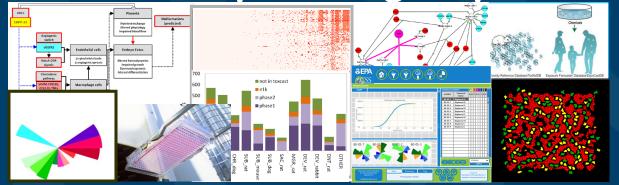


Variability of NAMs and traditional methods in the context of predicting acute toxicity


Grace Patlewicz National Center for Computational Toxicology (NCCT), US EPA

Presenting as co-chair & member of the ICCVAM Acute Toxicity Work Group (ATWG)

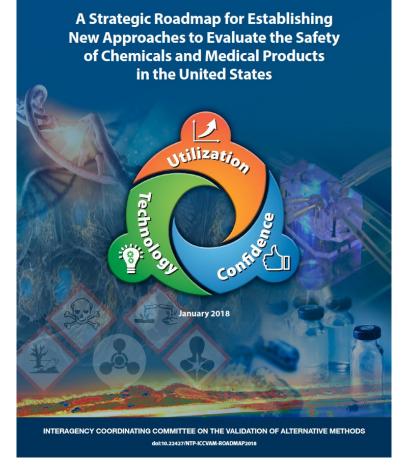
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

Challenges in 'benchmarking' in silico models against traditional toxicity methods - insights gained from the ICCVAM Acute Toxicity Workgroup (ATWG) efforts

Grace Patlewicz National Center for Computational Toxicology (NCCT), US EPA

Presenting as co-chair & member of the ICCVAM Acute Toxicity Work Group (ATWG)

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA



Acknowledgements

• NICEATM

- Nicole Kleinstreuer**
- ILS
- Agnes Karmaus**
- Kamel Mansouri**
- Dave Allen
- EPA-NCCT
- Jeremy Fitzpatrick**
- Prachi Pradeep**
- George Helman**
- Imran Shah

**Also provided all slide materials for this presentation

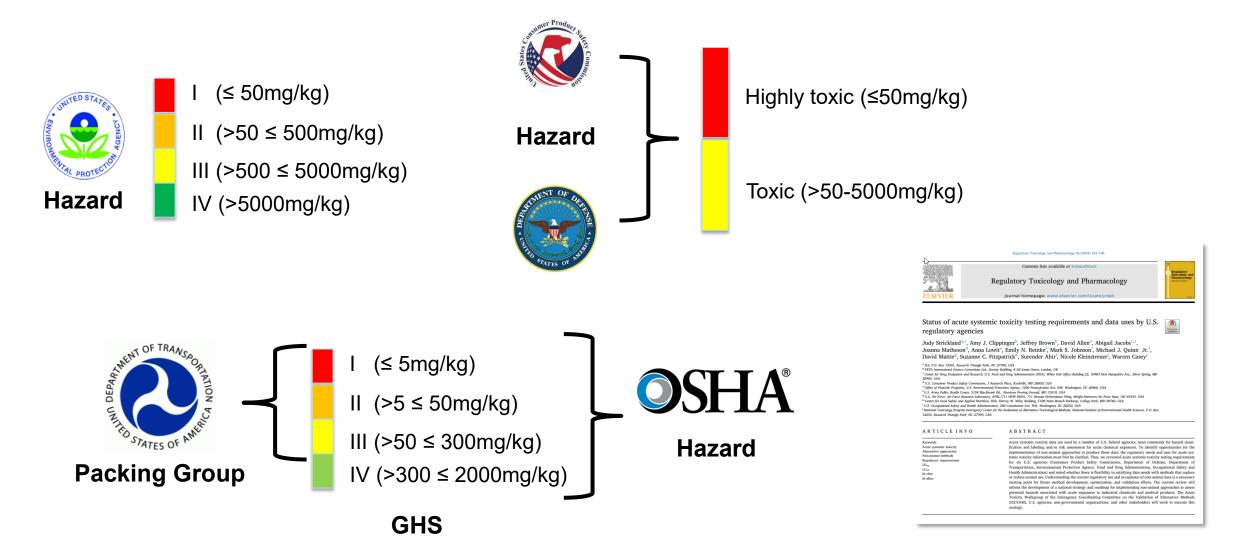
https://ntp.niehs.nih.gov/go/natl-strategy

