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High throughput screening (Dix et
al., 2007, Collins et al., 2008) + in
vitro-in vivo extrapolation (IVIVE,
Wetmore et al., 2012, 2015) can
predict a dose (mg/kg bw/day) that
might be adverse

Need methods to forecast exposure for
thousands of chemicals
(Wetmore et al., 2015)

High throughput models exist to
make predictions of exposure via
specific, important pathways such
as residential product use and diet

High-Throughput
Risk
Prioritization

Toxicokinetics Exposure
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Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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The National Health and Nutrition Examination Survey (NHANES) provides targeted biomonitoring data of chemicals and
metabolites in human blood and urine

Chemicals in the Fourth Report: Updated Tables, March 2018 CDC (2018)

CDC's Fourth National Report on Human Exposure to Environmental Chemicals: Updated Tables
provides exposure data on the following chemicals or classes of chemicals. The Updated Tables contain
cumulative data from national samples collected beginning in 1999-2000 and as recently as 2015-2016.
Not all chemicals were measured in each national sample. The data tables are available at
hitp://www.cdc.gov/exposurereport. An asterisk (*) indicates the chemical has been added since
publication of the Fourth Report in 2009.

Organophosphorus Insecticides: Dialkyl Phosphate Metabolites

Diethylphosphate (DEP)
Phthalate and Phthalate Alternative Metabolites Dimethylphosphate (DMP)
Mono-benzyl phthalate (MBzP) Diethylthiophosphate (DETP)

. Dimethylthiophosphate (DMTP
Mono-3-hydroxybutyl phthalate (MHBP) Diethylgithiogh osghate {(DEDTIl)

Mono-n-butyl phthalate (MnBP) : e
Mono-2-methyl-2-hydroxypropyl phthalate (MHIBP)* Dimethyldithiophosphate (DMDTP)

Mono-isobutyl phthalate (MiBP)

Mono-cyclohexyl phthalate (MCHP) Pyrethroid Metabolites

Mono-ethyl phthalate (MEP) trans-3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (trans-DCCA)
Mono-2-ethylhexyl phthalate (MEHP) cis-3-(2,2-Dibromovinyl)-2,2dimethylcyclopropane carboxylic acid (cis-DBCA)
Mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) 4-Fluoro-3-phenoxy-benzoic acid*

3-Phenoxybenzoic acid*

There are hundreds of chemicals, and yet Park et al. (2012) and
others have seen evidence for many others
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The Chemical Universe Method 1 UF&EbﬁIﬁK

Phase 1:
e Collaborators provided 10 mixtures of 100-400

ToxCast chemicals each
* MS vendors provided with individual chemical

standards

Method 2 Phase 2: Fortified reference house dust, human serum, and
Led by Jon Sobus and silicone wristbands
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Liquid chromatography peaks

947 Peaks in an American Health Homes Dust Sample corresponds to a chemical with an
) accurate mass and predicted

formula:

C17H19NO3

Multiple chemicals can have the
same mass and formula:

HO.

HO

10 15 20 25 30 35 40 45 Is chemical A present,
chemical B, or both?

Retention Time

Office of Research and Development Ragel" et al (2016)
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e Different exposure models incorporate knowledge, assumptions, and data (Macleod et al., 2010)

 We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic
Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

e Evaluation is similar to a sensitivity analysis: What models are
ﬁ working? What data are most needed?
Calibrate
models

Estimate
Uncertainty l

Inferred Exposure

Hurricane Path

Inference
Dataset 1
- Prediction is an
\_ e Model 1 Joint Regression on Models Example of
Model 2 g Integrating

Evaluate Model Performance Multiple Models
Office of Research and Development and Refine M0d9|5
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Model Predicted Exposure

Those chemicals with
“near-field” — proximate,
in the home, sources of
exposure — had much
higher rates of exposure
than those with sources
outside the home
(Wallace et al., 1986)

The only available “high
throughput exposure
models in 2013 were for
far-field sources
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Second Generation SEEM
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R?= 0.5 indicates that we can predict
50% of the chemical to chemical
variability in median NHANES
exposure rates

Same five predictors work for all
NHANES demographic groups
analyzed — stratified by age, sex, and
body-mass index:

Industrial and Consumer use
Pesticide Inert

Pesticide Active

Industrial but no Consumer
use

Production Volume
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Heuristics of Exposure

Wambaugh et al. (2014)

Regression Coefficient
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Total

== Female

== Male

== ReproAgeFemale

== 6-11_years

== 12-19 years

== 20-65_years
66+years
BMI LE 30
BMI_GT 30

R?= 0.5 indicates that we can predict
50% of the chemical to chemical
variability in median NHANES
exposure rates

Same five predictors work for all
NHANES demographic groups
analyzed — stratified by age, sex, and
body-mass index:

* Industrial and Consumer use

e Pesticide Inert

e Pesticide Active

e Industrial but no Consumer

use
* Production Volume
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“In particular, the
assumption that 100%
of [quantity emitted,
applied, or ingested]
is being applied to
each individual use
scenario is a very
conservative
assumption for many
compound / use
scenario pairs.”

