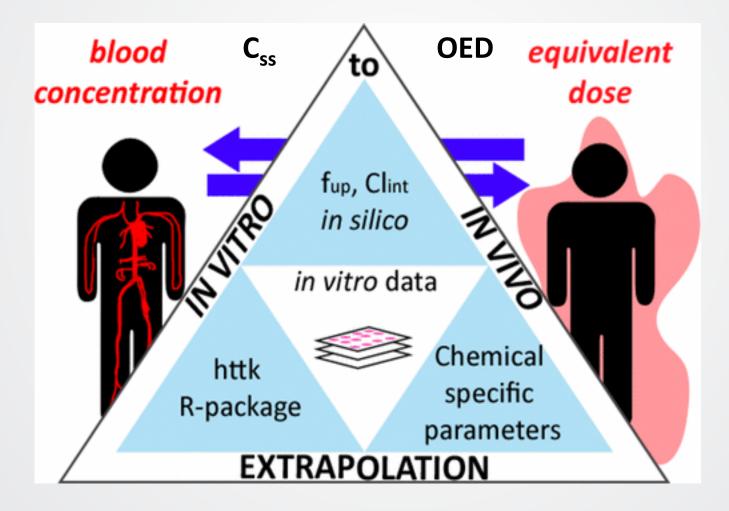


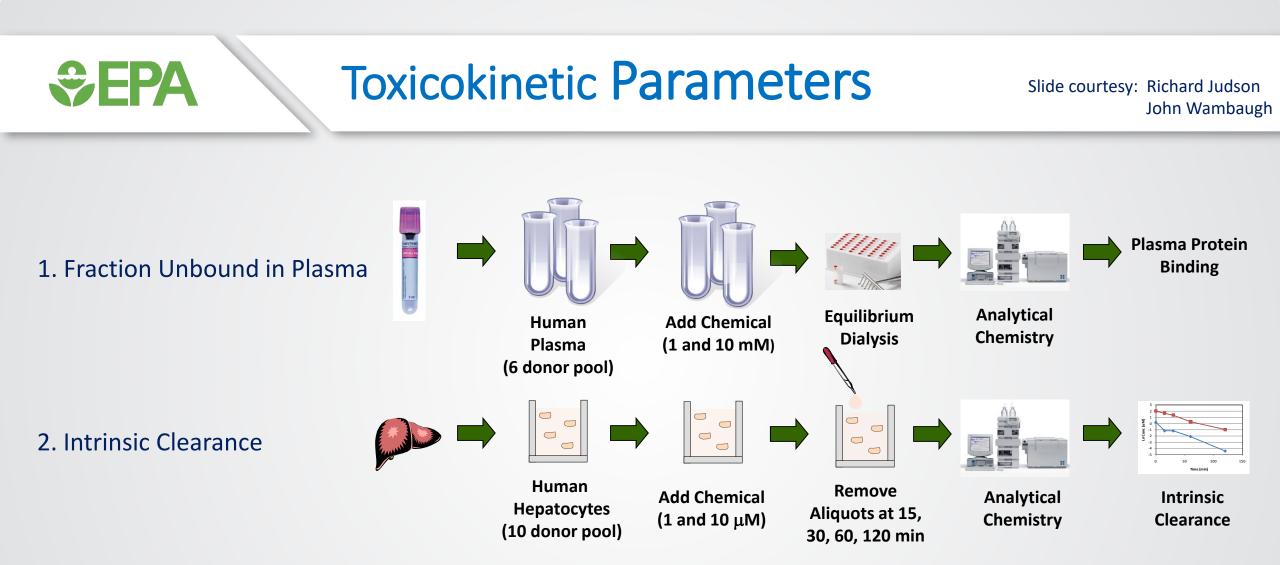
Using Chemical Structure Information to Develop Predictive Models for In Vitro Toxicokinetic Parameters to Inform High Throughput Risk Assessment

