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EPA Office of Research and 
Development

ORD Facility in
Research Triangle Park, NC

• The Office of Research and Development (ORD) is 
the scientific research arm of EPA
• 562 peer-reviewed journal articles in 2018

• Research is conducted by ORD’s three national 
laboratories, four national centers, and two offices 
organized to address:
• Hazard, exposure, risk assessment, and risk 

management

• 13 facilities across the United States
• Largest facility in Research Triangle Park

• Research conducted by a combination of Federal 
scientists (including uniformed members of the 
Public Health Service); contract researchers; 
and postdoctoral, graduate student, and post-
baccalaureate trainees
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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 
chemical signatures in pooled human 
blood samples, many appear to be 
exogenous

• A tapestry of laws covers the 
chemicals people are exposed to in 
the United States (Breyer, 2009)

• Different testing requirements exist 
for food additives, pharmaceuticals, 
and pesticide active ingredients   
(NRC, 2007)

November 29, 2014
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Chemical Regulation in the United States

• Most other chemicals, ranging from 
industrial waste to dyes to packing materials, 
are covered by the Toxic Substances Control 
Act (TSCA)

• Thousands of chemicals on the market 
were either “grandfathered” or were 
allowed without experimental assessment 
of hazard, toxicokinetics, or exposure 
(Judson et al. (2009), Egeghy et al. (2012), 
Wetmore et al. (2015))

“Tens of thousands of chemicals are listed with the 
Environmental Protection Agency (EPA) for 

commercial use in the United States, with an 
average of 600 new chemicals listed each year.” 

U.S. Government Accountability Office

March, 2013
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Chemical Regulation in the United States

• TSCA was updated in June, 2016 to 
allow more rapid evaluation of 
chemicals (Frank R. Lautenberg 
Chemical Safety for the 21st Century 
Act)

• New approach methodologies 
(NAMs) are being considered to 
inform prioritization of chemicals for 
testing and evaluation

• “Strategic Plan to Promote the 
Development and Implementation of 
Alternative Test Methods Within the 
TSCA Program” (June 22, 2018)

June 22, 2016
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• To address thousands of chemicals, we need to use 
“high throughput methods” to prioritize chemicals 
for additional study

Chemical Risk = Hazard x Exposure

Exposure

Hazard

Chemical Risk 
to 

Public Health

Dose-Response
(Toxicokinetics)

• High throughput risk prioritization needs:
1. high throughput hazard 

characterization 
2. high throughput exposure forecasts
3. high throughput toxicokinetics      

(i.e., dosimetry) linking hazard         
and exposure

• National Research Council (1983) identified chemical risk as a function of both 
inherent hazard and exposure
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High-Throughput Risk Prioritization

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening (HTS) for 
in vitro bioactivity 
potentially allows 
characterization of 
thousands of 
chemicals for which 
no other testing has 
occurred
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High-throughput Screening

Kaewkhaw et al. (2016)

Hertzberg and Pope (2000):
• “New technologies in high-throughput screening have significantly increased 

throughput and reduced assay volumes”

• “Key advances over the past few years include new fluorescence methods, 
detection platforms and liquid-handling technologies.”
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Toxicity Testing 
in the 21st Century

https://comptox.epa.gov/dashboard/

 Tox21:  Examining 
>8,000 chemicals 
using ~50 assays 
intended to 
identify 
interactions with 
biological pathways 
(Schmidt, 2009)

 ToxCast: For a 
subset (>2000) of 
Tox21 chemicals 
ran >1100 
additional assays 
(Kavlock et al., 2012)
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Toxicity Testing 
in the 21st Century

https://comptox.epa.gov/dashboard/

 Tox21:  Examining 
>8,000 chemicals 
using ~50 assays 
intended to 
identify 
interactions with 
biological pathways 
(Schmidt, 2009)

 ToxCast: For a 
subset (>2000) of 
Tox21 chemicals 
ran >1100 
additional assays 
(Kavlock et al., 2012)

Can also download data as Excel, MySQL, CSV…
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New Approach 
Methodologies

• New approach 
methodologies (NAMs) 
are being considered to 
inform prioritization of 
chemicals for testing 
and evaluation 
(Kavlock et al., 2018)

• In vivo uterotrophic
assay has been replaced 
with in vitro assays to 
screen chemical for 
endocrine disruption 
(EPA, 2015)

