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EPA Office of Research and Development

ORD Facility in
Research Triangle Park, NC

• The Office of Research and Development (ORD) is the scientific research 
arm of EPA

• 626 peer-reviewed journal articles in 2017 and 456 so far in 2018

• Research is conducted by ORD’s three national laboratories, four 
national centers, and two offices organized to address:

• Hazard, exposure, risk assessment, and risk management

• 13 facilities across the United States

• Six research programs
• Air, Climate, and Energy; Chemical Safety for Sustainability; Human 

Health Risk Assessment; Homeland Security; Safe and Sustainable 
Water Resources; Sustainable and Healthy Communities

• Research conducted by a combination of Federal scientists; contract 
researchers; and postdoctoral, graduate student, and post-
baccalaureate trainees
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemicals present in pooled human 
blood samples, many appear to be exogenous albeit at low levels

• A tapestry of laws covers the chemicals people are exposed to 
in the United States (Breyer, 2009)

• Different testing requirements exist for food additives, 
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

November 29, 2014
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• Different testing requirements exist for food additives, 
pharmaceuticals, and pesticide active ingredients (NRC, 2007)

• Most industrial chemicals, ranging from industrial waste to dyes 
to packing materials, are covered by the Toxic Substances 
Control Act (TSCA) and regulated by EPA

• TSCA was amended by the U.S. Congress in June, 2016 and new 
approach methodologies (NAMs) are being considered to 
inform prioritization of chemicals for testing and evaluation*

November 29, 2014

Chemical Regulation in the United States

*“Alternative Test Methods and Strategies to Reduce 
Vertebrate Animal Testing,” US EPA, June 2016
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• The U.S. National Research Council (1983) identified chemical 
risk as a function of both inherent hazard and exposure

• To address thousands of chemicals, we need new approach 
methodologies (NAMs) that can inform prioritization of 
chemicals most worthy of additional study

• High throughput risk prioritization needs:
1. High throughput hazard characterization (Dix et al., 2007, 

Collins et al., 2008)
2. High throughput exposure forecasts (Wambaugh et al., 

2013, 2014)
3. High throughput toxicokinetics (i.e., dose-response 

relationship) linking hazard and exposure (Wetmore et 
al., 2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

Chemical Risk = Hazard x Exposure
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Three Components for Chemical Risk

Dose-
Response 

(Toxicokinetics
/Toxicodynamics)

Exposure

Hazard

Chemical Risk 

NRC (1983)
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High-Throughput Risk Prioritization

Dose-
Response 

(Toxicokinetics
/Toxicodynamics)

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening (HTS) for in 
vitro bioactivity 
potentially allows 
characterization of 
thousands of 
chemicals for which 
no other testing has 
occurred

NRC (2007)
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased throughput and reduced 

assay volumes”

• “Key advances 
over the past 
few years 
include new 
fluorescence 
methods, 
detection 
platforms and 
liquid-handling 
technologies.”
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In vitro Assay AC50

Concentration (µM)

Assay AC50
with Uncertainty

High-Throughput Bioactivity 
Screening

 We might estimate points of departure in vitro using high 
throughput screening (HTS)

 Tox21:  Examining >8,000 chemicals using ~50 assays 
intended to identify interactions with biological pathways 
(Schmidt, 2009)

 ToxCast: For a subset (>2000) of Tox21 chemicals ran 
>1100 additional assays (Kavlock et al., 2012)

 Most assays conducted in dose-response format (identify 
50% activity concentration – AC50 – and efficacy if data 
described by a Hill function, Filer et al., 2016)

 All data are public: http://comptox.epa.gov/dashboard/
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Risk Assessment in the 21st Century

January 5, 2017

“Translation of high-throughput data into risk-based 
rankings is an important application of exposure data for 
chemical priority-setting. Recent advances in high-
throughput toxicity assessment, notably the ToxCast and 
Tox21 programs… and in high-throughput computational 
exposure assessment… have enabled first-tier risk-based 
rankings of chemicals on the basis of margins of 
exposure…”

“…The committee sees the potential for the application 
of computational exposure science to be highly valuable 
and credible for comparison and priority-setting among 
chemicals in a risk-based context.”
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In Vitro - In Vivo Extrapolation 
(IVIVE)

Utilization of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, reversible/ irreversible

• Both contribute to predict in vivo effects

Slide from Barbara Wetmore
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New Exposure Data and Models

Dose-
Response 

(Toxicokinetics
/Toxicodynamics

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse



Office of Research and Development13 of 59

New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

Wetmore et al. (2012, 2015)
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