• ICCVAM Workgroup on Acute Toxicity - Charges & Scope

- Progress and challenges in developing new and evaluating existing non-animal alternative approaches to acute toxicity testing
- Summary remarks

ATWG Acute Toxicity Implementation Plan

- Coordinate activities via ICCVAM Workgroups
- Draft a scoping document to identify U.S. agency requirements, needs, and decision contexts for acute toxicity data
- Coordinate efforts with stakeholders
- Identify, acquire, and curate high quality data from reference test methods
- Identify and evaluate non-animal alternative approaches to acute toxicity testing
- •Gain regulatory acceptance and facilitate use of non-animal approaches


ATWG Acute Toxicity Implementation Plan

- Coordinate activities via ICCVAM Workgroups
- Draft a scoping document to identify U.S. agency requirements,
 needs, and decision contexts for acute toxicity data
- Coordinate efforts with stakeholders
 - Identify, acquire, and curate high quality data from reference test methods
 - Identify and evaluate non-animal alternative approaches to acute toxicity testing
 - Gain regulatory acceptance and facilitate use of non-animal approaches

- Coordinate activities via ICCVAM Workgroups
- Draft a scoping document to identify U.S. agency requirements, needs, and decision contexts for acute toxicity data
- Coordinate efforts with stakeholders
- Identify, acquire, and curate high quality data from reference test methods
- Identify and evaluate non-animal alternative approaches to acute toxicity testing
- •Gain regulatory acceptance and facilitate use of non-animal approaches

SEPA Identify U.S. agency requirements, needs, and decision contexts for acute toxicity data

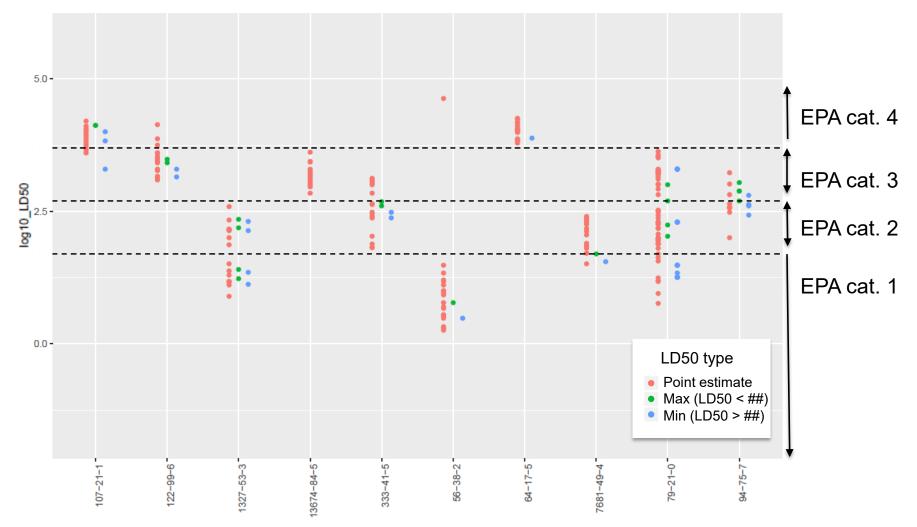
ATWG Acute Toxicity Implementation Plan

- Coordinate activities via ICCVAM Workgroups
- Draft a scoping document to identify U.S. agency requirements, needs, and decision contexts for acute toxicity data
- Coordinate efforts with stakeholders
- •Identify, acquire, and curate high quality data from reference test methods ...and evaluate the variability of the data..
- Identify and evaluate non-animal alternative approaches to acute toxicity testing
- •Gain regulatory acceptance and facilitate use of non-animal approaches

