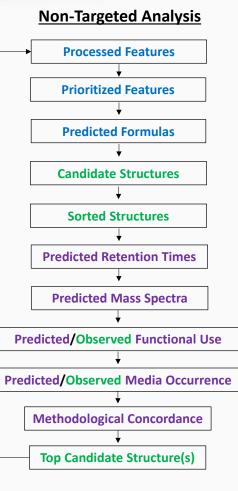


Advanced Search@

22 Chemicals match the formula

32


22 Chemicals match the formula



	United States Environmental Pr Agency	otection Home Advanced Search Batc	h Search Lists 🗸 Predictions	Downloads			Share 🔻	Q Search all data				
Search Results Searched by MS Ready Formula: C8HF17O3S.												
Download /	22 chemicals											
Sort by: Sour	Sort by: Sources V B Filter by: Name or CASRN Hide											
Structure	DTXSID	Preferred Name	CASRN	QC Leve	CPDat Count	Number of Sources	PubChem Data Sources	PubMed Ref. Counts	Monoisotopic I	Mass		
· + } } } } 	DTXSID3031864 ToxCast™	Perfluorooctanesulfonic acid	1763-23-1	Level 1	10	88	68	1124	499.937494	0		
	DTXSID8037706 ToxCast™	Potassium perfluorooctanesulfonate	2795-39-3	Level 1	18	51	59	0	537.893375	0		
v = { }};;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	DTXSID2032421 ToxCast™	Lithium perfluorooctanesulfonate	29457-72-5	Level 1	14	36	32	0	505.945672	0		
~~~	DTXSID5069128 Tetraethylammonium perfluorooctanesulfonate		56773-42-3	Level 2	13	27	42	0	629.089243	0		
https://epa.gov												

## Suspect Screening and Non-Targeted Analysis Workflow



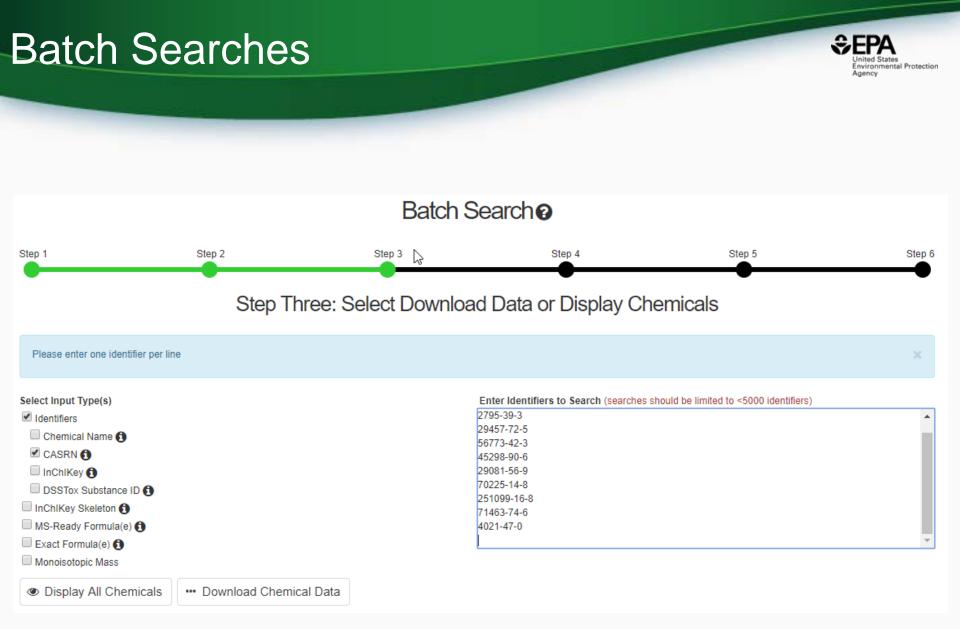




### <u>Color Key</u>

- Red = Analytical Chemistry
- **Blue** = Data Processing & Analysis

Purple = Mathematical & QSPR Modeling


Green = Informatics & Web Services



### Content from J. Sobus, US-EPA-NERL

