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High Throughput Toxicokinetics (HTTK)

 Most chemicals do not have TK data – Wetmore et al. (2012…) use in 
vitro methods adapted from pharma to fill gaps

 In order to address greater numbers of chemicals we collect in vitro, 
high throughput toxicokinetic (HTTK) data (Rotroff et al., 2010, 
Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical industry to 
determine range of efficacious doses and to prospectively evaluate 
success of planned clinical trials (Jamei, et al., 2009; Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for 
bioactive in vitro concentrations from HTS (i.e., in vitro-in vivo
extrapolation, or IVIVE) (e.g., Wetmore et al., 2015)

 Secondary goal is to provide open source data and models for 
evaluation and use by the broader scientific community (Pearce et al, 
2017a)
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High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)
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Measurements require 
chemical-specific methods for 

concentration

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps

• In drug development, HTTK methods allow IVIVE to estimate therapeutic doses for clinical studies –
predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)
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Measurements require 
chemical-specific methods for 

concentration

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted from pharma to fill gaps

• In drug development, HTTK methods allow IVIVE to estimate therapeutic doses for clinical studies –
predicted concentrations are typically on the order of values measured in clinical trials (Wang, 2010)

Environmental chemicals:
Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204 chemicals 
Tonnelier et al. (2012) +20 chemicals
Wetmore et al. (2015) +163 chemicals
Wambaugh et al. (in prep.) + ~400 chemicals
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Why Build Another Generic PBTK Tool?

SimCYP ADMET Predictor / GastroPlus MEGen IndusChemFate httk
Maker SimCYP Consortium / Certara Simulations Plus UK Health and Safety 

Laboratory
Cefic LRI US EPA

Availability License, but inexpensive for research License, but inexpensive for research Free:
http://xnet.hsl.gov.uk/megen

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No Yes No Yes
Default PBPK Structure Yes Yes No Yes Yes
Expandable PBPK Structure No No Yes No No
Population Variability Yes No No No Yes
Batch Mode Yes Yes No No Yes
Graphical User Interface Yes Yes Yes Excel No
Physiological Data Yes Yes Yes Yes Yes
Chemical-Specific Data 
Library

Many Clinical Drugs No No 15 Environmental
Compounds

543 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Potentially No Yes
Export Function No No Matlab and AcslX No SBML and Jarnac
R Integration No No No No Yes
Easy Reverse Dosimetry Yes Yes No No Yes
Future Proof XML No No Yes No No

We want to do a statistical analysis (using R) for as many chemicals as possible
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Open Source Tools and Data for HTTK

 “httk” R Package for in vitro-in vivo 
extrapolation and PBTK

 553 chemicals to date
 100’s of additional chemicals being studied
 Pearce et al. (2017) provides documentation 

and examples
 Built-in vignettes provide further examples of 

how to use many functions

https://CRAN.R-
project.org/package=httk
Can access this from the 

R GUI: 
“Packages” then “Install 

Packages”

https://cran.r-project.org/package=httk
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Doing Statistical Analysis with HTTK

 If we are to use HTTK, we need confidence in predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted concentrations 
are typically on the order of values measured in clinical trials (Wang, 2010)
 For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
 We compare to in vivo data to get empirical estimates of HTTK uncertainty
 ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted new experiments 

in rats on chemicals with HTTK in vitro data (Wambaugh et al., submitted)
 Any approximations, omissions, or mistakes should work to increase the estimated uncertainty when 

evaluated systematically across chemicals
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical 
x” you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical 
x” you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence 

in model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can again consider using model to extrapolate to other 

situations (chemicals without in vivo data)
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Using in vivo Data to Evaluate RTK

Wambaugh et al. 
(2015)

• When we compare the Css predicted from in 
vitro HTTK with in vivo Css values determined 
from the literature we find limited correlation 
(R2 ~0.34)

• The dashed line indicates the identity (perfect 
predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the discrepancy 
between measured and predicted values (the 
residual)
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Toxicokinetic Triage