High throughput 
models exist to make 
predictions of 
exposure via specific, 
important pathways 
such as residential 
product use and diet

NRC (2012)
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ExpoCast (Exposure Forecasting)
Collaboration on High Throughput Exposure Predictions

Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, Hyeong-Moo Shin,
Katherine A. Phillips,  Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and Pesticide

EPA Pesticide Reregistration Eligibility Documents 
(REDs) Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., submitted
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Application: 
Effects of Environmental Chemicals on Hormones

HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human Hazard Eco Hazard

Human Exposure Eco Exposure

mg/kg BW/day

The Endocrine Disruptor Screening Program (EDSP) uses a two tiered approach to screen pesticides, chemicals, and 
environmental contaminants for their potential effect on estrogen, androgen and thyroid hormone systems. The EDSP is 
outlined in two Federal Register Notices published in 1998. (Browne, et al. 2016)

Need to evaluate all pesticide active ingredients and any  chemicals in drinking water

July and December 2014 FIFRA Scientific Advisory 
Panels reviewed research as it applies to the Endocrine 
Disruptor Screening Program
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HUMAN ECOLOGICAL

HAZARD

EXPOSURE

Human In Vitro Assays 
(HTT/ToxCast)

Predicted Ecological 
Species Effects

SeqAPASS (LaLone et al., 2016)

High Throughput 
Toxicokinetics

(Pearce et al., 2017a)

Exposure Predictions  
Calibrated to NHANES
(Including SHEDS-HT)

Exposure Predictions  
Calibrated to USGS 
Water Monitoring

mg/kg BW/day

Application: 
Effects of Environmental Chemicals on Hormones

The Endocrine Disruptor Screening Program (EDSP) uses a two tiered approach to screen pesticides, chemicals, and 
environmental contaminants for their potential effect on estrogen, androgen and thyroid hormone systems. The EDSP is 
outlined in two Federal Register Notices published in 1998. (Browne, et al. 2016)

July and December 2014 FIFRA Scientific Advisory 
Panels reviewed research as it applies to the Endocrine 
Disruptor Screening Program
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High Throughput Toxicokinetics (HTTK)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

Toxicokinetics (TK) 
describes the Absorption, 
Distribution, Metabolism, 
and Excretion (ADME) of 
a chemical by the body

TK relates external 
exposures to internal 
tissue concentrations of 
chemical
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High Throughput Toxicokinetics (HTTK)

 Most chemicals do not have TK data

 In order to address greater numbers of chemicals we collect in 
vitro, high throughput toxicokinetic (HTTK) data (Rotroff et al., 
2010, Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical industry 
to determine range of efficacious doses and to prospectively 
evaluate success of planned clinical trials (Jamei, et al., 2009; 
Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for 
bioactive in vitro concentrations from HTS (i.e., in vitro-in vivo
extrapolation, or IVIVE) (e.g., Wetmore et al., 2015)

 Secondary goal is to provide open source data and models for 
evaluation and use by the broader scientific community (Pearce 
et al, 2017a)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials (Wang, 
2010)

In Vitro Data for HTTK

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002) Cryopreserved
Hepatocytes

(10 donor pool for 
human)

Add Chemical
(1 and 10 µM)

Remove Aliquots 
at 15, 30, 60, 120 

min

Analytical 
Chemistry

The rate of disappearance of 
parent compound (slope of 

line) is the hepatic clearance
(µL/min/106 hepatocytes)

We perform the assay at 1 
and 10 µM to check for 

saturation of metabolizing 
enzymes.

10 µM

1 µM

0 50 100 150
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g 
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M
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials (Wang, 
2010)

In Vitro Data for HTTK

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002) Cryopreserved
Hepatocytes

(10 donor pool for 
human)

Add Chemical
(1 and 10 µM)

Remove Aliquots 
at 15, 30, 60, 120 

min

Analytical 
Chemistry

Add plasma (6 
donor pool for 
human) to one 

well

Add chemical Determine 
concentration in 

both wells 
(analytical 
chemistry)

Double-wells 
connected by semi-

permeable 
membrane on a 

Rapid Equilibrium 
Dialysis (RED) Plate

Incubate plates to 
allow wells with 

and without 
protein to come 
to equilibrium

... .
..
. ..

. .

