

Microglia are Required for Anastomosis in a Computational Neurovascular Unit (cNVU)

Todd J. Zurlinden, Ph.D.

US EPA/ORD, National Center for Computational Toxicology (NCCT)

Society of Toxicology 58th Annual Meeting Scaling Barriers: Cellular Dynamics and Models of Blood-Brain Barrier Developmental Toxicity

March 11, 2019

U.S. Environmental Protection Agency

Disclaimers

- The authors have no financial or other interests which pose a conflict of interest.
- This research was funded by the US EPA.
- Some of the data presented here were collected by Vala Sciences Inc. or ArunA Biomedical under contract to the US EPA.
- Some of the data presented here were collected by the University of Wisconsin – Madison H-MAP Center or Finnish Center for Alternative Methods (FICAM) under cooperative research agreements with the US EPA.
- The views expressed in this presentation do not reflect US EPA policy.

Computational neurovascular unit (cNVU) focus

Chemical signals from the neuroepithelium (eg, VEGF) initiate brain angiogenesis via sprouting from the PNVP.

Hypothesis: Chemical disruption of NVU development adversely impacts blood-brainbarrier (BBB) formation leading to abnormal brain development and function.

Stolp et al., Front. Integr. Neurosci. 2013

Cell-Cell interactions of the NVU

Pericyte

Endothelial cell

NPC

E9.25-E9.5

Ginhoux et al., Science, 2010

Obermeier et al, 2013

- Microglia, resident macrophages of the brain.
- During development...

Microglia

Astrocyte

NVU systems map (Saili et al., 2017 NCCT)

- Orchestrate neurovascular ramifications, surveillance of local injury where hyperactivation can invoke an adverse neuroinflammatory response
- Are they mediators of developmental toxicity?

E8.25-E8.5

Computational source-to-outcome framework

- Utilize screening techniques to predict a concentration-dependent disruption of neurovascular development.
- In vitro: Characterize chemical effects on cell-based phenotypes.
- In silico: Use mechanistic information to translate HTS data into cell/tissue predictions.

Cell Agent-Based Modeling

- Agent-Based Modeling and Simulation (ABMS): a heuristic approach to reconstruct tissue dynamics using knowledge of biochemistry and cell-by-cell interactions.
 - Program each *agent* (cell) to follow specific rules
 - Interactions of agents gives rise to *emergent features* (phenotypic outcomes)
 - Qualify emergent feature with experimentally derived phenotypes (tissue level morphology)
 - Make toxicodynamic predictions by integrating biological knowledge & high throughput data
- **CompuCell3D*:** open source modeling environment
 - Rules (steppables) for distinct cell behaviors (growth, proliferation, apoptosis, differentiation, polarization, motility, ECM, signal secretion, ...);
 - Rules coded in Python for cell-autonomous 'agents' that interact in shared microenvironment and self-organize into emergent phenotypes.
 - Methodology applied to past systems: vasculogenesis, genital tubercle, palate fusion, etc.

*James Glazier and colleagues, Indiana University

Modeling brain angiogenesis

VEGF-A gradient: NPCs in the subventricular zone

Cell agent Based model of microglia-endothelial interaction

endothelial tip cell

microglial cell

endothelial stalk cell

Visualizing the qualitative dose response

C = 0.08 μM

$C = 0.3 \ \mu M$

- Changes in vasculature are visualized through escalating dose response translated from ToxCast HTTS data
 - Reduction in microglia
 - Reduction in endothelial cell migration

Vascular quantitation - mancozeb

Image analysis in ImageJ: Angiogenesis Analyzer

Predicted NEL (pNEL): No changes to vasculature

Reduction in overall vascular area

Predicted LEL (pLEL): Reduced tortuosity

Hypo-vascular angiodysplasia

- Quantitate multiple vascular network endpoints in concentration response.
- Running multiple simulations allows us to account for stochastic variability.

Vascular quantitation – oxytetracycline dihydrate

Predicted NEL (pNEL): No changes to vasculature

Reduced branching and anastomoses

Predicted LEL (pLEL): Reduced vascular area

VEGFR3 serves as the more sensitive angiogenesis endpoint for oxytetracycline dihydrate exposure

Hypo-vascular angiodysplasia

Experimental comparison

Organotypic culture models

Neurovascular unit OCM

(A) Time-course development of PNVP model in vitro

Endothelial cell Endothelial cells

- Time-course invasion of endothelial cells into a neural compartment
- Constructed as a microfluidic device on a 96-well plate for higher throughput testing

GFAP

G. Kaushik, W. Murphy, W. Daly, UW Madison

(C) Neural layer characterization

Endothelial cells

Model evaluation with in vitro models

OCM NVU

Chemical response results from *in vitro* NVU OCM to compare to *in silico* endpoints

PoD Comparison

Comparison of predictions across various platforms

[†]No effect on microglia population in OCM

HTTS Assays

Chemical response results from HTTS endothelial cell assays to compare to *in silico* endpoints

5HPP-33

100

10

Concentration (UM

1	Chemical	In silico (PoD)	OCM (LOEC)	EC* (AC ₅₀)
	Mancozeb	0.5 µM	0.3 µM	9 µM
	Maneb	10 µM	20 µM	N/A
	Oxytetracycline dihydrate	10 µM	N/A	30 µM
	Pyridaben	12 µM	8 µM	0.005 µM
	5HPP-33 [†]	80 µM	20 µM	12 µM
	*Cell-based high throughput assay			

0.01

0

NVU cell-based assays

Zurlinden et al., *in prep*

<u>VALA</u>: Migration/Proliferation **HUVEC cells** <u>FICAM</u>: Tubulogenesis/Proliferation **HUVEC cells**

Process data

Define in literature

Applicability to blood-brain barrier

Utilize data to update model

- In vitro models of morphogenesis may not capture distinct barrier properties while barrier models may not recapitulate relevant morphology.
- A cNVU approach allows for integration of multiple data streams to produce high throughput, salient predictions of BBB development

Towards a functional cNVU model

- Biological pathway perturbations
 - Predict NVU phenotypes from literature fingerprint and cell-agent based model
 - 'Cybermorphs' for investigating single pathway knockouts
 - Continuum response following chemical exposure and resulting receptor inhibition
- Neurogenesis submodel
 - Differentiation/migration to neurons and astrocytes
 - Utilize intracellular signaling pathways (cell/centrosome cycle)
 - Endothelial network interacting with neural network (3D)
- Phenotype quantitation
 - Microglia abundance, vessel branch points, network complexity (cortical angiogenesis)
 - Neuron proliferation/differentiation (neurogenesis)
 - Barrier permeation for chemical distribution to neural compartment (barriergenesis)

Acknowledgements

- Tom Knudsen (mentor, NCCT)
- Kate Saili (NCCT)
- Sid Hunter (NHEERL-ISTD)
- Andrew Schwab (NHEERL-ISTD)
- Nancy Baker (Leidos)
- Richard Spencer (ARA-EMVL)
- Florent Ginhoux (A*STAR)
- Aymeric Silvan (A*STAR)
- Gaurav Kaushik (H-MAP, Wisc)*
- Eric Nguyen (H-MAP, Wisc)*
- Virtual Tissues Modeling Group

*Provided data model testing and evaluation

Thank You

Questions?

U.S. Environmental Protection Agency