Browne et al. (2015)

• EPA has released a “A Working Approach for Identifying 
Potential Candidate Chemicals for Prioritization” (EPA, 2018)
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High Throughput Toxicokinetics 
(HTTK)

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

Toxicokinetics (TK) 
describes the Absorption, 
Distribution, Metabolism, 
and Excretion (ADME) of a 
chemical by the body

TK relates external 
exposures to internal 
tissue concentrations of 
chemical
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Figure modified from original by Barbara Wetmore

High-Throughput Toxicokinetics (HTTK)

Intrinsic Hepatic 
Clearance (Clint)

Human 
Hepatocytes

(10 donor pool)

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted 
from pharma to fill gaps 

• In drug development, HTTK methods estimate therapeutic doses for clinical studies 
– predicted concentrations are often within 3-fold of clinical trials (Wang, 2010)
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Figure modified from original by Barbara Wetmore

High-Throughput Toxicokinetics (HTTK)

Intrinsic Hepatic 
Clearance (Clint)

Free fraction in 
Plasma (fup)

Human 
Hepatocytes

(10 donor pool)

Human
Plasma

(6 donor pool)

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted 
from pharma to fill gaps 

• In drug development, HTTK methods estimate therapeutic doses for clinical studies 
– predicted concentrations are often within 3-fold of clinical trials (Wang, 2010)
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Figure modified from original by Barbara Wetmore

High-Throughput Toxicokinetics (HTTK)
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• Most chemicals do not have TK data – we use in vitro HTTK methods adapted 
from pharma to fill gaps 

• In drug development, HTTK methods estimate therapeutic doses for clinical studies 
– predicted concentrations are often within 3-fold of clinical trials (Wang, 2010)
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Figure modified from original by Barbara Wetmore

High-Throughput Toxicokinetics (HTTK)
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analysis methods 
for concentration

• Most chemicals do not have TK data – we use in vitro HTTK methods adapted 
from pharma to fill gaps 

• In drug development, HTTK methods estimate therapeutic doses for clinical studies 
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Figure modified from original by Barbara Wetmore

Rotroff et al. (2010) 35 chemicals
Wetmore et al. (2012) +204
Wetmore et al. (2015) +163
Wambaugh et al. (in prep) + 496

High-Throughput Toxicokinetics (HTTK)
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• Most chemicals do not have TK data – we use in vitro HTTK methods adapted 
from pharma to fill gaps 

• In drug development, HTTK methods estimate therapeutic doses for clinical studies 
– predicted concentrations are often within 3-fold of clinical trials (Wang, 2010)
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Building Confidence in HTTK: 
The Need for Data

19

Sayre et al. (in preparation)

 EPA is developing a public database of 
concentration vs. time data for building, 
calibrating, and evaluating TK models

 Curation and development ongoing, but to 
date includes:
• 198 analytes (EPA, National Toxicology 

Program, literature)
• Routes: Intravenous, dermal, oral, sub-

cutaneous, and inhalation exposure

 Database will be made available through web 
interface and through the “httk” R package

 Standardized, open source curve fitting software invivoPKfit used to calibrate models to all 
data:   https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Evaluating HTTK

20

100% Bioavailability Assumed
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Evaluating HTTK

21
Honda et al. (in preparation)

In Vivo Measured Bioavailability Used100% Bioavailability Assumed

Here, we find that need to predict oral absorption
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Chemicals Monitored by CDC NHANES

ToxCast + HTTK can estimate doses 
needed to cause bioactivity

High Throughput Risk Prioritization

Potential 
Exposure 

Rate

mg/kg BW/day

Potential 
Hazard 

from in vitro
with 

Reverse 
Toxicokineti

cs

Lower
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Risk

Higher
Risk

Ring et al. (2017)

Exposure intake rates  
can be Inferred from 
biomarkers
(Wambaugh et al., 2014)
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National Health and Nutrition Examination Survey (NHANES) is 
an ongoing survey that covers ~10,000 people every two years



Office of Research and Development23 of 58

Life-stage and Demographic Specific 
Predictions

• Can calculate 
margin between 
bioactivity and 
exposure for 
specific 
populations

Change in Activity:Exposure Ratio

Ring et al. (2017)

Change in Risk Relative to 
Total Population
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January 5, 2017

“Translation of high-throughput data into 
risk-based rankings is an important 
application of exposure data for chemical 
priority-setting. Recent advances in high-
throughput toxicity assessment, notably the 
ToxCast and Tox21 programs… and in high-
throughput computational exposure 
assessment… have enabled first-tier risk-
based rankings of chemicals on the basis of 
margins of exposure…”

“…The committee sees the potential for the 
application of computational exposure 
science to be highly valuable and credible for 
comparison and priority-setting among 
chemicals in a risk-based context.”

