

www.epa.gov

QSAR Modeling of Caco-2 Permeability for the Estimation of Oral Bioavailability

¹National Center for Computational Toxicology, U.S. EPA, Research Triangle Park, NC; ²Oak Ridge Institute for Science and Education, Oak Ridge, TN; ³Cyprotex US LLC, Watertown, MA

Background

- Data from high throughput in vitro screening assays describe potential hazard.
- **Toxicokinetics** may be used to determine corresponding oral equivalent doses for comparison to potential **exposure** rate (Wetmore *et al.* 2015).
- The extrapolation of *in vitro* hazard to *in vivo* oral equivalent doses may be improved by accurate definition of the **fraction absorbed** (F_{abs}) through the intestine
- F_{abs} are not frequently available for non-pharmaceuticals.
- The Caco-2 assay allows for measurement of an apparent permeability rate (P_{AB}) that is highly correlated with F_{abs} (Artursson *et al.* 2001).
- F_{abs} , combined with **gut metabolism** (F_a) and first pass hepatic clearance (F_{fp}) are used to estimate the oral bioavailability (F_{hio}).

In this work, the Caco-2 permeability rate was measured for 310 ToxCast chemicals. Measured values and QSAR predicted results were used for the estimation of oral bioavailability (F_{bio}).

Potential improvements in toxicokinetics using more accurate estimates of F_{bio} from Caco-2 data may enable the use of in vitro toxicity data to inform regulatory decisions.

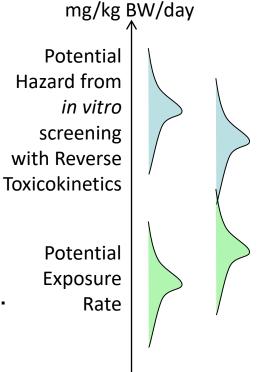
Caco-2 Permeability

Measured Permeability

- **Caco-2 cells**, developed from human colon carcinoma cells, form a polarized monolayer that behaves similarly to the human intestinal epithelium
- Permeability was measured from apical to basolateral (P_{AB}) and basolateral to apical (P_{B4})
- Majority of chemicals (71%) have high P_{AB} (>1x10⁻⁵ cm/s), similar to that of the high permeability control (warfarin)
- Most chemicals (88%) had efflux ratio $(P_{BA}/P_{AB}) < 2$

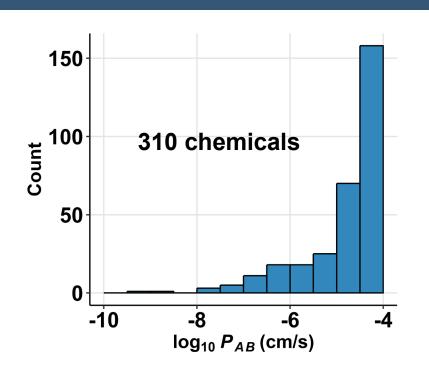
Random Forest QSAR for P_{AB}

- 1. Training set of values from our Caco-2 data and literature (ChEMBL, Ohagan *et al*.) pharmaceutical data
- 2. Use PaDel descriptors
- 3. Drop features with near zero variance
- 4. Recursive feature elimination. 5 fold cross-validation
- 5. Tune number of variables tried at each branch (mtry), 5 fold CV

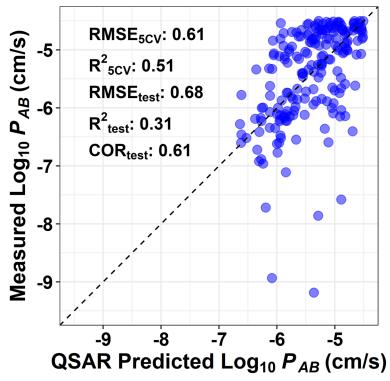

QSAR Model Results

- Results for test set (P_{AB} measured in this work) slightly worse than estimates from 5 fold-CV
- Possibly need more environmental chemical data to achieve improved result