Prachi Pradeep US EPA, National Center for Computational Toxicology

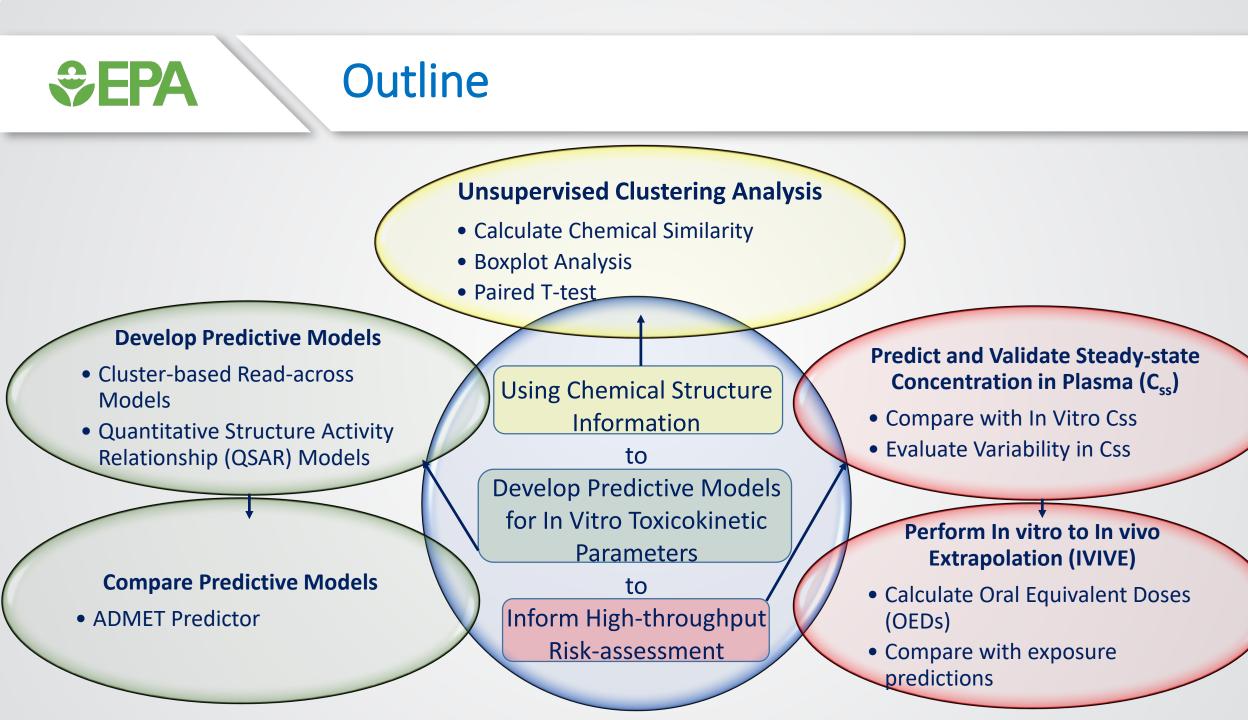

Society of Toxicology Annual Meeting 2019

Workshop: Predicting Metabolic Clearance Rates for Drug Leads and Chemical Risk Assessment

Disclaimer: The views expressed in this presentation are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.


Background Context

SEPA

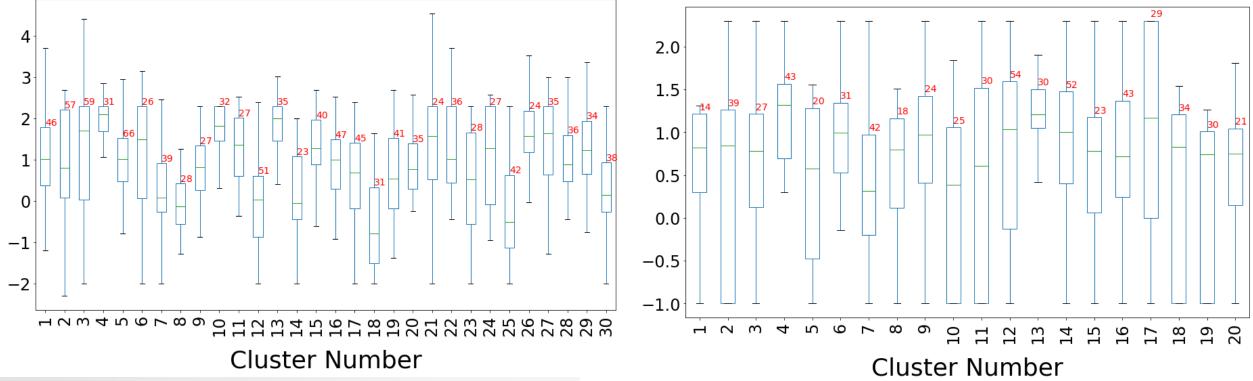

Sipes et al, 2017

f_{up}: Fraction Unbound in Plasma Clint: Intrinsic Clearance

Il Not high-throughput (~800 chemicals in 10yrs)

!! ~7000\$ per chemical

Development of Predictive Models


Cluster-based Read-across Models	QSAR Models
 Clustering Algorithm Unsupervised K-Means 	 Feature Set Fingerprints: ToxPrints, PubChem Fingerprints Descriptors: Molecular Operating Environment (MOE), PaDEL, Chemistry Development Kit (CDK)
Feature Set ToxPrints PubChem Fingerprints 	Feature Selection Variance threshold Recursive feature elimination
 Analog Selection Similarity threshold Count and similarity threshold 	 Machine Learning Algorithm Lasso, Logistic regression, Support vector machines, Random forest, Neural network multi layer perceptron Hyper-parameter Tuning
 Prediction Classification: Majority vote Regression: Simple average 	Cross-validated grid search Validation • 5-fold internal cross-validation

• External test set validation

EPA Unsupervised Clustering Analysis

Fraction Unbound in Plasma

Intrinsic Clearance

- Range of fraction unbound in plasma is much more tightly bound across different clusters as compared to intrinsic clearance
- Paired T-test illustrates that mean fraction unbound in plasma values are more distinct across clusters as compared to intrinsic clearance

Number of Chemicals 1486

Data Source HTTK R Package

Use Cases

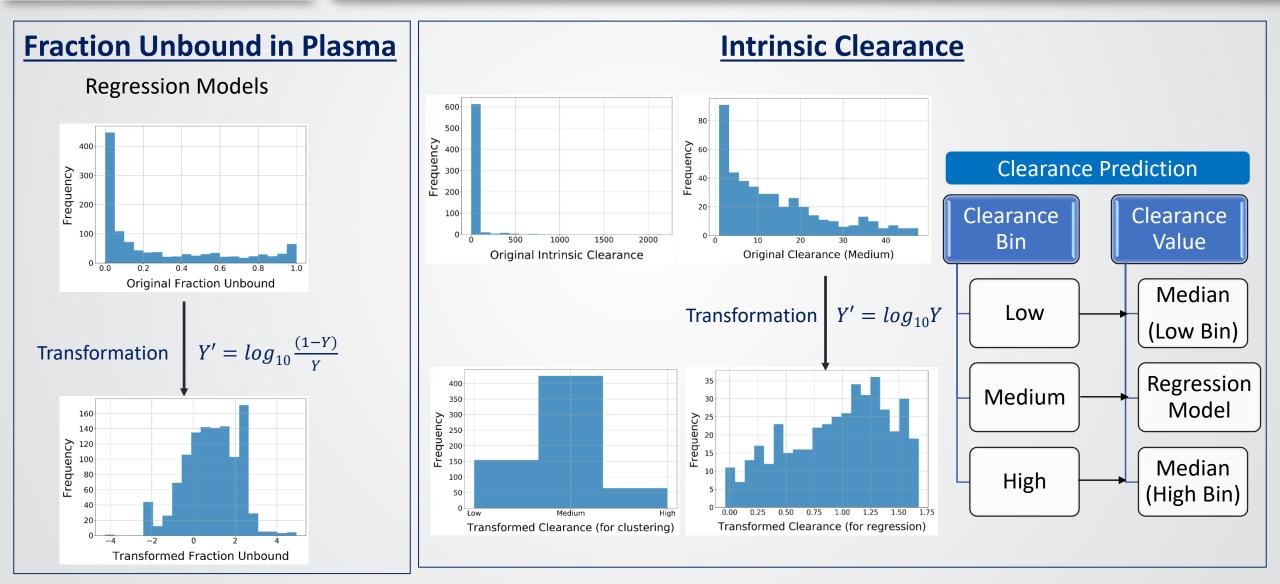
Pharmaceuticals, Food-use chemicals, Pesticides and Industrial chemicals