P XIS Office of Research and Development

Knowledge of Exposure Pathways Limits
High Throughput Exposure Models

This is an open access article published under an ACS AuthorChoice License, which permits
copying and redistribution of the article or any adaptations for non-cormmercial purposes.
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2523

1622

1480

5089

Predicting Exposure Pathways

Negatives

8865

567

6522

2913

OOB Error Rate

27

26

Positives Error Rate

32

24

36

16

Balanced Accuracy

73

74

80

81

Sources of Positives

FDA CEDI, ExpoCast, CPDat
(Food, Food Additive, Food
Contact), NHANES Curation

CPDat (consumer_use,
building_material), ExpoCast,
NHANES Curation

REDs, Swiss Pesticides,
Stockholm Convention, CPDat
(Pesticide), NHANES Curation

CDR HPV, USGS Water
Occurrence, NORMAN PFAS,
Stockholm Convention, CPDat
(Industrial, Industrial_Fluid),
NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Sources of Negatives

Pharmapendium, CPDat (non-
food), NHANES Curation

CPDat (Agricultural, Industrial),
FDA CEDI, NHANES Curation

Pharmapendium, Industrial
Positives, NHANES Curation

Pharmapendium, Pesticide
Positives, NHANES Curation

Ring et al., submitted
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Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin, Katherine A. Phillips,
Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate
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Arnot |

EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All

Reporting (CDR) (2015)

Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 Far-Field Industrial and Pesticide
UNIVERSITY OF Pollutants (2017)

EPA Pesticide Reregistration Eligibility Documents Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

UC DAV'S (REDs) Exposure Assessments (Through 2015)
. . . . Rosenbaum et al. (2008) 8167 TR e

United Nations Environment Program and Society for
UNIVERSITY OF CALIFORNIA ) ) ) o
T — Environmental Toxicology and Chemistry toxicity model

» TEXAS (USEtox) Industrial Scenario (2.0)

" ARLINGTON USEtox Pesticide Scenario (20) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide
DTU ?a;:ma]:ks Risk Assessment IDentification And Ranking (RAIDAR) ~ Amotetal. (2008) 8167 Far-Field Pesticide
“ U?n?eis?tet Far-Field (2.02)

- 2 EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 Far-Field Industrial and Pesticide
SVED STape Throughput (SHEDS-HT) Near-Field Direct (2017)

z o '{% SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

= o
’c:’% M ;‘-',’ Fugacity_based INdoor Exposure (FIN E) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
%% \0 RAIDAR-ICE Near-Field (0803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
4" PRO“% USEtox Residential Scenario (20) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

Office of Research and Deveiuy, USEtox Dietary Scenario (2_0) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary

Ernstoff et al. (2017)
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. Né&WFhachine learning tools provide
improved high throughput exposure
estimates by matching chemicals to
exposure pathways and associated
calibrated exposure models.

Pathway(s)
Dietary, Pesticide, Industrial
Dietary, Residential
Dietary, Residential, Industrial
/% Dietary, Residential, Pesticide
%/ Dietary, Residential, Pesticide, Industrial

e Exposure predictors (data and
models) have been grouped

into four pathways (residential, = Industrial
. . - . . _ #* Pesticide
dietary, pesticidal, and industrial) 0 & Pesiicide, Industria
Residential

and calibrated via Bayesian
multivariate regression using human
intake rates inferred for 114
chemicals from a large bio-

monitoring survey. 107

Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial

Consensus Model Predictions

e We have evaluated and calibrated
the models using NHANES
biomonitoring data Jpaes e e

| Intake Rate (mg/kg BW/day) Inferred from
Office of Research and Development NHANES Serum and Urine Rlng et GI., Submitted
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. Né&WFhachine learning tools provide
improved high throughput exposure
estimates by matching chemicals to
exposure pathways and associated
calibrated exposure models.

Exposure predictors (data and
models) have been grouped

into four pathways (residential,
dietary, pesticidal, and industrial)
and calibrated via Bayesian
multivariate regression using human
intake rates inferred for 114
chemicals from a large bio-
monitoring survey.

We have evaluated and calibrated
the models using NHANES
biomonitoring data

N IEE M Office of Research and Development

Population Median Intake Rate (mg/kg bwiday)

1071

107%

1976 chemicals
=0.1 mg'kg bw/day

10 10°
Chemical Rank

Pathway(s)

Dietary
Dietary, Industrial
Dietary, Pesticide

" Dietary, Pesticide, Industrial

O+« == 1

Dietary, Residential

Dietary, Residential, Industrial
Dietary, Residential, Pesticide
Dietary, Residential, Pesticide, Industrial
Industrial

Pesficide

Pesticide, Industrial

Residential

Residential, Industrial
Residential, Pesticide
Residential, Pesticide, Industrial
Unknown

Consensus Modeling of Median Chemical Intake

1w b

685383 chemicals
<0.1 mg/kg bw/day

681574 chemicals
o1 pg/kg bwiday |

1074

Population Median Intake Rate (mg'kg bw/day)

10° 2x10° 4x10° 6x10°
Chemical Rank

Ring et al., submitted
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A tapestry of laws covers the chemicals people are
exposed to in the United States (Breyer, 2009)

* Most other chemicals, ranging from industrial waste to ’
dyes to packing materials, are covered by the recently EKPDSUI"E Pal'hwa}-'s

updated Toxic Substances Control Act (TSCA) and
SEEM Meta-Model

Manitﬂring Data

administered by the EPA

« New approach methodologies (NAMs) are being
developed to prioritize these existing and new chemicals
for testing

L

« New machine learning tools provide improved high
throughput exposure estimates by matching chemicals to
exposure pathways and associated calibrated exposure
models.

¢ Machine learning models based on chemical structure and physico-chemical properties predict whether or not each
pathway is relevant to a library of over 680,000 chemicals, allowing an exposure estimate for each chemical based on
the calibrated predictors.

The views expressed in this presentation are those of the author and
do not necessarily reflect the views or policies of the U.S. EPA

X @b Office of Research and Development
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