Risk Assessment in the 21st Century
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Can we use models to generate the exposure 
information we need?

Limited Available Data for 
Exposure Estimation

Most chemicals lack public exposure-related data beyond production volume (Egeghy et al., 2012)
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + HTTK-
based in vitro-in vivo
extrapolation (IVIVE) 
can predict a dose 
(mg/kg bw/day) that 
might be adverse

High throughput 
models exist to make 

predictions of 
exposure via specific, 
important pathways 

such as residential 
product use, diet, and 

environmental fate 
and transport

Need methods to forecast 
exposure for thousands of 

chemicals (Wetmore et al., 2015)
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What Do We Know About Exposure?
Exposure Models

• Human chemical exposures can be coarsely grouped into “near-field” sources that are 
close to the exposed individual (consumer or occupational exposures) ‘far-field’ 
scenarios wherein individuals are exposed to chemicals that were released or used far 
away (ambient exposure) (Arnot et al., 2006). 

• A model captures knowledge and a hypothesis of how the world works (MacLeod et al., 
2010)

• EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from 
within government, industry, academia, and the general public with assessing exposure
• Includes many, many models

https://www.epa.gov/expobox

“Now it would be very remarkable if any system existing in the real world 
could be exactly represented by any simple model. However, cunningly 

chosen parsimonious models often do provide remarkably useful 
approximations… The only question of interest is ‘Is the model illuminating 

and useful?’” George Box

https://www.epa.gov/expobox
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Forecasting Exposure is a 
Systems Problem

Indoor Air, Dust, Surfaces
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Figure from Kristin Isaacs
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Source-based Exposure 
Pathways

Indoor Air, Dust, Surfaces
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Figure from Kristin Isaacs
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Near-Field
Direct

Near-Field 
Indirect Dietary Far-Field

EXPOSURE 
PATHWAY

(MEDIA + RECEPTOR)
Ecological

Figure modified from original by Kristin Isaacs

The Exposure Event is Often 
Unobservable

• The exposure pathway is the actual interaction of the receptor and media, e.g. consuming 
potato chips

• For humans in particular, these events are often unobserved and for many reasons 
(including ethics and privacy) may remain unobservable

• Did you eat the serving size or the whole bag of potato chips?

• Either predict exposure using data and models up-stream of the exposure event

• Or infer exposure pathways from down-stream data, especially biomarkers of exposure 
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Models to Predict Exposure
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Monitoring Data
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Monitoring Data

Centers for Disease Control and Prevention (CDC) National Health and 
Nutrition Examination Survey (NHANES) provides an important tool for 
monitoring public health

Large, ongoing CDC survey of US population: demographic, body measures, 
medical exam, biomonitoring (health and exposure), …

Designed to be representative of US population according to census data

Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine

http://www.cdc.gov/nchs/nhanes/nhanes_questionnaires.htm
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Models to Infer Exposure
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How do we untangle such a complex web?
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The Six Degrees of Kevin Bacon
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Kevin Bacon

Toxicokinetics

1984

1995

1992

1978
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Kevin Bacon

Toxicokinetics

1984
1990
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Michael B. Jordan

Toxicokinetics
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Connectedness to Michael B. Jordan

Frances McDormand 
Best Actress Winner 2018

Creed
Stallone & Jordan

Expendables 
Willis & 

Sylvester Stallone

Hail Caesar
McDormand &

Channing Tatum

GI Joe: Retaliation
Tatum & Bruce Willis
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Connectedness to Michael B. Jordan

Marlon Brando
Best Actor 1954 and 1972
Died 2004

Black Panther
Boseman & JordanAvengers: 

Infinity War 
Paltrow & 
Chadwick 
Boseman

Superman
with Gene Hackman

The Royal Tenenbaums
Hackman & Gwyneth Paltrow
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Small World Networks