Chemical Structure

DSSTox Database

Fraction Unbound in Plasma

Number of Chemicals: 1139


Data Adjustment Fraction Unbound in Plasma = 0 set to 0.005 Fraction Unbound in Plasma = 1 set to 0.99

Intrinsic Clearance (uL/min/million cells)

Number of Chemicals: 642

Data Adjustment Low Clearance: Clearance ≤ 0.9 Medium Clearance: $0.9 \geq$ Clearance ≥ 50 High Clearance: Clearance ≥ 50

Data Transformation for Predictive Models

SEPA

Set EPA

QSAR Models : Fraction Unbound in Plasma

DESCRIPTORS USED (number)	MODEL	5-FOLD INTERNAL CROSS-VALIDATION				EXTERNAL VALIDATION			
(number)		MAE	RMSE	RMSE/σ	R ²	MAE	RMSE	RMSE/σ	R ²
	Lasso regression	0.80	1.03	0.81	0.34	0.7	0.91	0.73	0.47
	Support vector regression	0.74	0.95	0.75	0.44	0.62	0.87	0.70	0.51
Pubchem + ToxPrints (79)	Random Forest	0.75	0.97	0.76	0.42	0.65	0.89	0.71	0.49
	MLP Regression	0.76	0.98	0.78	0.40	0.68	0.89	0.72	0.48
	Consensus (SVM, RF)	0.74	0.95	0.75	0.44	0.63	0.87	0.70	0.51
Pubchem + ToxPrints (79) +	Lasso regression	0.68	0.90	0.72	0.48	0.69	0.89	0.68	0.54
MOE (3)	Support vector regression	0.62	0.84	0.67	0.55	0.66	0.86	0.66	0.57
	Random Forest	0.62	0.84	0.67	0.56	0.65	0.86	0.66	0.56
	MLP Regression	0.66	0.88	0.70	0.51	0.69	0.88	0.67	0.55
	Consensus (SVM, RF)	0.60	0.81	0.65	0.58	0.64	0.84	0.64	0.59
	Lasso regression	0.66	0.87	0.70	0.51	0.70	0.90	0.68	0.53
Pubchem + ToxPrints (79) + MOE (3) + PaDEL + CDK (10)	Support vector regression	0.59	0.82	0.65	0.57	0.64	0.84	0.64	0.59
	Random Forest	0.61	0.83	0.67	0.55	0.64	0.84	0.64	0.59
	MLP Regression	0.64	0.85	0.68	0.54	0.7	0.91	0.69	0.52
	Consensus (SVM, RF)	0.58	0.80	0.64	0.59	0.62	0.82	0.62	0.61

\$EPA

QSAR Models: Intrinsic Clearance (Classification)

DESCRIPTORS USED	MODEL		LD INTERNAL S-VALIDATION	EXTERNAL VALIDATION		
(number)	Accuracy F:		F1 score	Accuracy	F1 Score	
	Logistic regression	67.59	[0.00, 0.81, 0.00]	61.90	[0.00, 0.76, 0.00]	
Dubcham I Tay Drints (57)	Support vector classification	69.78	[0.21, 0.82, 0.08]	64.29	[0.11, 0.78, 0.14]	
Pubchem + ToxPrints (57)	Random Forest	69.38	[0.31, 0.81, 0.40]	64.29	[0.24, 0.77, 0.13]	
	MLP Classification	67.59	[0.00, 0.81, 0.00]	63.49	[0.15, 0.77, 0.00]	
	Logistic regression	71.17	[0.38, 0.82, 0.04]	66.67	[0.29, 0.79, 0.00]	
Pubchem + ToxPrints (57) +	Support vector classification	72.17	[0.43, 0.82, 0.11]	65.87	[0.31, 0.78, 0.14]	
MOE (3)	Random Forest	71.57	[0.41, 0.82, 0.38]	65.87	[0.37, 0.77, 0.13]	
	MLP Classification	68.79	[0.40, 0.80, 0.04]	61.11	[0.42, 0.73, 0.09]	
Pubchem + ToxPrints (57) + MOE (3) + PaDEL + CDK (10)	Logistic regression	70.78	[0.36, 0.82, 0.00]	65.87	[0.25, 0.78, 0.00]	
	Support vector classification	71.97	[0.39, 0.82, 0.18]	66.67	[0.29, 0.79, 0.14]	
	Random Forest	72.37	[0.42, 0.82, 0.41]	64.29	[0.28, 0.77, 0.13]	
	MLP Classification	70.78	[0.36, 0.82, 0.04]	61.11	[0.38, 0.73, 0.10]	

QSAR Models: Intrinsic Clearance (Regression)