### How to search 1000s of formulae?

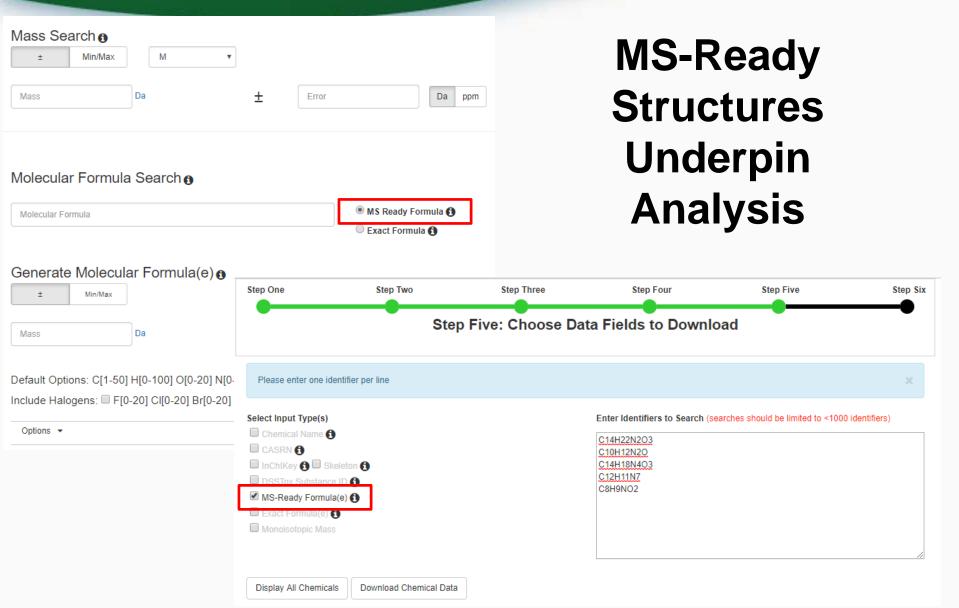




#### **Batch Searches**



Select Output Format.							
🖽 Download as 🦌	🕹 Download						
TSV	Presence in Lists:						
CSV	ICCVAM test method evaluation report: in vitro ocular toxicity test methods						
Excel	40CFR355						
SDF	A list of all PBDEs (Polybrominated diphenyl ethers)						
Chemical Identifiers	A list of all PCBs (Polychlorinated biphenyls)						
CTXSID (1)	A list of polycyclic aromatic hydrocarbons						
Chemical Name 🚯	Acute exposure guideline levels						
CAS-RN 🚯	Algal Toxins						
InChiKey 🚯	Androgen Receptor Chemicals						
IUPAC Name 🚯	APCRA Chemicals for Prospective Analysis						
Structures	APCRA Chemicals for Retrospective Analysis						
Mol File 🕄	APCRA Chemicals for Retrospective Analysis_App_List_448_Chemicals						
SMILES 🚯	ATSDR Minimal Risk Levels (MRLs) for Hazardous Substances						
InChI String 🚯	ATSDR Toxic Substances Portal Chemical List						
MS-Ready SMILES 🚯	Bisphenol Compounds						
QSAR-Ready SMILES 🚯	California Office of Environmental Health Hazard Assessment						
Intrinsic And Predicted Properties	Chemicals with interesting names						
Molecular Formula (1)	CMAP						
Average Mass ()	DNT Screening Library						
🗆 Monoisotopic Mass 🚯	Drinking Water Suspects, KWR Water, Netherlands						
TEST Model Predictions (	EDSP Universe						
OPERA Model Predictions (1)	EPA Chemicals associated with hydraulic fracturing						
M^+	EPA Consumer Products Suspect Screening Results						
	in Day Streep D						


## Surfacing Lists of Chemicals



- Specific subsets of chemicals, "lists", can be displayed on the dashboard
- If there are chemicals that map together then these link to existing:
  - Property data
  - Hazard data
  - Exposure data
  - In vitro bioassay data
  - Documents and Literature

#### Batch Searches to Support MS-Analysis





#### A List of Lists of Chemicals

https://comptox.epa.gov/dashboard/chemical_lists



EPA United States Environmental Protection Agency	Home	Advanced Search	Batch Search	Lists	Predictions	Downloads	Search All D:			
Chemistry Dashboa	rd			•			Aa▼ Aa Aa▲			
Select List										
List Name	Number of Chemicals	List Descr	iption	Ū						
40CFR355	354		azardous Substand 52 FR 13378)	e List and	Threshold Plann	ing Quantities; Emergency Planning and Relea	ase Notification Requirements;			
Algal Toxins	54	A set of alga	I toxins of interest							
Androgen Receptor Chemicals	110		The list of chemicals used to identify references with in vitro AR binding . From Kleinstrauer et al http://pubs.acs.org/doi/abs/10.1021/acs.chemrestox.6b00347							
ATSDR Toxic Substances Portal Chemical List	200		The Agency for Toxic Substances and Disease Registry (ATSDR)is a federal public health agency of the U.S. Department of Health and Human Services.							