Rat oral acute toxicity LD50 Database

- Mined and merged multiple existing resources containing <u>rat oral</u> acute toxicity LD50 data (collaboration between NICEATM & NCCT)
- Identify transcription errors (e.g. 20005000 mg/kg)
- Manual curation of highly variable chemicals; identify source data
- Often (typically) meta data not available for vast majority of the substances collected
- Explore the variability of the data representative LD50, variability across hazard categories

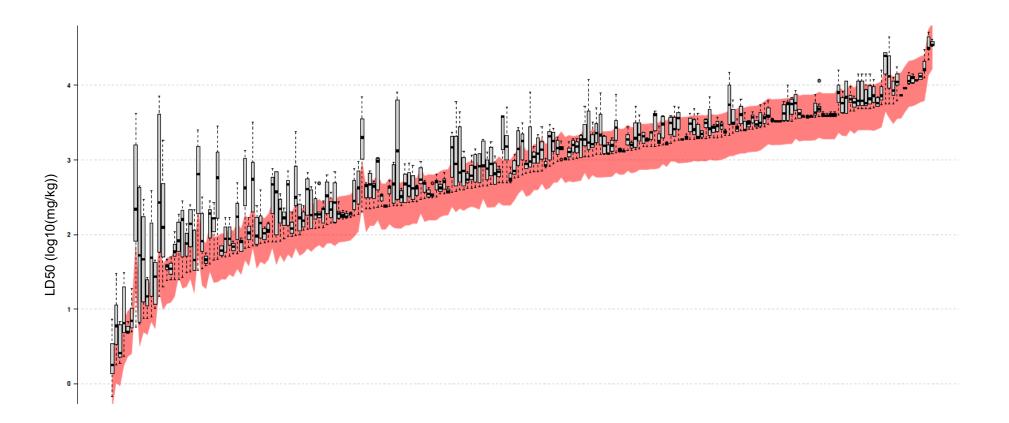
Data source	Number of LD50 values	Number of unique chemicals	Total:
ECHA ChemProp	5,533	2,136	34,511 LD50 values 16,307 chemicals
NLM HSDB	3,981	2,205	Identify unique
JRC Acuto×Base	637	138	data in mg/kg
NLM ChemIDplus	13,072	12,977	21,210 LD50 value
NICEATM PAI	364	293	15,698 chemicals
OECD eChemPortal	10,119	2,290	



- 13,339 chemicals with one LD50 value
- 2,349 chemicals with ≥2 LD50 values
- 1,120 chemicals with ≥3 LD50 values
- 609 chemicals with ≥4 LD50 values
- 347 chemicals with ≥5 LD50 values

Orders of magnitude for LD50s	Number of chemicals
0	546 (49%)
1	519 (46%)
2	39 (3%)
3	8 (0.7%)
4	8 (0.7%)