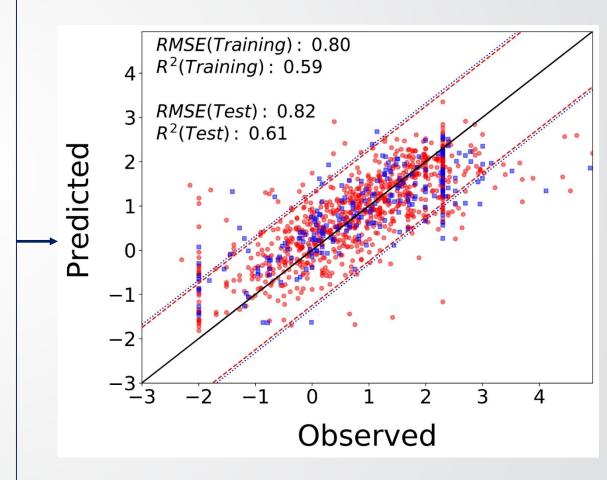
DESCRIPTORS USED	MODEL	5-FOLD INTERNAL CROSS-VALIDATION				EXTERNAL VALIDATION			
(number)		MAE	RMSE	RMSE/σ	R ²	MAE	RMSE	RMSE/σ	R ²
	Lasso regression	0.38	0.44	1.00	-0.01	0.41	0.48	1.00	0.00
	Support vector regression	0.37	0.44	0.99	0.02	0.38	0.46	0.96	0.08
Pubchem + ToxPrints (53)	Random Forest	0.37	0.45	1.01	-0.02	0.38	0.46	0.97	0.06
	MLP Regression	0.37	0.45	1.02	-0.04	0.40	0.48	1.00	0.00
	Consensus (SVM, RF)	0.37	0.44	0.99	0.02	0.38	0.46	0.96	0.09
	Lasso regression	0.37	0.44	0.98	0.03	0.39	0.47	0.98	0.04
	Support vector regression	0.36	0.43	0.97	0.06	0.37	0.45	0.94	0.12
Pubchem + ToxPrints (53) + MOE (3)	Random Forest	0.34	0.42	0.95	0.09	0.34	0.43	0.90	0.20
	MLP Regression	0.37	0.45	1.03	-0.06	0.39	0.48	1.00	0.00
	Consensus (SVM, RF)	0.35	0.42	0.94	0.11	0.36	0.44	0.92	0.15
	Lasso regression	0.37	0.43	0.98	0.05	0.39	0.47	0.98	0.05
Pubchem + ToxPrints (53) + MOE (3) + PaDEL + CDK (10)	Support vector regression	0.35	0.43	0.97	0.06	0.37	0.46	0.97	0.06
	Random Forest	0.34	0.42	0.94	0.12	0.34	0.43	0.90	0.20
	MLP Regression	0.37	0.48	1.08	-0.16	0.43	0.55	1.16	-0.34
	Consensus (SVM, RF)	0.35	0.42	0.94	0.11	0.37	0.45	0.94	0.12

SEPA

Final Model: Fraction Unbound in Plasma

Observed versus predicted fraction unbound (transformed scale) for 5-fold internal cross-validation (red dots) and external test set validation (blue squares).

Final Model


EPA

Consensus of Random Forest and Support Vector Machine

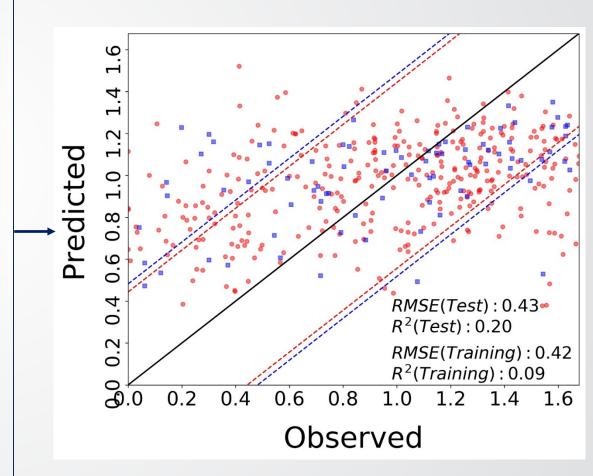
5-fold internal cross-validation RMSE = 0.80R² = 0.59External test set validation RMSE = 0.82R² = 0.61

Black solid line: Line of perfect fit, where the predicted values would equal the experimental values. **Red dashed lines:** Error margin of ± 1 standard deviation of the training dataset

Blue dotted lines: Error margin of ± 1 standard deviation of the test dataset.

Final Model: Intrinsic Clearance

Observed versus predicted medium intrinsic clearance (transformed scale) for 5-fold internal cross-validation (red dots) and external test set validation (blue squares)

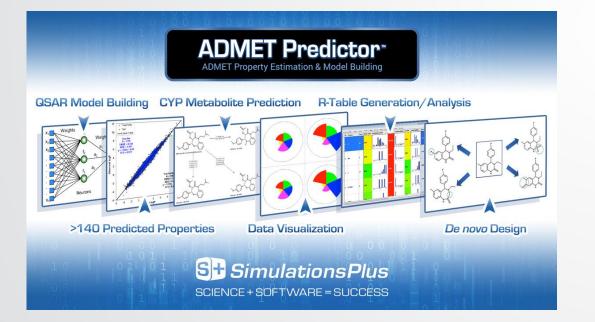

Final Model Random Forest

SEPA

5-fold internal cross-validation RMSE = 0.42R² = 0.09External test set validation RMSE = 0.43R² = 0.20

Black solid line: Line of perfect fit, where the predicted values would equal the experimental values. **Red dashed lines:** Error margin of ± 1 standard deviation of the training dataset

Blue dotted lines: Error margin of ± 1 standard deviation of the test dataset.



Comparison with ADMET Predictor

ADMET Predictor™ 7.2

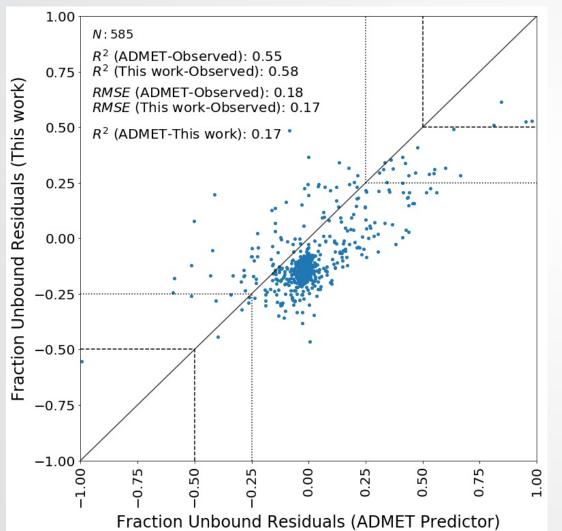
EPA

(Simulations Plus Inc., Lancaster, CA).