Bisphenol Compounds	52	This list repr	This list represents a collection of Bisphenol Compounds							
California Office of Environmental Health Hazard Assessment	972		The OEHHA Chemical Database is a compilation of health hazard information including reference exposure levels, California public health goals, child-specific reference doses, Propos. 65 safe harbor numbers, soil-screening levels, and fish advisories							
Chemicals with interesting names	17	This is a list	of chemicals with i	nteresting a	and fun names					
EPA Integrated Risk Information System (IRIS)	510		EPA's IRIS Program identifies and characterizes the health hazards of chemicals found in the environment. Each IRIS assessment can cover a chemical, a group of related chemicals, or a complex mixture.							
EPAHFR - EPA Chemicals associated with hydraulic fracturing	1640		EPAHFR lists chemicals associated with hydraulic fracturing from 2005-20013, as reported in EPA's Hydraulic Fracturing Drinking Water Assessment Final Report (Dec 2016)							
EU Cosmetic Ingredients Inventory (Combined 2000/2006)	2878		EUCOSMETICS contains the Combined Inventory of Ingredients Employed in Cosmetic Products (2000, SCCNFP/0389/00 Final) and Revised Inventory (2006, Decision 2006/257/EC), prepared for NORMAN by P. von der Ohe (UBA) and R. Aalizadeh (Uni. Athens).							
EU Toxrisk Dataset	230	Compounds	of interest to the E	U-ToxRisk	Case Studies.					
French Monitoring List	1171					ring activities in France, developed in cooperat o, INERIS, France. Further details on the webs				

#### 11 PFAS Lists

http://comptox-prod.epa.gov/dashboard/chemical_lists



Sepandal United States Environmental Protection

otection Home Advanced Search Batch Search Lists 🗸 Predictions Downloads

Share 👻 🔍 Search all data

			Select List			
Show 10 v entries				Download Search: pfas		
List Acronym	List Name	🗄 Last Updated 🔶	Number of Chemicals	List Description		
EPAPFAS75S1	EPA PFAS List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.		
	Registered DSSTox "category substances" representing Per- and Polyfluoroalkyl Substances (PFAS) categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.		
EPAPFASINSOL	PFAS in EPA's Chemical Inventory Insoluble in DMSO	2018-08-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.		
EPAPFASINV	PFAS in EPA's ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.		
EPAPFASRL	EPA PFAS Cross-Agency Research List	2018-07-27	194	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly- fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.		
PFASEPA	PFAS_EPA List of Perfluorinated alkyl substances	2017-11-03	190	PFAS_EPA (Perfluorinated alkyl substances) is a manually curated listing of mainly straight-chain and branched PFAS substances		
PFASEUOECD	PFAS Listed in OECD Global Database	2018-07-28	4725	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs)listing approximately 4700 new PFAS		
PFASGRACE	PFASforGrace	2017-02-18	35	A list of polyfluorinated chemicals of interest to Grace Patlewicz		
	PFAS List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2397	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.		
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-28	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.		