Example: EPA Classification

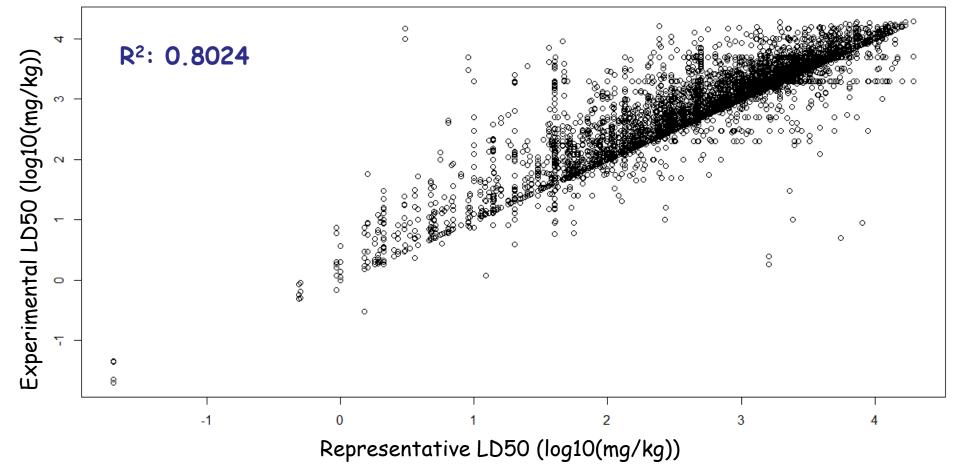

National Center for Computational Toxicology

United States

Agency

Defining a Confidence Range

Bootstrapping of the standard deviations for repeat test chemicals (~1120 with >3 replicates) identified a 95% confidence interval for LD50 values of $\pm 0.31 \log_{10}(mg/kg)$



Environmental Protection

Agency

SERA Assessing "Performance" of the Animal Assay

Representative LD50 vs. Experimental Values

RMSE of 0.42 was also computed for this dataset based on the LD50 values

National Center for Computational Toxicology

Acute Toxicity Implementation Plan

- Coordinate activities via ICCVAM Workgroups
- Draft a scoping document to identify U.S. agency requirements, needs, and decision contexts for acute toxicity data
- Coordinate efforts with stakeholders
- Identify, acquire, and curate high quality data from reference test methods
- Identify and evaluate non-animal alternative approaches to acute toxicity testing
- Gain regulatory acceptance and facilitate use of non-animal approaches

- Establish a dataset of rat oral acute toxicity study LD50 data
- Evaluate the variability of the experimental data collected
 - to inform data curation efforts
 - to inform considerations for evaluating performance and coverage of existing models
 - to inform considerations for new model development
- Identify endpoints to be modeled based on US agency needs
- Evaluate existing models for acute toxicity
- Investigate the feasibility of developing new models for acute toxicity
- Initiate a project to leverage the expertise of the international modelling community to develop predictive models of acute oral toxicity
- Evaluate the applicability of the existing and new models for chemistries of interest to US agencies

- Establish a dataset of rat oral acute toxicity study LD50 data
- Evaluate the variability of the experimental data collected
 - to inform data curation efforts
 - to inform considerations for evaluating performance and coverage of existing models
 - to inform considerations for new model development
- Identify endpoints to be modeled based on US agency needs
- Evaluate existing models for acute toxicity
- Investigate the feasibility of developing new models for acute toxicity
- Initiate a project to leverage the expertise of the international modelling community to develop predictive models of acute oral toxicity
- Evaluate the applicability of the existing and new models for chemistries of interest to US agencies

Evaluating existing in silico models

Model	Number of substances in dataset	Number of substances that could be predicted	Accuracy for substances with one Value	Accuracy for substances with multiple values	Overall Accuracy
TIMES Model	1787	315 (17.6%)	85 of 93 (91%)	206 of 222 (93%)	291 of 315 (92%)
TEST-Acute Oral Consensus Model	1787	1673 (93.6%)	433 of 490 (88%)	1092 of 1183 (92%)	1525 of 1673 (91%)

Fitzpatrick et al., Presented at ASCCT 2017; SOT 2018, manuscript in preparation EPA NCCT - NICEATM

- Establish a dataset of rat oral acute toxicity study LD50 data
- Evaluate the variability of the experimental data collected
 - to inform data curation efforts
 - to inform considerations for evaluating performance and coverage of existing models
 - to inform considerations for new model development
- Identify endpoints to be modeled based on US agency needs
- Evaluate existing models for acute toxicity
- Investigate the feasibility of developing new models for acute toxicity
- Initiate a project to leverage the expertise of the international modelling community to develop predictive models of acute oral toxicity
- Evaluate the applicability of the existing and new models for chemistries of interest to US agencies

Informed by the Conceptual Framework outlined in the NRC 2015 report prepared for DOD