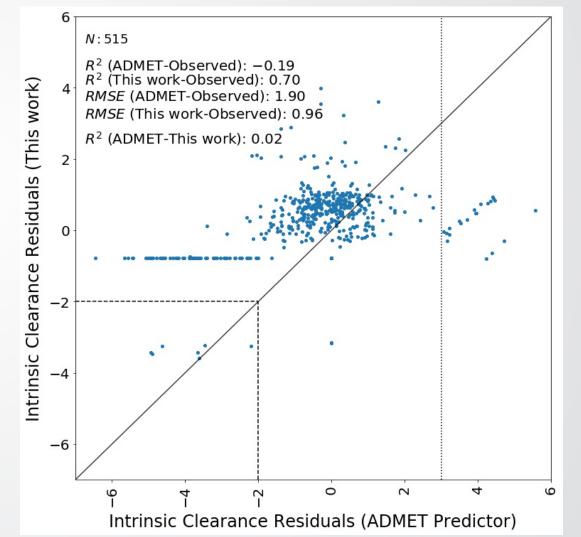
External dataset

1814 chemicals tested in a battery of Estrogen Receptor and Androgen Receptor assays (Kleinstreuer et al, 2017 and Judson et al, 2015)

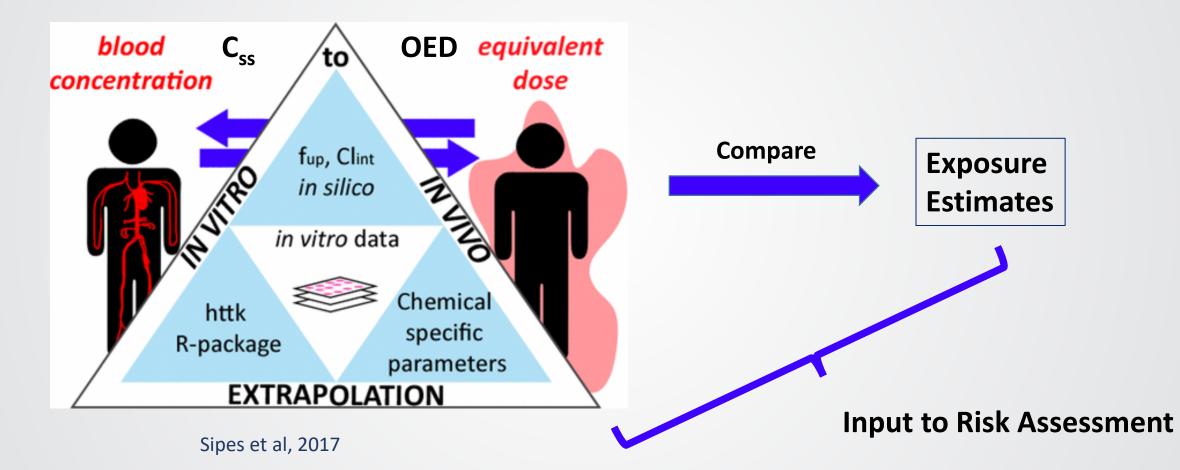
ADMET Predictions Sipes et al, 2017


Final Common Dataset

Fraction Unbound in Plasma: 585 chemicals Intrinsic Clearance: 515 chemicals


Residual Comparison Plot Residual = Experimental – Predicted **Comparison with ADMET Predictor**

Fraction Unbound in Plasma


EPA

Intrinsic Clearance

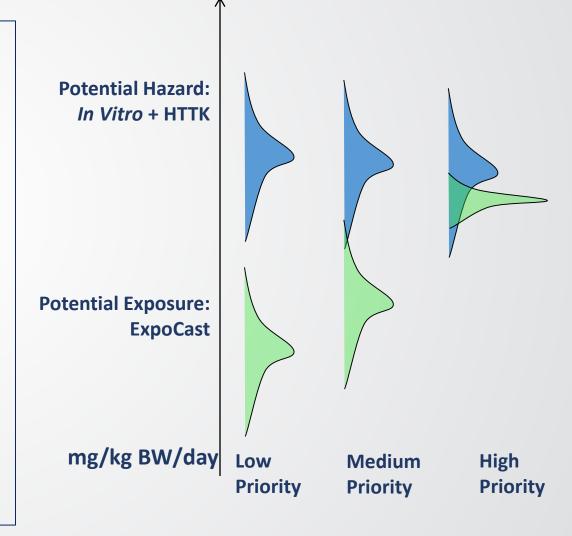
SEPA Background Context

f_{up}: Fraction Unbound in Plasma Clint: Intrinsic Clearance

Calculation of Human Oral Equivalent Doses (OEDs) and Comparison with Exposure Predictions

Calculation of OEDs

 $OED = \frac{Activating \ Concentration \ In \ Vitro \ (ACC)}{C_{ss}}$


where,

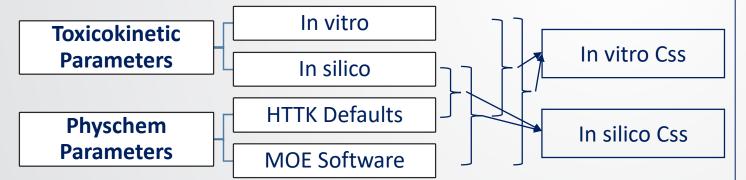
ACC is derived from data across 18 ER and 11 AR assays

3 estimates of OEDs

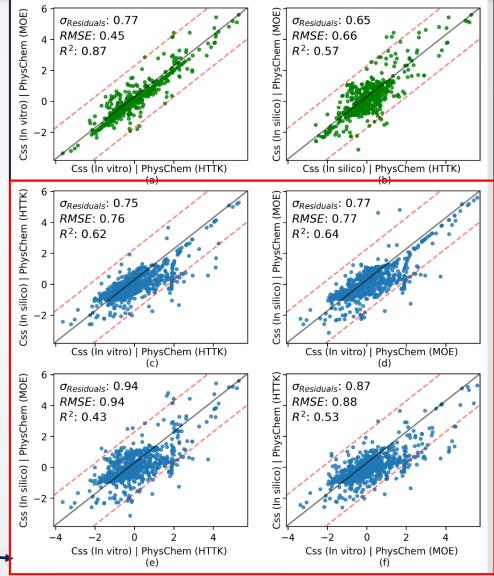
- 1. Conservative estimate of OED based on *in vitro* C_{ss}
- 2. Conservative estimate of OED based on in silico C_{ss}
- 3. Conservative estimate of OED based on variation in *in silico* C_{ss} due to physchem properties

