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3.3 Data record content
The total set consists of 16542 series from 601 studies for 154 test 
substances and 196 analytes (test substances or their metabolites). 

Of the test substances, 25 are pharmaceuticals, 28 are pesticides, and 
the remaining 101 are other environmental chemicals, which includes 
ingredients from personal care products, industrial chemicals, 
disinfection or combustion byproducts, and other diverse sources.

• Time courses of compound concentrations in plasma are used to evaluate the relationship between 
external administered doses and internal tissue exposures, but this type of experimental data is 
rarely available for the thousands of chemicals to which people may potentially be exposed. 

• The quantitative uncertainty of pharmacokinetic models developed using in vitro assays and in silico
models cannot be determined without in vivo data for external validation. 

• These data were identified as a key area needed for improvement of chemical safety prioritization in 
a recent review by authors from governments, academia, and industry (Bell et al. 2018). 
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2.1 Definitions of database terminology
Study: a pharmacokinetic experiment in which a type of subject, or organism on which the experiment is performed, is 
exposed to a single test substance. A study may be described by several series if time-course data is available from several 
individual subjects or groups of subjects, in several media (tissue, plasma, etc.), or multiple analytes. 
Series: a set of concentration time-series (CvT) points measured during a pharmacokinetic experiment, or study. A series may 
represent data from a single subject, or the mean value from a group of subjects (sometimes with error bars).
Document: a source of experimental data. A study may have more than one document linked to it if it was captured from a 
paper that was not written by those who performed the experiment.

2.2 Data source identification
Data was sourced from the Chemical Effects in Biological Systems (CEBS) database hosted by the National Toxicology Project, 
and from individual publications. We used machine learning in Python 3.6 to identify candidate document publications from 
PubMed using Medical Subject Headings (MeSH) terms (F1 score: 0.16) and abstracts (F1 score: 0.45).

Reporting error: Assumed data was correct as reported
Measurement error in chemical quantification: Recovery amounts vary based on method and method execution
Capture error due to graphical presentation: Some figures were blurry. Some concentration points were below the datum, 
which implies a printing error.
Chemical identification validity: Chemicals in unstructured data were usually only identified by their name in the source 
documents. This leaves some room for ambiguity (Richard & Williams, 2002). Names were mapped to unique substances 
(designated by DSSTox substance ID, and when possible, structure ID) through expert curation.
Intra- and inter-curator extraction variability: Variability was measured using the fractional difference (              ) between 
results collected at different times by the same curator, and between results from different curators.  
The fractional difference in AUCs from 13 tested documents was 0.06% for intra-curator, and 0.44% for inter-curator.
Random error due to uncontrollable experimental factors: One document described several trials of the same experiment to 
serve as controls for different treatment groups. The fractional difference across these trials was 5%.
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Figure 4. Count of studies and test substances with CvT results in 
different media (for any species, but represented on a human body).

3.2 Data collection
CvT data: Efforts at automated data extraction from images were not 
found to be sufficiently accurate or precise, so we used manual capture.

3.1 Data record storage

Figure 2. The data 
model is instantiated 
in a MySQL 5.6 
community edition 
relational database 
of simple data types 
(text, numeric, and 
Boolean).

Figure 6. Count of distinct test substances per route, color-coded by species type
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6. Usage examples

Other ideas:
• Compare ADME 

of different 
compounds, and 
investigate 
relationship to 
chemical 
structure (QSAR)

• Meta-analyses on 
pharmacokinetic 
studies

• Calculation of 
other 
pharmacokinetic 
parameters

Figure 1. Overview of workflows for machine learning to identify publications containing CvT data from PubMed records (manuscript in preparation).

Comparison of compound distribution in Evaluation & calibration of 
different species and media at different doses pharmacokinetic (PBPK) model results

Figure 3. Image files (in this case, from Ng 2007) were uploaded to the webtool WebPlotDigitizer. The tool was 
calibrated to the plot axes, then each data point was clicked (left red oval). Results were exported into comma-
separated value transaction files for database import (central red oval). Time units were normalized to hour, and 
concentrations were normalized to the micro scale; all values were rounded to four decimal places (right red oval).

Toxicokinetic parameters: Calculated values summarizing the 
absorption, distribution, metabolism, and excretion (ADME) represented 
by a series are included in this dataset, either as presented in original 
publications and/or as calculated from the CvT data points using the R 
package invivopkfit as described in Wambaugh et al. 2018. It fits the 
curve as noncompartmental, one-compartment, or two-compartment 
kinetics, then calculates the corresponding parameters (such as total 
clearance and concentration at steady-state) and their uncertainty.

Metadata: Manually captured study details based on the test guideline 
for metabolism and pharmacokinetics released by the U.S. EPA Office of 
Prevention, Pesticides, and Toxic Substances (1998). Some metadata 
apply to an entire study, while some are specific to a series. Inclusion in 
this set does not imply that studies meet OPPTS testing requirements.

By route: 

Figure 8 (from Wambaugh et al. 2015) See an example of this 
usage at “Development of a Generalized Inhalation Model for 
Use with the High-Throughput Toxicokinetics (httk) Package in 
R”, poster P167 in session Computational Toxicology II.

Figure 7. Comparison of all series results for a single test substance 
from the database.

By detection medium: By animal:

Figure 5. Count of studies and 
test substances by species type.

To address this need, we present an extensible public database of data points describing changes in amounts of a chemical 
in a tissue over time after an administered dose, which were extracted from publications and databases, and stored with 
accompanying contextualizing information in a reproducible way for usage in risk characterization or model evaluation.
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