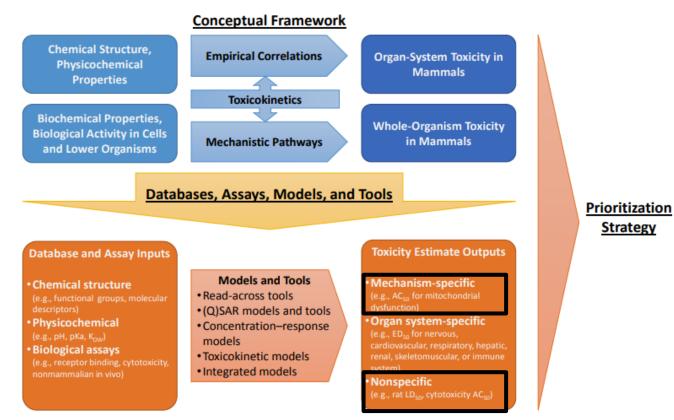
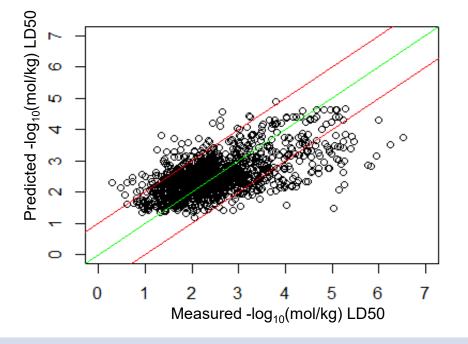
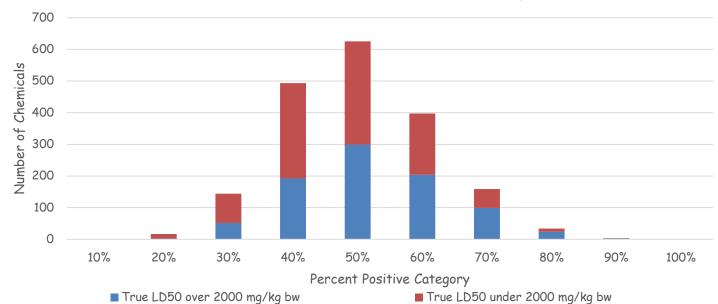




FIGURE S-1 Conceptual framework and examples of databases, assays, models, and tools for predicting acute chemical toxicity.

- Developing new Global models:
- Global Regression Model

• Global Random Forest Model

Over/Under Model For Acute Toxicity

 Model for predicting compounds over and under a LD50 of 2000 mg/kg bw had an accuracy of 57%, a balanced accuracy of 56%, a sensitivity of 57%, and a specificity of 56%.

 Global ridge regression model used both experimental and predicted ToxCast[™] and Tox21 assay outcomes as descriptors.

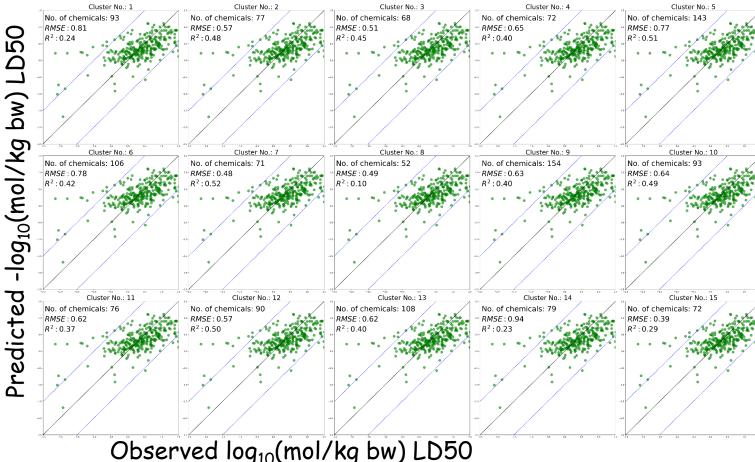
• Training set (4164), Test set (1387)

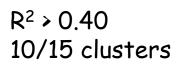
National Center for

Computational Toxicology

 * 85% of the substances were found to be within one log unit of their predicted LD50 value.