Comparison with Exposure Predictions EPA's ExpoCast estimates

Figure Courtesy: Richard Judson

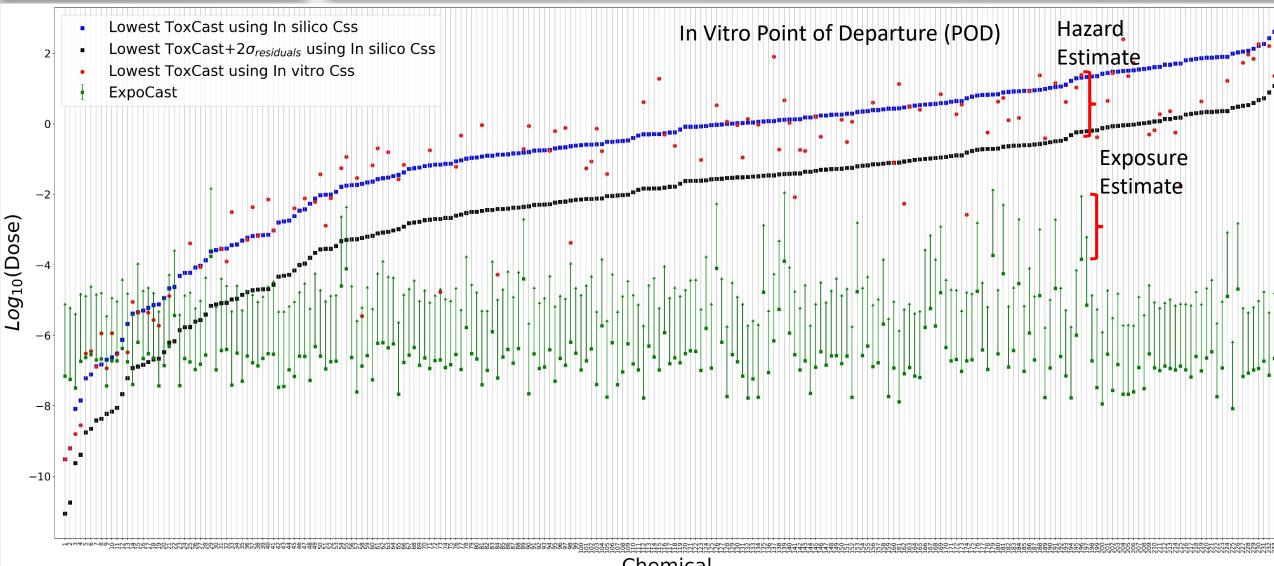

Prediction and Comparison of C_{ss}

C_{ss} is the steady-state concentration of a chemical in the plasma given a constant 1 mg/kg/day oral dose


Experimental In vitro C_{ss} Values: HTTK R Package (709 chemicals) **Predicted In Silico C**_{ss} Values; HTTK R Package

4 C_{ss} values were calculated

SPA



Effect of variability in physicochemical properties values on C_{ss} calculations. The C_{ss} units are \log_{10} mg/kg.

\$EPA

Bioactivity-exposure Ratio Plot (ER and AR Bioactivity)

- Unsupervised clustering analysis demonstrates that fraction unbound is structurally more predictable than intrinsic clearance
- A range of predictive models (Read-across and QSAR) were developed for fraction unbound in plasma and intrinsic clearance using a simple descriptor space and a rich chemical dataset
 - Fraction unbound: External test set RMSE = 0.82 and R² = 0.61
 - Intrinsic clearance (Classification): Accuracy = 65.87%
 - Intrinsic clearance (Regression): External test set RMSE = 0.43 and R² = 0.20
 - The models were benchmarked against commercially available ADMET software
- The model predictions were used to calculate steady-state plasma (C_{ss}) concentrations using an example dataset tested for ER and AR bioactivity
 - Variability in C_{ss} values due to variation in source of physicochemical properties was evaluated
- A range of conservative oral equivalent doses (OEDs) were calculated to allow for a conservative comparison with exposure predictions

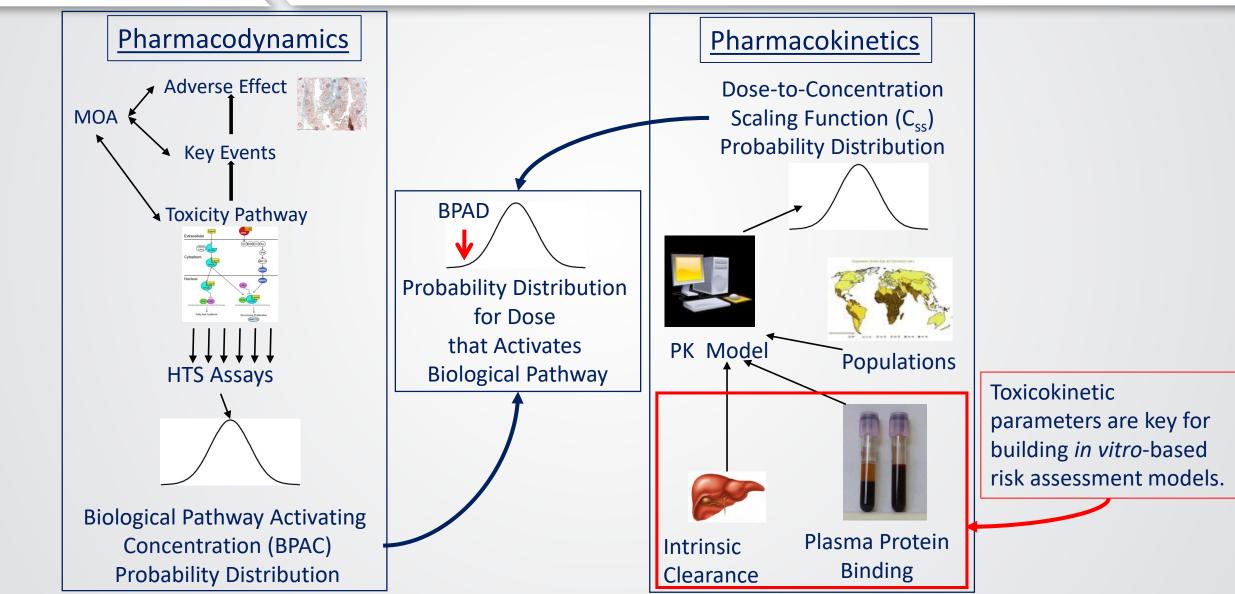
Overall, these models and the analysis presented in this work allow prioritization of data-poor chemicals using *in silico* predictions and in vitro to in vivo extrapolation (IVIVE) methods along with high-throughput exposure predictions to facilitate rapid risk-assessment.