Showing 1 to 10 of 11 entries (filtered from 96 total entries)

Desiring a second

#### The OECD List of PFAS

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/





Port

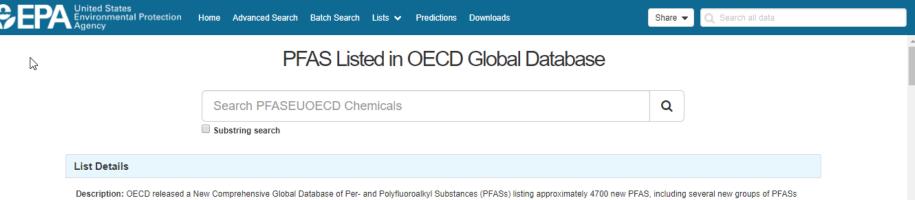
HOME



The OECD releases a new list of Per- and Polyfluoroalkyl Substances (PFASs) based on a comprehensive analysis of information available in the public domain. In total, 4730 PFAS-related CAS numbers have been identified and categorised in this study, including several new groups of PFASs that fulfil the common definition of PFASs (i.e. they contain at least one perfluoroalkyl moiety) but have not yet been commonly regarded as PFASs.

This work has been conducted under the OECD/UN Environment Global PFC Group in support of the Strategic Approach to International Chemicals Management (SAICM) and shifting to safer alternatives for PFASs.

The New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances (PFASs) comes with a methodology report also detailing the major findings with respect to the total numbers and types of PFASs identified, the limitations, gaps and challenges identified in the development of the new list, and opportunities for improving the future understanding of PFASs production, use on the global market, and presence in the environment, biota, and other matrices.






#### The OECD List of PFAS

http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals/





Description: OECD released a New Comprehensive Global Database of Per- and Polytluoroalkyl Substances (PFASs) listing approximately 4/00 new PFAS, including several new groups of PFASs that fulfill the common definition of PFASs (i.e. they contain at least one perfluoroalkyl moiety) but have not yet been commonly regarded as PFASs. The list can be used in conjunction with the methodology report summarising the major findings with respect to the total numbers and types of PFASs identified, the limitations, gaps and challenges identified, and opportunities for improving the future understanding of PFASs production, use on the global market, and presence in the environment, biota, and other matrices.

Source website: http://www.oecd.org/chemicalsafety/portal-perfluorinated-chemicals

A major effort was undertaken to register this list within DSSTox, adding chemical structures for as many PFAS entries as possible using both manual and auto-mapping (structures using CAS-matching) curation methods. The result is that approximately 1/3 of the list is curated at the highest two curation levels (DSSTox_High or DSSTox_Low) currently, whereas more than half of this list is registered at the Public_Low curation level (based on PubChem content). The PFASOECD list is undergoing continuous registration and curation.

#### Number of Chemicals: 4725

4725 chemicals									
Download / Send 👻	Show info:	DTXSID ×	CASRN × TOXCAST ×	•	Select all				
Sort by: DTXSID 👻 î	]	Filter by:	Name or CASRN	Hide	•				



## Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCB Substance) on the TSCA Inventory

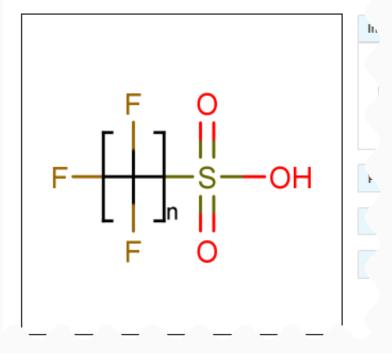
This paper is a compendium of information related to the broad class of chemical substances referred to as UVCBs for the Toxic Substances Control Act (TSCA) Chemical Substance Inventory. These chemical substances cannot be represented by unique structures and molecular formulas.