Fitzpatrick et al., Presented at ASCCT 2017; SOT 2018, manuscript in preparation


- Developing new Local models:
- Local Cluster-based Regression Models chemical, biological, hybrid and MOAchemical


DescriptorsDescriptorsDescriptorsDescriptors-ToxPrints-ToxPrints-ToxCast Group B assays-ToxPrints-ToxPrints-PaDEL Descriptors• Biological Descriptors• Biological Descriptors• Biological Descriptors• Chemical Descriptors• Biological Descriptors• Chemical Descriptors-ToxCast Group B assays-ToxPrints-ToxCast Group B assays• On the given MC threshold-ToxCast Group B assays-ToxPrints-ToxCast Group B assays-ToxPrints assays-ToxCast Group B assays	1. Chemical Clusters- Chemical QSAR	2. Chemical Clusters- Biological QSAR	3. Biological Clusters-Chemical QSAR	4. Chemical- Biological Clusters, QSAR	5. MOA Clusters- Chemical QSAR
• ToxPrints • PaDEL Descriptor	Descriptors – ToxPrints – PaDEL Descriptors	Descriptors – ToxPrints • Biological Descriptors – ToxCast Group B	 Descriptors ToxCast Group B assays Chemical Descriptors ToxPrints 	Descriptors – ToxPrints • Biological Descriptors – ToxCast Group B	 Final MOA outcome: = 1, if chemical active in any assay for the given MOA threshold = 0, otherwise Chemical Descriptors

Pradeep et al., in preparation

SEPA Identify and evaluate non-animal alternative United States Agency approaches to acute toxicity testing Developing new Local models:

- · Local Cluster-based Regression Model chemical, biological, hybrid and MOAchemical

Pradeep et al., in preparation

Developing new Local models:

Local Cluster-based Regression Model – chemical, biological, hybrid and <u>MOA-</u> chemical

Biological Process or Cellular Target	Example	Chemical or Biological Agent	Example Target Organ System	Examples of in vitro Assay Approaches ^c		
Change in neurotransmitter function						
Altered axonal transport	Disruption of microtubule function	Vinca alkaloids β, β'-iminodipropionitrile	Nervous	Tubulin polymerization assessed with flow		L L
Altered impulse conduction by xonal membrane	Blocking of Na ⁺ ion channel	Tetrodotoxin	Nervous	1 source 2 NRC	moa Immune-mediated effects	assay_component_endpoint_name BSK cell surface markers may inform
Reduced precursor availability or eurotransmitter synthesis and storage	Inhibition of acetylcholine uptake into synaptic vesicle	Vesamicol Reserpine (dopamine)	Nervous	3 NRC	Increased permeability of cellular membranes	mito mem potential/depolarization
Altered neurotransmitter release	Blocking of release of acetylcholine at	I (I)	Nervous	4 NRC 5 NRC	Altered bioenergetics Altered oxygen transport	NA
	neuromuscular junction			6 Hamm	Sodium-potassium ATPase inhibition	NA
	Presynaptic release of acetylcholine and other neurotransmitters	α-latrotoxin		7 Hamm — 8 Hamm	Protein synthesis inhibition GSH depletion (followed by covalent binding of reactive metabol	NA
Altered neurotransmitter binding at eceptor sites	Neurotransmitter agonists	Opioids, benzodiazepines, nicotine, anatoxin-a, kainic acid	Nervous	9 Hamm	Michael acceptor reaction	NA
	Neurotransmitter antagonists	Curare, α-bungarotoxin, 3-quinuclidinyl benzilate		11 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_IC_hKhERGCh
				12 NRC; Hamm		NVS_IC_rCaBTZCHL
mpaired neurotransmitter inactivation	Acetylcholinesterase inhibition	Nerve gas agents	Nervous	13 NRC; Hamm		NVS_IC_rCaChN
nechanisms	Altered dopamine transporter Altered serotonin reuptake	Cocaine Fluoxetine Amphetamine		14 NRC; Hamm		NVS_IC_rCaDHPRCh_L
	Altered dopamine reuptake			15 NRC; Hamm		NVS_IC_rKAR
Altered ion flow			ļ	16 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_IC_rKATPCh
Altered electrical conduction of heart	Sodium-potassium	Digoxin	Cardiovascular	—17 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_IC_rKCaCh
r cardiomyocyte contractility	ATPase blockers	Digoxin	Cardiovascular	18 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_IC_rNaCh_site2
				19 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_bGABAR_Agonist
				20 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_bGABARa1
				21 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_bGABARa5
Itered ion pump (Na ⁺ , Ca ⁺⁺ , K ⁺) activity	Inhibit K ⁺ channel function	Dendrodotoxin, 4-aminopyridine	Cardiovascular	22 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_h5HT3
	Inhibit Na ⁺ channel function	Tetrodotoxin, saxitoxin	curatorabetha	23 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_hNNR_NBungSens
				24 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_rAMPA
-	And an and a second			25 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_rGABAR_NonSelective
				26 NRC; Hamm		NVS_LGIC_rGABARa6
				27 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS LGIC rGluNMDA Agonist
	vs annotate			28 NRC; Hamm	altered ion flow; (voltage-gated) sodium channel inhibition	NVS_LGIC_rGIuNMDA_MK801_Agonis