SEPA Acknowledgements

<u>NCCT</u>

Grace Patlewicz Robert Pearce John Wambaugh Richard Judson

<u>NERL</u> Barbara Wetmore

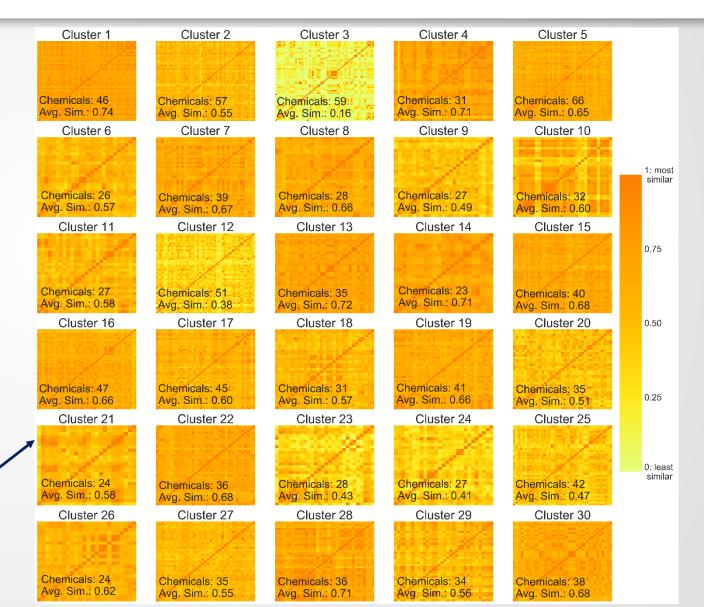

ORISE participant research program supported by an interagency agreement between the US EPA and DOE.

High Throughput Risk Assessment

Slide courtesy: Richard Judson

Unsupervised clustering analysis

Fraction Unbound in Plasma


€PA

Algorithm: Unsupervised *k*-means Fingerprints: ToxPrints and PubChem Number of Clusters (Elbow Method): 30 Similarity Metric: Jaccard/Tanimoto Coefficient

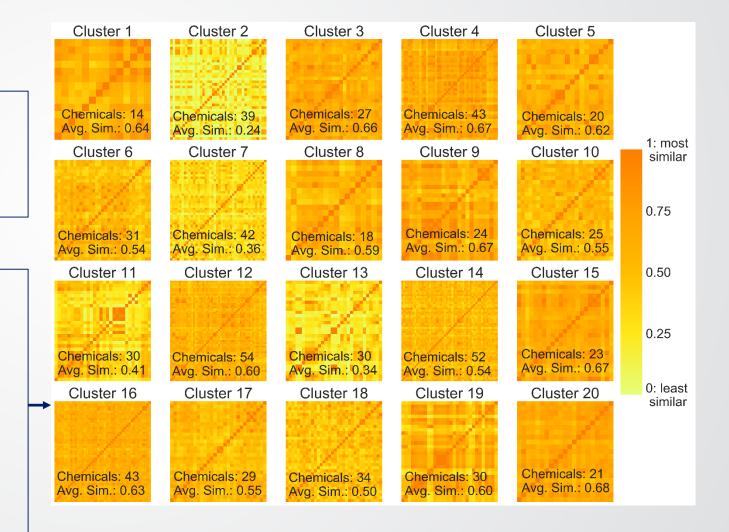
Heatmaps of chemical similarity within each cluster measured using Tanimoto similarity.

Each heatmap indicates the number of chemicals and the average similarity within that cluster.

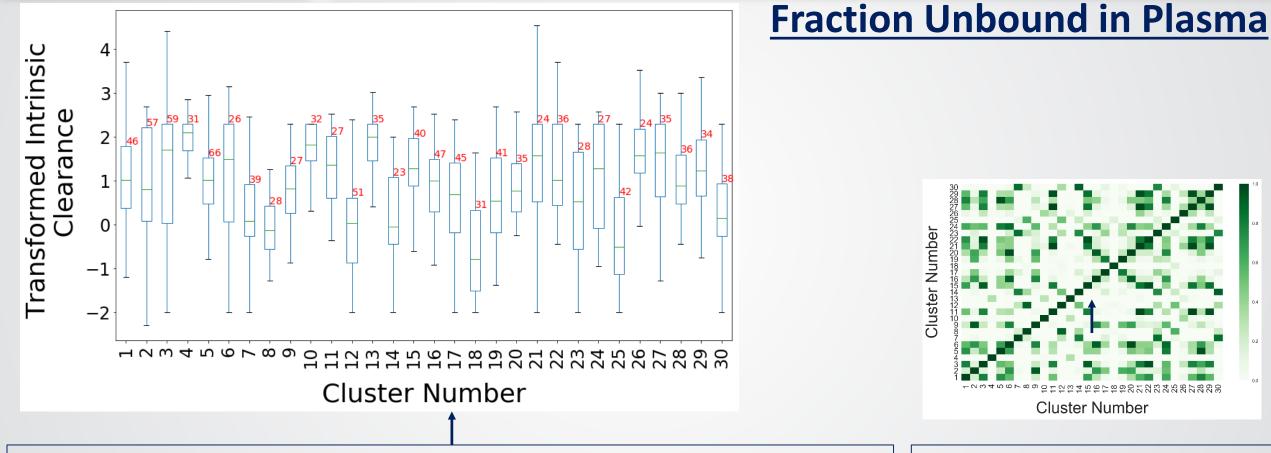
On the color-scale, darker orange means similar (Tanimoto coefficient = 1) whereas yellow means dissimilar (Tanimoto coefficient = 0).

