

Evaluation of the Chemotype-Enrichment Workflow: A tool for independent evaluation of biological activity thresholds and a comparison with QSAR methods

<u>Coauthors:</u> Ann Richard Christopher Grulke Antony Williams

The views expressed in this presentation are those of the presenter and do not necessarily reflect the views or policies of the U.S. EPA

Chemotyper / Toxprints

Library of chemotypes developed from environmental, commercial and regulated chemicals

TOXICITY DATA & RISK ASSESSMENT:

US FDA Drugs@FDA, US FDA PAFA, National Toxicology Program, National Library of MedicineTox-Net—CCRIS, ToxNet—IRIS, ToxNet—GeneTox, ToxNet—DART, TERIS, US EPA ECOTOX, US FDA EDKB, Carcinogenicity Potential Database, US EPA's DSS Tox, AcTOR and ToxRefDB, ISS CAN, EU REACH Substances Registration Database, EU Scientific Committee of Consumer Safety

CHEMICAL INVENTORIES:

US EPA TSCA Chemical Substance Inventory, US EPA Pesticide Inert list, Pesticide PAN, Tox 21 inventory, Canadian Domestic Substance List, EU COSING database

CHEMICAL STRUCTURES:

ChemID Plus, ChemSpider, DSSTox, and US FDA CFSAN CERES

Computational Toxicology

Why is Toxcast important?

There is a backlog of tens of thousands of consumer chemicals with insufficient data on adverse health effects

> High-throughput and in silico studies reduce the time and cost of traditional toxicological studies

National Center for Computational Toxicology Toxcast models can be useful for prioritizing chemicals and predicting potential human health risks

What is the Problem?

Diverse chemistry, complex biology, weak signals or promiscuous activities, assay artifacts \rightarrow difficult to model

Global QSAR & Machine Learning approaches are considered by some to be a "black box"

> Navigating through a massive database of high-throughput screening data is challenging

How can we bridge these gaps?

Baseline Hitcalls

ASSAY	: AEID2	(CTox_CO)	RT_dn)						
NAME: CHID: SPID(S M4ID:	Norge 568 5): 01141 686	strel CASRN: 142A	797-63	3-7	0				
HILL N	MODEL (in	red):							
	tp	ga	gw						
val:	1.2	0.47	2.55						
sd:	0.267	0.343	3.18						
GAIN-LOSS MODEL (in blue):									
	tp	ga	gw		la	lw			
val:	1.58	0.644	1.91		1.92	13.6			
sd:	NaN	NaN	NaN		NaN	NaN			
	(1)(0)			CDU		_			
170	CNST	HILL		GNL					
AIC:	34.63	25.34		7.0	17				
PROB:	0	0		1					
RMSE:	0.9	0.51		0.2					
MAX_MI	EAN: 1.56	MAX	MED:	1.56	5	BMAD: 0.164			

BURST Filtered Hitcalls Explanation

Enriched Chemotypes Baseline vs Burst Overview

Enriched Chemotypes Burst vs Baseline Overview

479	474	338	340	264	445	141	324	5	444
	с_ _с	* ¦ Sn	C ¦ Sn	сс ~с с	(c−c),	°`c=c´	* 	М	<i>وبلەر تەرىخە بەر بەر بەر بەر بەر بەر بەر بەر بەر بە</i>

445	443	30	488	6	442	269	326	342	392
(c-c) *	_ح حر کر	N _C I S		?	<i>ݮ</i> ݚݲݚݲݛݲݛݲݛ	R – P – R R	0 M	O I Sn	* Hg

Bisphenyl Scaffold Chemotypes Overview

Metal/Tin Chemotypes Overview

- Fungicides
- Stablizers in plastics
- Moluscicides
- Miticides
- Acute toxicity
- Thymolytic
- Immunotoxic

Computational Toxicology

Quaternary N Acyclic Chemotypes Overview

Computational Toxicology

Cell-Based vs Biochemical Assays

22

<u>Cell-Based</u> Assay Chemotypes

Baseline top 20

Burst top 20

Biochemical Assay Chemotypes

Baseline top 20

Burst top 20

Enriched Chemotypes Baseline vs Burst Overview

What if we look at combinations?

Two CLIs have been created in order to look at combinations of Toxprints

\$ Toxprint_Combination_Generator

\$ Special_Toxprints -f

Looks at all pairwise combinations

Generates Fingerprints for specific combinations of Toxprints

While these methods work well and have their uses, there is a better way

XGBoost can show us potential significant combinations

Why use XGBoost?

- Allows for highly imbalanced datasets (like many of ours)
- Regression and Classification Model
- Reproducible (Can reproduce Models from a random seed)
- Understandable (Can visualize the full decision tree)
- High Performance (XGBoost wins many Kaggle competitions)
- Warm-Start

Can we use CTEW results to inform our XGB model construction?

Concluding Remarks

- Chemotype-Enrichment workflow useful for evaluating biological activity thresholds on a chemical level
- CTEW used to evaluate QSAR models and assist with examining combinations of fingerprints/features
- Approach completely general, can be applied to any binary "activity" dataset (e.g., in vivo or in vitro bioassays, functional use categories, etc)
- Elements of workflow are being integrated into the publicly available USEPA Comptox Chemicals Dashboard
- CTEW shows great promise for elucidating chemical signals across assay space and supporting Comptox research

Acknowledgments

- Ann Richard
- Chris Grulke
- Antony Williams
- NCCT Staff
- NCCT dev team

You can currently get Toxprints from the dashboard

https://comptox.epa.gov/dashboard/dsstoxdb/batch search

Thanks to Molecular Networks for providing Toxprint Generation Code and Images!

Computational Toxicology

Intended Target Family Nuclear Receptor

Baseline top 20

Burst top 20

Intended Target Family Steroid Hormone

Baseline top 20

Burst top 20

XGBoost Parameter Tuning

- Parameter tuning is typically done with grid-search (exhaustive)
- Instead we can use previous parameters as priors using bayesian inference
- Greatly reduce computation time
- Improved performance

Cytotoxicity QSAR model XGBoost

Accuracy: 0.733

Cytotoxicity Assay: BSK_BE3C_SRB_down

Computational Toxicology

Cytotoxicity QSAR model XGBoost

Cytotoxicity Assay: TOX21_GR_BLA_Antagonist_viability

NIS Activation Assay *Exploring activity within CT domain*

? (halogen) = F, CI, I

- > What distinguishes inactives in CT-subspace?
- What distinguishes the multiscreen Hit2 actives (HC2) from the single screen Hit1 (HC1) actives?