2

1
,

well

well
pub C

CF =

1 2
Rapid Equilibrium 

Dialysis (RED) 
Waters et al. (2008)
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• Environmental 
chemicals:

Rotroff et al. (2010) 
35 chemicals
Wetmore et al. (2012) 
+204 chemicals 
Wetmore et al. (2015) 
+163 chemicals
Wambaugh et al. (in 
prep.)  +389
chemicals

In Vitro Data for HTTK

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002) Cryopreserved
Hepatocytes

(10 donor pool for 
human)

Add Chemical
(1 and 10 µM)

Remove Aliquots 
at 15, 30, 60, 120 

min

Analytical 
Chemistry

Add plasma (6 
donor pool for 
human) to one 

well

Add chemical Determine 
concentration in 

both wells 
(analytical 
chemistry)

Double-wells 
connected by semi-

permeable 
membrane on a 

Rapid Equilibrium 
Dialysis (RED) Plate

Incubate plates to 
allow wells with 

and without 
protein to come 
to equilibrium

... .
..
. ..

. .

2

1
,

well

well
pub C

CF =

1 2
Rapid Equilibrium 

Dialysis (RED) 
Waters et al. (2008)
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 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get 
concentrations for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)

Steady-State is Linear with Dose
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for a 1 mg/kg/day dose and multiply to get 
concentrations for other doses Wetmore et al. (2012)
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HTTK Allows Steady-State 
In Vitro-In Vivo Extrapolation (IVIVE)
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Slope = mg/kg/day per Css
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ToxCast-derived 
Receptor 
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

Near Field
Far Field

mg/kg bw/day

High Throughput Risk Prioritization in 
Practice

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“
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ToxCast-derived 
Receptor 
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

Near Field
Far Field

mg/kg bw/day

High Throughput Risk Prioritization in 
Practice

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“

Higher priority chemicals
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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Why Build Another Generic PBTK Tool?
SimCYP ADMET Predictor / GastroPlus MEGen IndusChemFate httk

Maker SimCYP Consortium / 
Certara

Simulations Plus UK Health and Safety 
Laboratory

Cefic LRI US EPA

Reference Jamei et al. (2009) Lukacova et al., (2009) Loizou et al. (2011) Jongeneelen et al., (2013) Pearce et al. (2017a)

Availability License, but inexpensive for research License, but inexpensive for research Free:
http://xnet.hsl.gov.uk/megen

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No Yes No Yes
Default PBPK Structure Yes Yes No Yes Yes
Expandable PBPK Structure No No Yes No No
Population Variability Yes No No No Yes
Batch Mode Yes Yes No No Yes
Graphical User Interface Yes Yes Yes Excel No
Physiological Data Yes Yes Yes Yes Yes
Chemical-Specific Data 
Library

Many Clinical Drugs No No 15 Environmental Compounds 543 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Potentially No Yes
Export Function No No Matlab and AcslX No SBML and Jarnac
R Integration No No No No Yes
Easy Reverse Dosimetry Yes Yes No No Yes
Future Proof XML No No Yes No No

We want to do a statistical analysis (using R) for as many chemicals as possible
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Doing Statistical Analysis 
with HTTK

 If we are to use HTTK, we need confidence in predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted concentrations 
are typically on the order of values measured in clinical trials (Wang, 2010)

– For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
– We compare to in vivo data to get empirical estimates of HTTK uncertainty
– ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted new experiments 

in rats on chemicals with HTTK in vitro data (Wambaugh et al., 2018)
– Any approximations, omissions, or mistakes should work to increase the estimated uncertainty when 

evaluated systematically across chemicals
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data Predicted Concentrations
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x
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Chemical 
Specific 
Model

Cohen Hubal et al., 2018
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that model 
for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty

Predicted Concentrations
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that model 
for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with chemical-

specific properties
• Can again consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Building Confidence in TK Models

• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that model 
for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with chemical-

specific properties
• Can again consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Comparison Between HT-PBTK and 
Chemical Specific PBTK

 We compared a chemical-specific human PBTK model for bisphenol A (Yang et al., 2015) to the HTTK 
generic PBTK model

 The fitted PBTK model from Yang et al. (2015) and the httk models yielded similar time-plasma 
concentration curves in the prediction of human in vivo data from Thayer et al. (2015)

 We assessed average-fold error (AFE) (the average quotient of the measured and predicted 
concentrations when the dividend is larger than the divisor)
• The fitted model (Yang et al., 2015) performed the best, with AFE 1.4
• However, the generic PBTK model had an AFE of 3.3

 Generally, HTTK has lower AFE than a literature model when the literature model is evaluated with 
an external data set

Work by Risa Sayre and Robert Pearce
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Using in vivo Data to Evaluate RTK

Wambaugh et al. (2015)

• When we compare the Css
predicted from in vitro HTTK with 
in vivo Css values determined 
from the literature we find 
limited correlation (R2 ~0.34)

