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• Mitochondria generate >90% of eukaryotic cellular ATP via oxidative phosphorylation (OXPHOS) (Fig. 1)

• Also important in regulation of cell proliferation, metabolic regulation, and apoptosis

• Mitochondrial dysfunction is implicated in several adverse outcomes:

• Parkinson’s and Alzheimer’s Disease

• Metabolic syndrome

• Cancer

• Diabetes

• Chemicals in the environment are known to impair mitochondrial function through various mechanisms:

• Electron transport chain inhibition (ETC; complexes I – IV)

• Uncoupling of the inner mitochondrial membrane (IMM)

• Inhibition of phosphorylation through ATP synthase

• ATP transport inhibition

• Krebs cycle inhibition

• Previous ToxCast mitochondrial screening assays focused on mitochondrial mass or membrane potential

• Dye-based assays may be less sensitive to chemicals that functionally impair mitochondria

• As US EPA seeks to develop high-throughput screening methods to broaden the chemical knowledge space and improve model accuracy, two new ToxCast

assays measure respiration (oxygen consumption rate; OCR) using the Agilent Seahorse XFe96 Analyzer to identify putative mitochondrial-disrupting

chemicals and confirm mechanisms of action
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Methods: Intact-Cell Mitochondrial Respirometric Assay

Introduction

• Hepatocellular carcinoma cell line HepG2 generates ~50% ATP via OXPHOS (data not shown)

• Many immortalized cell lines rely heavily upon glycolysis for ATP production

• Cellular OCR indicative of mitochondrial function measured with Agilent Seahorse XFe96 Analyzer

• Four temporal windows separated by three sequential reagent additions (Fig. 2):

1. Pre-injection respiration (OCR)

2. Injection 1: Basal respiration – control (vehicle, ETC inhibitor, IMM uncoupler) or test chemical exposure

3. Injection 2: Maximal respiration induced with known IMM uncoupler (FCCP) exposure

4. Injection 3: Inhibited respiration induced with known ETC inhibitor cocktail (rotenone/antimycin A) exposure

• Test chemical exposure is 18 minutes before maximal respiration is induced with IMM uncoupler

• ToxCast Phase I and II chemicals (1,051 blinded test samples) were initially assayed at 100μM only

• Activity thresholds were set using OCR variability of vehicle wells for each temporal window (Fig. 2)

• Chemicals active at 100μM were retested at 7 concentrations ranging 0.125 - 100μM

• Chemicals were then categorized based on putative mechanism (Fig. 3B)

• Twenty potential ETC inhibitors were subsequently assessed using an electron flow assay

Results: Intact-Cell Mitochondrial Respirometric Assay

Methods: Permeabilized-Cell Mitochondrial Electron Flow Assay

• Permeabilize HepG2 cells with Agilent plasma membrane permeabilizer (PMP) for direct exposure to mitochondria

• Initiate maximal respiration through ETC complex I by supplying pyruvate and malate with IMM uncoupler (FCCP) exposure

• Mitochondrial OCR measured with Agilent Seahorse XFe96 Analyzer

• Four temporal windows separated by three sequential reagent additions (Fig. 5):

1. Baseline maximal respiration (OCR)

2. Injection 1: Controls (vehicle, ETC inhibitors) or test chemicals (at 31, 64, and 100μm) for 18 minutes

3. Injection 2: Simultaneously block complex I (rotenone) and restore respiration through complex II with succinate

4. Injection 3: Simultaneously block complex III (antimycin A) and restore respiration at complex IV with ascorbate/TMPD

• Qualitatively assign putative ETC complex inhibition mechanism to test chemical based on OCR recovery/non-recovery

Results: Permeabilized-Cell Mitochondrial Electron Flow Assay

• Mitochondrial oxygen consumption rates (OCR) of intact HepG2 cells were measured over

four temporal windows: pre-injection, basal, maximal and inhibited OCR.
• Using DMSO variability as a threshold of active response within each window allowed for

categorization of chemical putative mechanism of action.