Watts and Strogatz (1998) Collins and Chow (1998)
Travers and 

Milgram (1977):

296 arbitrary 
individuals in 
Nebraska and 
Boston were 

asked to give a 
letter to an 

acquaintance 
most likely to 
help it reach a 

target person in 
Massachusetts. 
64 reached the 
target person, 

average number 
of intermediaries 

was 5.2
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Complex is Not the Same as 
Random

Watts and Strogatz (1998)
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Human enterprises often give rise to 
“small world” networks.
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The Internet (Circa 2005)

https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg

The Internet itself is a small world network, and it connects many others
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Consensus Exposure Predictions 
with the SEEM Framework

• We incorporate multiple models into consensus predictions for 1000s of chemicals within 
the Systematic Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

• Each chemical with measured intake rate provides an additional evaluation of exposure 
model predictions 

• Evaluation is similar to a sensitivity analysis: What models are working? What data are 
most needed? 

Integrating Multiple Models
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R2 ≈ 0.5

SEEM Analysis (circa 2014)

Wambaugh et al, 2014

Office of Research and Development

Each point is a different chemical
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Wambaugh et al. (2014)

• Five descriptors explain 
roughly 50% of the 
chemical-to-chemical 
variability in median 
NHANES exposure rates

• Same five predictors work 
for all NHANES 
demographic groups 
analyzed – stratified by 
age, sex, and body-mass 
index

• Chemical use identifies 
relevant pathways

• Some pathways have much 
higher average exposures 
(Wallace et al., 1987)

Heuristics of Exposure
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CPCPdb: Material Safety Data 
Sheets

XXXXXX
XXXXXXXXXX
XXXXXXXXXX

XXX

XXXXXXXXXX
XXXXXXXXXX

X
X
X

Goldsmith et al. (2014):
• ~20,000 

product-
specific 
Material 
Safety Data 
Sheets (MSDS) 
curated

• ~2,400 
chemicals

Product-specific 
uses determined 
using web spider 
to click through 
categories (e.g., 
home goods, bath 
soaps, baby) to 
find each product
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What Do We Know About Chemical Use? 
Chemicals and Products Database

Slide from Kristin Isaacs

Broad “index” of chemical uses

MSDS 
Data

Measured 
Data

Ingredient 
Lists 

CPCat

Occurrence data

Occurrence and 
quantitative chemical 
composition

Measurement of chemicals in 
consumer products

CPDat
Functional 
Use Data

The roles that 
chemicals serve 
in products

https://comptox.epa.gov/dashboard
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Predicting Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat (Food, 

Food Additive, Food Contact), 
NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 27 25 73 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 20 36 80 REDs, Swiss Pesticides, Stockholm 
Convention, CPDat (Pesticide), 
NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 17 81 CDR HPV, USGS Water 
Occurrence, NORNAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al. (2019)
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Chemical Structure 
and Property 
Descriptors

humectant lubricating 
agent

perfumer pH 
stabilizeroxidizer

heat 
stabilizer

photo-
initiator

masking 
agenthair dye

organic 
pigment

flavorantflame 
retardant
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forming 
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modifier

skin 
protectant

skin condi-
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soluble 
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for rubber
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for liquid 
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controlling 
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vinylUV 
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pre-
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oral care

hair condi-
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emulsion 
stabilizer

buffer

additive

Pathway Prediction is Similar to Methods for 
Predicting Chemical Function From Structure

Machine Learning Based Classification Models
(Random Forest, Breiman, 2001)

Prediction of
Of Potential 

Alternatives from 
Chemical Libraries

Phillips et al. (2017)

Use Database (FUSE)
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Shin, Katherine A. Phillips, Paul S. Price, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny WestgateRing et al., 2019

Collaboration on High Throughput 
Exposure Predictions

Predictor Reference
Chemicals
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field 
Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents (REDs) 
Exposure Assessments (Through 2015)

Wetmore et al. (2012, 
2015)

239 Far-Field 
Pesticide

Food Contact Substance Migration Model (2017) Biryol et al. (2017) 940 Dietary

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. 
(2008)

8167 Far-Field 
Industrial

USEtox Pesticide Scenario (2.0)48USEtox Pesticide 
Scenario (2.0)