References

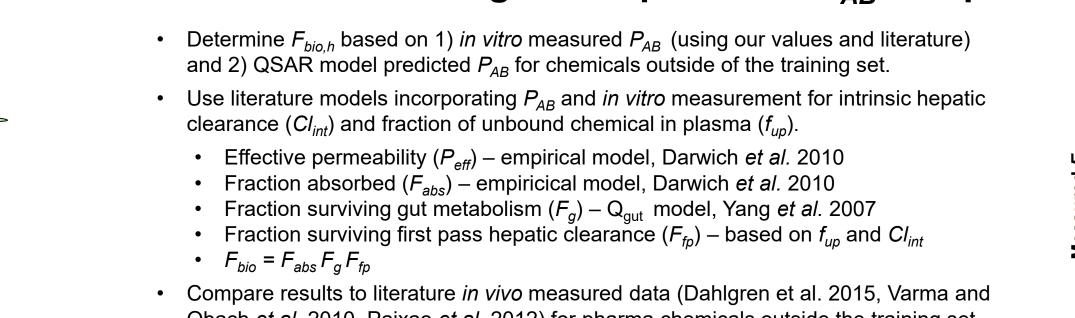

Artursson et al. Adv. Drug Deliv. Rev. 2001, 46, 27-43 Dahlgren et al. J. Pharm. Sci. 2015, 104, 2702-2726 Darwich et al. Current Drug Metabolism, 2010, 11, 716-729 Ohagan et al. PeerJ 3:e1405. Paixao et al. Int. J. Pharma. 2012, 429, 84-98 Pearce, R. G. et al. J. Statistical Software. 2017, 79(4)

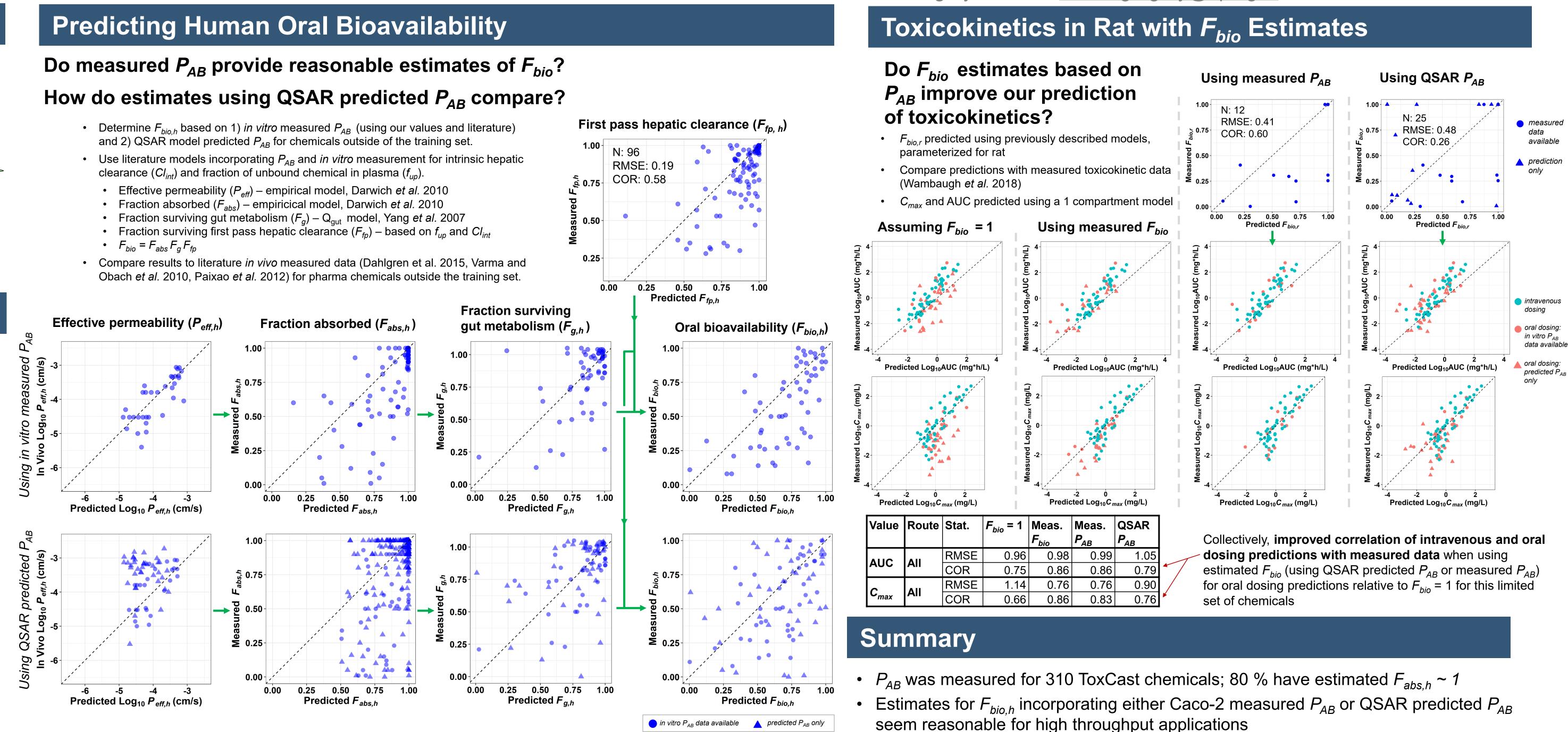
Training Set This work: 100 Lit. pharma: 100 -6 -5 Log₁₀ *P_{AB}* (cm/s)