#### **Example PFAS-UVCBs**



0 related chemical 0 related chemical 0 related chemical structures with this structures with this structures with this substance substance substance Ethene, tetrafluoro-, oxidized, polymd., ... Sulfonamides, C4-8-alkane, perfluoro, ... 1-Propene, 1,1,2,3,3,3-hexafluoro-, pol... DTXSID: DTXSID00108075 DTXSID: DTXSID00108095 DTXSID: DTXSID00108732 CASRN: 274917-96-3 CASRN: 160901-25-7 CASRN: 149935-01-3

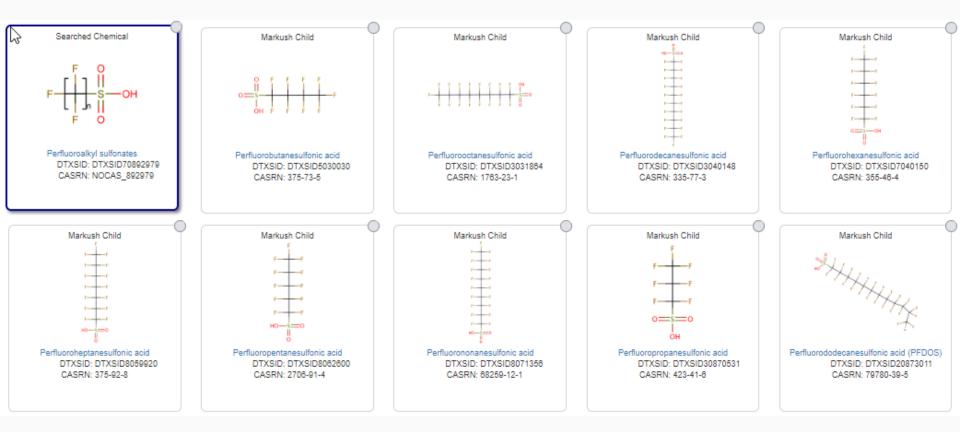
Ethene, tetrafluoro-, oxidized, polymd., reduced, decarboxylated, C6 fraction 274917-96-3 | DTXSID00108075


1-Propene, 1,1,2,3,3,3-hexafluoro-, polymer with 1,1-difluoroethene, ethene, 1,1,2,2tetrafluoroethene and 1,1,2-trifluoro-2-(trifluoromethoxy)ethene 149935-01-3 | DTXSID00108732

#### Markush Chemicals



# PFOS is a member of linear perfluoroalkyl sulfonates


Perfluoroalkyl sulfonates NOCAS_892979 | DTXSID70892979 Searched by DSSTox Substance Id.



#### ...and their Markush Children...



#### • Linear perfluoroalkyl sulfonates has children...



#### **PFAS** Categories in Development

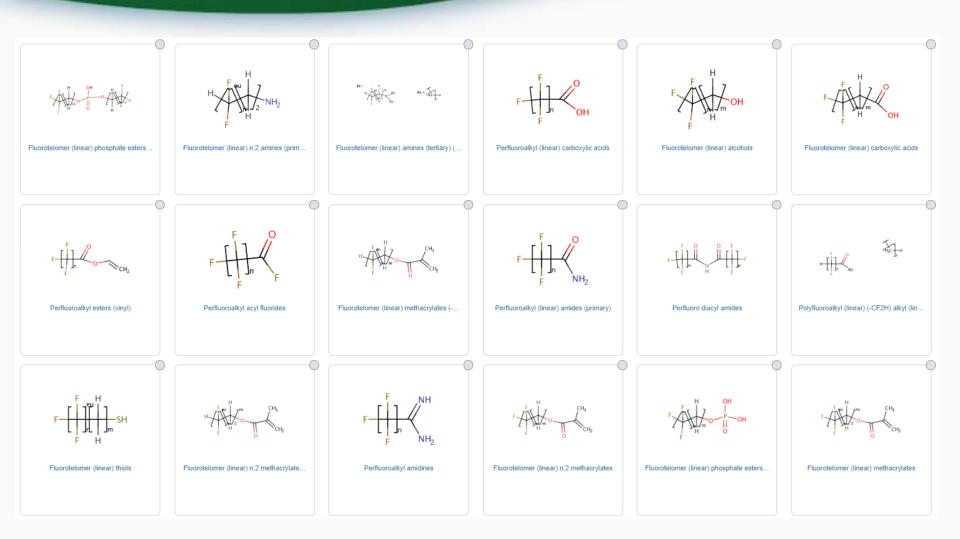


Q

#### Registered DSSTox "category substances" representing Per- and Polyfluoroalkyl Substances (PFAS) categories

Search EPAPFASCAT Chemicals

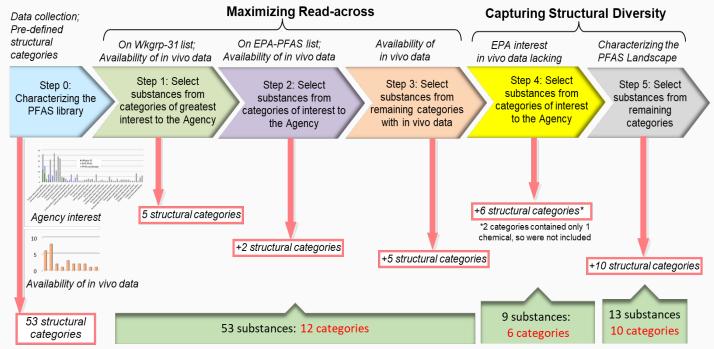
Substring search


#### List Details

**Description:** List of registered DSSTox "category substances" representing Per- and Polyfluoroalkyl Substances (PFAS) categories created using ChemAxon's Markush structure-based query representations. Markush categories can be broad and inclusive of more specific categories, or can represent a unique category not overlapping with other registered categories. Each PFAS category registered with a unique DTXSID is considered a generalized substance or "parent ID" that can be associated with one or many "child IDs" (i.e. many parent-child mappings) within the full DSSTox database. These category DTXSIDs can be used to search and retrieve all currently registered DSSTox substances within the category group, and offer an objective, transparent and reproducible structure-based means of defining a category of chemicals. This list and the corresponding category mappings is undergoing continuous curation and expansion.

Number of Chemicals: 64