Fantke et al. (2011, 2012, 
2016)

8167 Far-Field 
Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) Far-
Field (2.95)

Arnot et al. (2008) 7511 Far-Field 
Industrial and 
Pesticide

EPA Stochastic Human Exposure Dose Simulator High-
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017)
1119

Consumer  
(Near-Field)

SHEDS-HT Near-field Indirect (2017) Isaacs (2017)
645 Consumer

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin 
et al. (2012) 1221 Consumer

RAIDAR-ICE Near-Field (0.804) Arnot et al., (2014), Zhang 
et al. (2014) 615 Consumer

USEtox Consumer Scenario (2.0) Jolliet et al. (2015), Huang 
et al. (2016,2017) 8167 Consumer

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang 
et al. (2016), Ernstoff et al. 
(2017) 8167 Dietary
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Pathway-Based Consensus 
Modeling of NHANES

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine

Co
ns

en
su

s M
od

el
 P
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di
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Each point is a different chemical

• Exposure predictors (data 
and models) have been 
grouped 
into four pathways 
(residential, dietary, 
pesticidal, and industrial) 

• New machine learning 
tools match chemicals to 
exposure pathways and 
calibrated exposure 
models 

• Multivariate 
regression using human 
intake rates inferred for 
114 chemicals provides 
calibration and evaluation

Ring et al., 2019
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Consensus Modeling of Median 
Chemical Intake 

• Exposure predictors (data 
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grouped 
into four pathways 
(residential, dietary, 
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• New machine learning 
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exposure pathways and 
calibrated exposure 
models 

• Multivariate 
regression using human 
intake rates inferred for 
114 chemicals provides 
calibration and evaluation
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Consensus Modeling of Median 
Chemical Intake 

• Exposure predictors (data 
and models) have been 
grouped 
into four pathways 
(residential, dietary, 
pesticidal, and industrial) 

• New machine learning 
tools match chemicals to 
exposure pathways and 
calibrated exposure 
models 

• Multivariate 
regression using human 
intake rates inferred for 
114 chemicals provides 
calibration and evaluation

Each point is a 
different chemical

Ring et al., 2019Office of Research and Development
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Exposure-Based Priority Setting

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization
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Conclusions

• We would like to know more about the risk posed by thousands of chemicals in the 
environment – which ones should we start with?

• High throughput screening (HTS) provides one path forward for identifying 
potential hazard, but the real world is complicated by toxicokinetics, mixtures, 
variability (and more)

• Using in vitro methods developed for pharmaceuticals, we can make useful 
predictions of TK for large numbers of chemicals

• Exposure predictions and data are key to risk-based prioritization
• Consensus modeling provides one path forward, but only as good as available 

data (at best)
• New analytical chemistry tools (i.e., non-targeted analysis or NTA) may provide 

the data needed to understand what and how we are exposed to

• Exposure-based priority setting allows identification of the most relevant mixtures
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“I’m searching for my keys.”

 Not everything is required to have MSDS sheets

 Models present one way forward, but data is 
always preferable

 New analytic techniques may also allow insight 
in to the chemical composition of diverse 
environmental media including household 
products

 100 household products from a major U.S. 
retailer were analyzed, tentatively identifying 
1,632 chemicals, 1,445 which were not in EPA’s 
database of consumer product chemicals 
(Phillips et al., ES&T just accepted)

Obtaining New Data with Non-
Targeted and Suspect-Screening 

Analysis
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Measuring Chemicals in Household Items

Log10(µg/g)

The chemicals 
found in a 
cotton shirt

Phillips et al. (ES&T just accepted)
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Measuring Chemicals in Household Items

Chemicals that are present

Chemicals that are absent (but found in other products)

Phillips et al. (ES&T just accepted)

Log10(µg/g)



Office of Research and Development64 of 58

Measuring Chemicals in Household Items

The chemicals 
found in a 
cotton shirt

Phillips et al. (ES&T just accepted)

Log10(µg/g)
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Product Scan Summary
Of 1,632 chemicals confirmed or tentatively identified, 1,445 were 
not present in CPCPdb (Goldsmith, et al., 2015)

Phillips et al. (ES&T just accepted)
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Predicting Chemical Function

Using the methods of Phillips et al., (2017):

Phillips et al. (ES&T just accepted)
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