Lower Medium Higher Risk Risk

Risk


QSAR prediction of test data



Varma et al. J. Med. Chem. 2010, 53, 1098-1108 Wambaugh, J. F. et al. Toxicological Sciences. 2018, in press Wetmore, B. A. et al. Toxicological Sciences. 2015, 148(1), 121-136 Yang et al. Curr. Drug Metab. 2007, 8, 676-684

U.S. Environmental Protection Agency Office of Research and Development

G. S. Honda^{1,2}, R. R. Sayre^{1,2}, C. Strock³, D. Angus³, R. Dinallo³, R. G. Pearce^{1,2}, R. S. Thomas¹, and J. F. Wambaugh¹

		$\pmb{P}_{eff.h}$	F _{abs.h}	F _{a.h}	$\pmb{F}_{bio.h}$
Using	Ν	33	109	58	58
in vitro P _{AB}	RMSE	0.42	0.22	0.22	0.25
	COR	0.77	0.71	0.50	0.66
Using	Ν	63	286	83	83
QSAR P _{AB}	RMSE	0.89	0.27	0.25	0.30
	COR	0.17	0.48	0.46	0.43

Performance of estimates for $F_{abs,h}$, $F_{a,h}$, and $F_{bio,h}$ (RMSE ~ 0.2, COR ~ 0.5-0.7) incorporating measured P_{AB} comparable to estimates of F_{fnh} based on in vitro measured $f_{\mu n}$ and CI_{int} (RMSE ~ 0.2, COR ~ 0.6).

Results for $F_{bio,h}$ based on QSAR P_{AB} perform only slightly worse (RMSE ~ 0.3, COR ~ 0.4), better performing model may be achievable.

Disclaimer: The views expressed in this poster are those of the authors and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency

• Future work may evaluate models using collection of literature pharmacokinetic studies with oral dosing

Abstract Number: 3137 Poster Number: P711

Gregory Honda I honda.gregory@epa.gov I orcid: 0000-0001-7713-9850

• Correlation of measured oral and i.v. dosing kinetics with predicted results was improved when oral dosing estimates incorporate predicted F_{bior}