• The dashed line indicates the 
identity (perfect predictor) line: 
• Over-predict for 65
• Under-predict for 22

• The white lines indicate the 
discrepancy between measured 
and predicted values (the 
residual)
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In Vivo TK Database

37Sayre et al. (in preparation)

 EPA is developing a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

 Curation and development ongoing, but 
to date includes:
• 198 analytes (EPA, National 

Toxicology Program, literature)
• Routes: Intravenous, dermal, oral, 

sub-cutaneous, and inhalation 
exposure

 Database will be made available through 
web interface and through the “httk” R 
package

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to all data:
https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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New Data for HTTK Evaluation

Absorption

Distribution

Metabolism

Excretion

Clearance

Uncertainty

Standardized 
Statistical Analysis

45 chemicals

•Determine 1- vs. 
2-compartment  

•Estimate Vd, kelim

•If oral data then 
also estimate Fbio, 
kgutabs

New in vivo
toxicokinetics on 26 
non-pharmaceutical 

chemicals

•Standardized design
•Oral and iv dosing (N=3-4)
•Conc. vs. time
•20 chemicals at EPA
•8 chemicals at RTI
•2 overlap chemicals

Literature TK Data on 19 
Chemicals

Wambaugh et al., (2015)

In Silico Fbio
From GastroPlus

Lucakova et al. (2009)

HTTK Volume of 
Distribution

Pearce et al. (2017b)

HTTK Total Clearance
Pearce et al. (2017a)

Toxicokinetic Triage
Wambaugh et al. (2015)

Wambaugh et al. (2018)

Available literature in vivo TK evaluation data was heavily biased toward pharmaceuticals
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New Data for Evaluating IVIVE

Wambaugh et al. (2018)

• Physico-chemical properties, in vitro TK 
parameters (Wetmore et al., 2013), and 
TK parameters estimated from in vivo
plasma concentration.

Number of Standard Deviations 
Above/Below Mean

Office of Research and Development
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New Data for Evaluation

Wambaugh et al. (2018)

• “httk” R package predicts tissue 
partitioning using a hybrid of Schmitt 
(2008) and Peyret and Poulin (2010) 
algorithms

• In Pearce et al. (2017b) we calibrated 
these algorithms using experimentally 
measured partition coefficient data

• However, that data was largely for 
pharmaceuticals
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New Data for Evaluation

Wambaugh et al. (2018)
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Observed Total Clearance

• We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

• This appears to work better for 
pharmaceuticals than other 
chemicals

• Non-pharmaceuticals may be 
subject to extrahepatic 
metabolism and/or active 
transport

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)



Office of Research and Development43 of 59

Observed Absorption Rate

Pharmaceuticals
Other Chemicals

• We had previously assumed that 
a rate of 1/h was “Fast – most 
chemicals were actually 
absorbed somewhat faster

• We have revised the default to 
the median from this data set

Wambaugh et al. (2018)
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Observed Bioavailability
Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)

• Most chemicals were well absorbed

• We observe a greater range of 
bioavailabilities (fraction of oral dose 
that is available systemically) for non-
pharmaceuticals

• Efforts to predict bioavailability were 
unsuccessful
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Observed Bioavailability
Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)
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Impact of Oral Bioavailability
100% Bioavailability Assumed

We evaluate HTTK by comparing predictions 
with observations for as many chemicals as 
possible

Wambaugh et al. (2018)
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Impact of Oral Bioavailability

47

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Wambaugh et al. (2018)
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Predicting Fbio for Toxicokinetics

• Examining in vitro membrane 
permeability data (Caco2) for >300 
ToxCast Chemcials

• Cmax predicted using a 1 
compartment model (Wambaugh 
et al. 2018)

• Minimal difference when using 
estimated Fbio in prediction of 
toxicokinetics observed for this 
limited set of chemicals

Honda et al. (in preparation)
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A General Physiologically-based Toxicokinetic (PBTK) Model

• “httk” includes a generic PBTK model

• Some tissues (e.g. arterial blood) are simple compartments, 
while others (e.g. kidney) are compound compartments 
consisting of separate blood and tissue sections with constant 
partitioning (i.e., tissue specific partition coefficients)

• Exposures are absorbed from reservoirs (gut lumen)

• Some specific tissues (lung, kidney, gut, and liver) are modeled 
explicitly, others (e.g. fat, brain, bones) are lumped into the 
“Rest of Body” compartment.

• The only ways chemicals “leave” the body are through 
metabolism (change into a metabolite) in the liver or excretion 
by glomerular filtration into the proximal tubules of the kidney 
(which filter into the lumen of the kidney). 