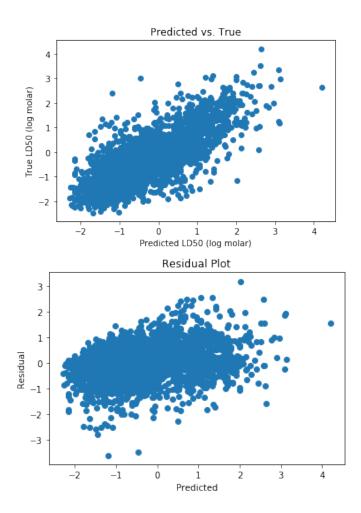
Pathways annotated in NRC report

Alignments with existing ToxCast assays 24

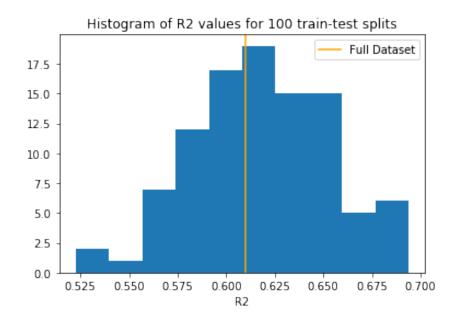
National Center for Computational Toxicology

Separate States Agency Agency Advection Agency Approaches to acute toxicity testing

- Developing new Local models:
- Local Cluster-based Regression Model <u>chemical</u>, biological, hybrid and <u>MOA-</u> <u>chemical</u>


4 unique MOAs based on ToxCast assay data

- 1. Cytotox
- 2. Oxidative Stress or ROS formation; Cell stress relevant
- 3. Mitochondrial inhibition
- 4. Anticoagulation


MOA threshold	Number of Clusters	Best R ²	Number of chemicals in the cluster
1	16	0.27	2779
2	5	0.27	3062
3	4	0.30	3179
4	4	0.31	3263

Pradeep et al., in preparation

Developing read-across models: using GenRA

- $R^2 = 0.61$
- RMSE = 0.58
- A few outliers, but not too extreme
- Residuals clustered around zero with no obvious patterns