Unsupervised clustering analysis

Intrinsic Clearance

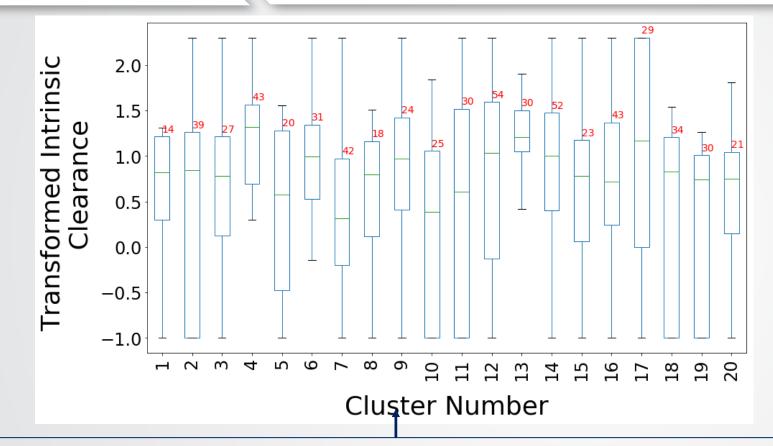

SEPA

Algorithm: Unsupervised *k*-means Fingerprints: ToxPrints and PubChem Number of Clusters (Elbow Method): 20 Similarity Metric: Jaccard/Tanimoto Coefficient

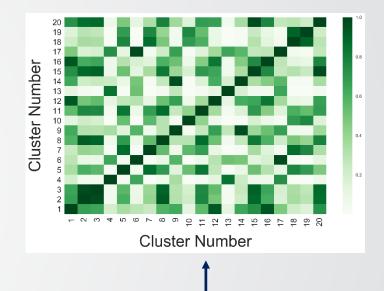

Heatmaps of chemical similarity within each cluster measured using Tanimoto similarity.

Each heatmap indicates the number of chemicals and the average similarity within that cluster.

On the color-scale, darker orange means similar (Tanimoto coefficient = 1) whereas yellow means dissimilar (Tanimoto coefficient = 0).


SEPA Unsupervised Clustering Analysis

- The less structurally similar cluster have wider ranges as compared to more structurally similar clusters.
- In general, most of the clusters demonstrate a correlation between the average structural similarity in a cluster and the range of values for the chemicals


Heatmap of p-values from T-tests to determine difference between parameter mean value across each cluster.

Unsupervised Clustering Analysis

SEPA

Intrinsic Clearance

Heatmap of p-values from T-tests to determine difference between parameter mean value across each cluster.

Darker green depicts higher pvalue implying lesser dissimilarity between parameter mean values for a pair of cluster.

- The range of clearance values across the most structurally similar cluster (cluster number 20) and the least structurally similar cluster (cluster number 2) seem to be very similar.
- In general, the clusters do not show a strong correlation between average cluster similarity and the range of clearance values.

Read-across Models: Fraction Unbound in Plasma

DESCRIPTORS USED	ANALOG SELECTION	MODEL		PERFORMANCE METRICS			
(number)	METHOD	PARAMETERS	COVERAGE	MAE	RMSE	RMSE/σ	
Similarity Threshol	Similarity Threshold	Threshold = 0.7	1110	0.76	1.00	0.79	
PubChem + Toxprints (49)	Count and Similarity Threshold	Count = 1, Threshold = 0.7	1110	0.83	1.15	0.91	
		Count = 2, Threshold = 0.7		0.77	1.04	0.83	
		Count = 3, Threshold = 0.7		0.75	1.01	0.80	
		Count = 4, Threshold = 0.7		0.75	1.01	0.80	
		Count = 5, Threshold = 0.7		0.75	1.01	0.80	

€PA

Read-across Models: Intrinsic Clearance

DESCRIPTORS USED (number)	ANALOG SELECTION METHOD	MODEL PARAMETERS	COVERAGE	PERFORMANCE METRICS			
(number)		PARAIVIETERS			Classification		
				Accuracy	F1 score		
	Similarity Threshold	Threshold = 0.7	629	629 64.39 [0.35, 0.7			
		Count = 1, Threshold = 0.7		58.90	[0.36, 0.71, 0.30]		
DubCham L Toynrints (40)		Count = 2, Threshold = 0.7		52.65	[0.39, 0.63, 0.32]		
PubChem + Toxprints (49)	Count and Similarity Threshold	Count = 3, Threshold = 0.7	629	61.36	[0.38, 0.73, 0.28]		
		Count = 4, Threshold = 0.7		59.09	[0.38, 0.71, 0.24]		
		Count = 5, Threshold = 0.7		64.58	[0.39, 0.76, 0.28]		
				Regression (Medium Clearance)			
				MAE	RMSE	RMSE/σ	
	Similarity Threshold	Threshold = 0.7	418	0.40	0.51	1.13	
	Count and Similarity Threshold	Count = 1, Threshold = 0.7	418	0.47	0.60	1.34	
PubChem + Toxprints (49)		Count = 2, Threshold = 0.7		0.42	0.54	1.20	
		Count = 3, Threshold = 0.7		0.41	0.52	1.17	
		Count = 4, Threshold = 0.7		0.41	0.51	1.14	
		Count = 5, Threshold = 0.7		0.41	0.51	1.13	