• Of 1,051 samples, 834 ultimately tested inactive while among the 217 active samples,

most (161) were putative electron transport chain (ETC) inhibitors.

• Twenty potential ETC inhibitors were further characterized in an electron flow assay to

determine if a specific ETC complex (I – IV) was affected.

• Maximal mitochondrial OCR of permeabilized HepG2 cells was then measured over four

temporal windows: baseline maximal respiration, chemical exposure, complex I

inhibition/complex II recovery, and complex III inhibition/complex IV recovery.
• Using OCR recovery/nonrecovery as a basis for categorization, six chemicals

specifically blocked complex I, three blocked complex II/III, five inhibited multiple

complexes, and the remaining six were inactive.

• This is the first large-scale effort to identify and confirm mechanisms of chemically-induced

mitochondrial dysfunction using a screening-based approach.

• All suspected ETC inhibitors within the ToxCast Phase I and II chemical libraries will be

subsequently tested using the electron flow assay to confirm their activity and identify their

target ETC complex(es).

• These data will expand the knowledge base for mitochondrial toxicants and may ultimately

assist the Agency in decision-making processes.
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Figure 1: Basic representation of OXPHOS. Electrons are

transferred along 4 ETC complexes while H+ ions are pumped

across the IMM generating a proton gradient to drive ATP

synthase. Disruption of this process can lead to adverse effects.
Image: OpenStax CNX.

Figure 2: Graph 

representing normalized 

DMSO response to 

respirometric assay over 

the four temporal 

windows of exposure. 

Red-dotted lines indicate 

activity thresholds for 

each window. 

Figure 3A: Workflow from the single-concentration assay to multi-concentration testing of putative actives to categorization

of potential mechanisms of action. Of 1,051 tested samples, 834 were ultimately deemed inactive while 217 were further

characterized (Figure 3B). A majority of actives were classified as potential ETC inhibitors. Twenty of these ETC inhibitor

candidates were assessed using an electron flow assay.

Figure 3B: Graphical representation showing

how active responses in windows of exposure

were used for mechanistic categorization.

Redox-cyclers (A) were identified first, followed

by IMM uncouplers (B), ETC inhibitors (C), and

then ATP synthase inhibitors (D).

Figure 6: Chemical responses in the permeabilized-cell electron flow assay. These twenty

chemicals were classified as putative ETC inhibitors based on responses from the intact-cell

respirometric assay. A) Six chemicals that exhibited complex I inhibition. B) Three chemicals

that demonstrated complex II or III inhibition. C) Five chemicals that showed both complex I

and complex II/III or complex IV inhibition. D) Chemicals that were inactive in the election

flow assay.

Electron Flow Assay Categorization Summary

Chemicals 

Tested (#)

Complex I 

Inhibitors

Complex II/III 

Inhibitors

Mixed 

Inhibition
Inactive

20 6 (30%) 3 (15%) 5 (25%) 6 (30%)

Table 2: Number of chemicals categorized by putative ETC inhibition mechanism.

The presented work does not necessarily reflect US EPA policy.

Multi-concentration Respirometric Assay Categorization Summary

Chemicals 

Tested (#)

Redox-

cyclers

IMM 

uncouplers

ETC 

inhibitors

ATP 

synthase 

inhibitors

Inactive

270 10 (4%) 16 (6%) 161 (60%) 30 (11%) 53 (20%)

Table 1: Number of chemicals categorized by putative mechanism of

mitochondrial disruption.
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Figure 4: Multi-concentration

responses of A) controls:

DMSO vehicle, ETC inhibitor

fenpyroximate, IMM uncoupler

2,4-dinitrophenol (DNP), and

B) twenty putative ETC

inhibitors.
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Figure 5: Schematic of sequential reagent additions and graph representing control responses of DMSO vehicle, complex I inhibitor

fenpyroximate, and complex III inhibitor myxothiazol within the four temporal windows of exposure.