 Through comparison to in vivo data, a cross-
validated (random forest) predictor of success or 
failure of HTTK has been constructed

 Add categories for chemicals that do not reach 
steady-state or for which plasma binding assay fails

 All chemicals can be placed into one of seven 
confidence categories

 Plurality of chemicals end up in the “on the order” 
bin (within a factor of 3.2x) which is consistent 
with Wang (2010)

Wambaugh et al. 
(2015)
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Building Confidence in HTTK

“…the steady-state, peak, and 
time-integrated plasma 
concentrations of non-
pharmaceuticals were 
predicted with reasonable 
accuracy… HTTK and IVIVE 
methods are adequately robust 
to be applied to high 
throughput in vitro toxicity 
screening data of 
environmentally-relevant 
chemicals for prioritizing based 
on human health risks.”
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Impact of Oral Bioavailability

15

100% Bioavailability Assumed
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Impact of Oral Bioavailability

16Greg Honda (NCCT) made a SOT2018 presentation on using Caco2 in vitro data to 
predict absorption for ~300 ToxCast chemicals

In Vivo Measured Bioavailability Used100% Bioavailability Assumed
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Key Feature of HTTK:
Modern U.S. Population Simulator
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters

Key Feature of HTTK:
Modern U.S. Population Simulator
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Sample quantities from 

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Key Feature of HTTK:
Modern U.S. Population Simulator

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Use equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Ring et al. (2017)

Correlated Monte Carlo sampling of physiological model parameters
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In Silico HTTK Predictions

Dose range for all 3925 Tox21 
compounds eliciting a ‘possible’-to-

‘likely’ human in vivo interaction 
alongside estimated daily exposure

56 compounds with potential 
in vivo biological interaction 

at or above estimated 
environmental exposures

Figure from Sipes et al., (2017)

• Tox21 has screened >8000 chemicals – Sipes et al. (2017) wanted to compare in vitro active concentrations with HTTK 
predicted maximum plasma concentrations with high throughput exposure predictions from Wambaugh et al. (2014)

• “httk” package only has ~500 chemicals
• Used Simulations Plus ADMet Predictor to predict for entire library (supplemental table) and used add_chemtable() 

function to add into “httk” package
• Predictions available in httk v1.8
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A General Physiologically-based Toxicokinetic (PBTK) Model

• “httk” includes a generic PBTK model

• Some tissues (e.g. arterial blood) are simple compartments, while others 
(e.g. kidney) are compound compartments consisting of separate blood and 
tissue sections with constant partitioning (i.e., tissue specific partition 
coefficients)

• Exposures are absorbed from reservoirs (gut lumen)

• Some specific tissues (lung, kidney, gut, and liver) are modeled explicitly, 
others (e.g. fat, brain, bones) are lumped into the “Rest of Body” 
compartment.

• The only ways chemicals “leave” the body are through metabolism (change 
into a metabolite) in the liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the lumen of the kidney). 
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• We are working to augment the basic HT-PBPTK model with new PBTK 
models

• Each model will be released publicly upon peer-reviewed publication

• Pre-publication models can be shared under a MTA

• We assume there will be coding errors and over-simplifications, so each 
publication involves curation of evaluation data from the scientific 
literature and through statistical analysis
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Generic Parent-Metabolite Model?
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• Typically we compile the model code 
in advance, so the number of 
compartments is fixed

• However, we don’t need to turn them 
all on

• How many compounds do we need to 
track?

• Perhaps eight replicate models with 
configurable linkages?

Parent 1Metabolite 1



Office of Research and Development28 of 28

Generic TK enables In Vitro-In Vivo Extrapolation (IVIVE)

 Generic PBTK models based 
on HTTK seem to increase 
correlation between in vitro 
bioactivity and in vivo 
effects

 Histograms (at right) give 
number of correlated 
ToxCast assay and ToxRefDB
in vivo effect pairs

 Using PBTK to predict tissue 
concentrations does better 
than using administered 
dose (or PBTK for random 
chemical)

Honda et al., in clearance
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Various Combinations of IVIVE Assumptions
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