#### **PFAS** Categories in Development






## Work in progress



- Development of a high-throughput screening library and collection of physical samples (~400)
- 75 PFAS chemicals for screening based on categories, diversity, exposure considerations, procurability and testability, availability of existing toxicity data



#### Supporting future work



Four Chemical Trends Will Shape the Next Decade's Directions in Perfluoroalkyl and Polyfluoroalkyl Substances Research

Matthias Kotthoff* and Mark Bücking

Department Environmental and Food Analysis, Fraunhofer Institute for Molecular Biology and Applied Ecology, Schmallenberg, Germany

- 1. Mobility: A wide and dynamic distribution of short chain PFAS due to their high polarity, persistency and volatility. (**OPERA Predictions**)
- 2. Substitution of regulated substances: The ban or restrictions of individual molecules will lead to a replacement with substitutes of similar concern. (Database content and Markush Enumeration)
- 3. Increase in structural diversity of existing PFAS molecules: Introduction of e.g., hydrogens and chlorine atoms instead of fluorine, as well as branching and cross-linking lead to a high versatility of unknown target molecules. (Database content)
- 4. Unknown "Dark Matter": The amount, identity, formation pathways, and transformation dynamics of polymers and PFAS precursors are largely unknown. (Working with agency analytical scientists and collaborators to link and host data)

Front Chem. 2018; 6: 103.

#### Conclusions



- The CompTox Dashboard supports PFAS research at EPA in numerous ways
  - Delivery of curated lists of PFAS chemicals (growing)
  - Flexible search capabilities support for Mass Spec
  - Relationships in the data enrich navigation between chemicals
- Ongoing research efforts for PFAS chemicals
  - Physical library of ~400 chemicals has been acquired
  - High-throughput screening of ~75 chemicals
  - Classification approaches and Markush representations



- The CompTox Dashboard development team
- The DSSTox database curation team
- NERL colleagues:
  - Jon Sobus, Elin Ulrich, Mark Strynar, Seth Newton (NTA Analysis)
- Emma Schymanski Luxembourg Center for Systems Biomedicine (MS-ready/NTA)





#### **Antony Williams**

US EPA Office of Research and Development

National Center for Computational Toxicology (NCCT)

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821