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  BloodVe
no

us
  B

lo
od
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Media/Air 
Exchange

Plastic 
Binding

Chemical

Cell Binding

Media 
Lipid 
and 
Protein 
Binding

[Cfree,invitro]≈fup[Cnominal]

[Cnominal]

[Ccellular]=Kc[Cnominal]

Selecting the appropriate in vitro and in vivo concentrations for extrapolation

in vitro
(nominal testing concentration)

[Conc.] In Vitro

[C
on

c.
] I

n 
Vi

vo

?

? ?

?
[Cfree,plasma]

=
fup[Cplasma]

[Ctissue]
=

Kp[Cfree,plasma]

Red Blood 
Cells

Plasma Tissue

[Cblood]
[Cplasma]

=
[Cblood]/Rb:p

in vivo
(mg/kg bodyweight/day)

Renal Clearance
fup*QGFR*[Ckidney,plasma]

Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

OR Non-Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

Honda et al, in prep.

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)
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Optimizing HTTK-based IVIVE

Honda et al, in prep.
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Various Combinations of IVIVE Assumptions
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Chemicals Monitored by CDC NHANES

High Throughput Screening + HTTK can estimate doses 
needed to cause bioactivity  (Wetmore, et al., 2012, 2015)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)Es

tim
at

ed
 E

qu
iv

al
en

t D
os

e 
or

 
Pr

ed
ic

te
d 

Ex
po

su
re

 (m
g/

kg
 B

W
/d

ay
)

National Health and Nutrition Examination Survey (NHANES) is an ongoing 
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

10

10-3

10-7

Selecting Candidates for Prioritization

Ring et al. (2017)
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Slide from Caroline Ring (ToxStrategies)
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Slide from Caroline Ring (ToxStrategies)

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 
(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)Slide from Caroline Ring (ToxStrategies)
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Chemicals Monitored by CDC NHANES

High Throughput Screening + HTTK can estimate doses 
needed to cause bioactivity  (Wetmore, et al., 2012, 2015)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)Es
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National Health and Nutrition Examination Survey (NHANES) is an ongoing 
survey that covers ~10,000 people every two years

Most NHANES chemicals do not have traditional PK models (Strope et al., 2018)

10

10-3

10-7

Selecting Candidates for Prioritization

Ring et al. (2017)
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Life-stage and Demographic Specific Predictions
Change in Activity : Exposure Ratio

• We use HTTK to 
calculate margin 
between bioactivity and 
exposure for specific 
populations

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from in 
vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk

NHANES Demographic Groups

N
H

AN
ES C

hem
icals

Ring et al. (2017)



Office of Research and Development58 of 59

In Silico HTTK Predictions

Dose range for all 
3925 Tox21 
compounds 

eliciting a 
‘possible’-to-

‘likely’ human in 
vivo interaction 

alongside 
estimated daily 

exposure

56 compounds 
with potential 
in vivo 
biological 
interaction at 
or above 
estimated 
environmental 
exposures

Sipes et al., (2017)

• Tox21 has screened >8000 chemicals – Sipes et al. (2017) wanted to compare in vitro active concentrations with HTTK 
predicted maximum plasma concentrations with high throughput exposure predictions from Wambaugh et al. (2014)

• “httk” package only has ~500 chemicals (~400 more in preparation)

• Used Simulations Plus ADMet Predictor to predict for entire library (supplemental table) and used add_chemtable() 
function to add into “httk” package

• Predictions available in httk v1.8
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• We would like to know more about the risk posed by 
thousands of chemicals in the environment – which ones 
should we start with?

• HTTK New approach methodologies (NAMs) are being 
evaluated through 
– uncertainty analysis 
– comparison between in vitro predictions and in vivo 

measurements of both plasma concentrations and doses 
associated with the onset of effects

• Comparison between HTTK predicted time course 
concentrations in plasma and in vivo data indicate that some 
properties (e.g. average and maximum concentration) can be 
predicted with confidence.

Summary

• Comparison between in vitro bioactivity data and HTTK-adjusted internal dose predictions for in vivo points of 
departure has refined assumptions of the HTTK NAMs. 

• NAMs for TK allow risk-based prioritization of large numbers of chemicals. 

The views expressed in this presentation are those of the author and 
do not necessarily reflect the views or policies of the U.S. EPA

Potential Exposure 
Rate

mg/kg BW/day

Potential hazard from 
in vitro

converted to dose by  
HTTK

Lower
Risk

Medium Risk Higher
Risk
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