- 75-25 train-test splits
- R² values range from 0.52 to 0.69

Helman et al., in preparation

- Establish a dataset of rat oral acute toxicity study LD50 data
- Evaluate the variability of the experimental data collected
 - to inform data curation efforts
 - to inform considerations for evaluating performance and coverage of existing models
 - to inform considerations for new model development
- Identify endpoints to be modeled based on US agency needs
- Evaluate existing models for acute toxicity
- Investigate the feasibility of developing new models for acute toxicity
- Initiate a project to leverage the expertise of the international modelling community to develop predictive models of acute oral toxicity
- Evaluate the applicability of the existing and new models for chemistries of interest to US agencies

- •Use large database of rat oral LD50 values to train (and test) QSAR models to predict acute oral systemic toxicity
- 32 groups from the US, Europe, and Asia responded with 135 models for LD50, EPA and GHS categories, and binary nontoxic vs all others and very toxic vs all others.
- Models were qualitatively and quantitatively assessed and combined into consensus models.
- Consensus model performance compared with animal test reproducibility for binary, categorical, and quantitative models

ELSEVIER

Computational Toxicology 8 (2018) 21-24

Contents lists available at ScienceDirect

Computational Toxicology

journal homepage: www.elsevier.com/locate/comtox

Predictive models for acute oral systemic toxicity: A workshop to bridge the gap from research to regulation

COMPUTATIONA

Nicole C. Kleinstreuer^a, Agnes L. Karmaus^b, Kamel Mansouri^b, David G. Allen^b, Jeremy M. Fitzpatrick^c, Grace Patlewicz^{c,*}

^a National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM), National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA

^b Integrated Laboratory Systems, Inc., Research Triangle Park, NC 27560, USA

^c National Center for Computational Toxicology (NCCT), Office of Research and Development, U.S. Environmental Protection Agency, 109 TW Alexander Dr, Research Triangle Park (RTP), NC 27711, USA

ARTICLEINFO

Keywords: QSAR Read-across Acute oral toxicity ICCVAM Workshop

$A \mathrel{B} S \mathrel{T} R \mathrel{A} C \mathrel{T}$

In early 2018, the Interagency Coordinating Committee for the Validation of Alternative Methods (ICCVAM) published the "Strategic Roadmap for Establishing New Approaches to Evaluate the Safety of Chemicals and
Medical Products in the United States" [1]. Cross-agency federal workgroups have been established to imple- ment this roadmap for various toxicological testing endpoints, with an initial focus on acute toxicity testing. The
ICCVAM acute toxicity workgroup (ATWG) helped organize a global collaboration to build predictive in silico
models for acute oral systemic toxicity, based on a large dataset of rodent studies and targeted towards reg- ulatory needs identified across federal agencies. Thirty-two international groups across government, industry,
and academia participated in the project, culminating in a workshop in April 2018 held at the National Institutes of Health (NIH). At the workshop, computational modelers and regulatory decision makers met to discuss the
feasibility of using predictive model outputs for regulatory use in lieu of acute oral systemic toxicity testing. The models were combined to yield consensus predictions which demonstrated excellent performance when com-
pared to the animal data, and workshop outcomes and follow-up activities to make these tools available and put them into practice are discussed here.

Predictive Models for Acute Toxicity: Performance vs

Animal Data

	Rat Oral LD	50: Reprodu	cibility	Consensus I	Model Perfor	rmance (Tr/T	s Avg
	Sensitivity	Specificity	ВА	Sensitivity	Specificity	BA	
VT	63%	99%	81%	77%	95%	86%	
NT	96%	82%	89%	82%	92%	87%	
EPA	74%	91%	82%	62%	94%	78%	
GHS	66%	92%	79%	54%	92%	73%	
		R2	RMSE	R2	RMSE		
	LD50	0.8	0.42	0.74	0.42		

National Center for Computational Toxicology

- Outlined ATWG charges
- Substantial progress has been made in outlining the decision contexts, needs and gathering the acute toxicity data to inform the array of in silico modelling efforts
- Evaluating the variability of the acute toxicity data is a key consideration both in terms of the impact this has in current hazard assessments but also in managing expectations of the performance of new models