

High-throughput transcriptomic (HTTr) screening at USEPA: Quality Control, Plate Effects and Concentration-Response Modeling

Joshua A. Harrill, USEPA National Center for Computational Toxicology (NCCT)

EUToxRisk-Tox21 Satellite Meeting SOT Annual Meeting, Baltimore, MD March 12th, 2019

Office of Research and Development

Disclaimer

The views expressed in this presentation are those of the author(s) and do not necessarily represent the views or policies of the U.S. Environmental Protection Agency, nor does mention of trade names or products represent endorsement for use.

Disclaimer

• USEPA HTTr Screening Strategy

- Background
- TempO-Seq Platform

Quality Control

- Standardized Reference Materials
- Plate-Based Controls
- Batch/Plate Effects
- Concentration-Response Modeling

The Next Generation of Computational Toxicology at USEPA

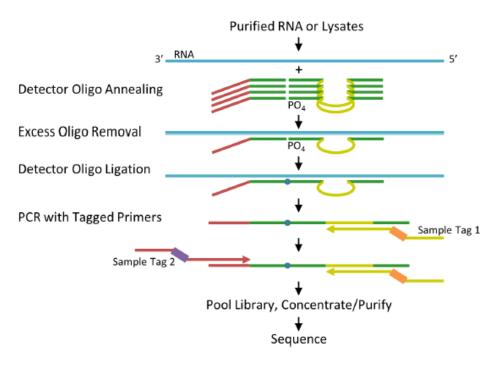
Tier 1 Chemical Structure Broad Coverage. Multiple cell types +/- metabolic competence and Properties High Content Assay(s) No Defined Biological Defined Biological Target Target or Pathway or Pathway Tier 2 Select In Vitro Orthogonal confirmation Assays Tier 3 Existing AOP No AOP Organotypic Assays and In Vitro Identify Likely Tissue, Assays for other KEs Microphysiological Organ, or Organism Effect and Systems Modeling Systems and Susceptible Populations Estimate Point-of-Departure Estimate Point-of-Departure Estimate Point-of-Departure Based on Biological Pathway or Based on AOP Based on Likely Tissue- or Cellular Phenotype Perturbation Organ-level Effect without AOP

Tiered Hazard Evaluation Approach

• Tier 1 assays:

Environmental Protectior

Agency

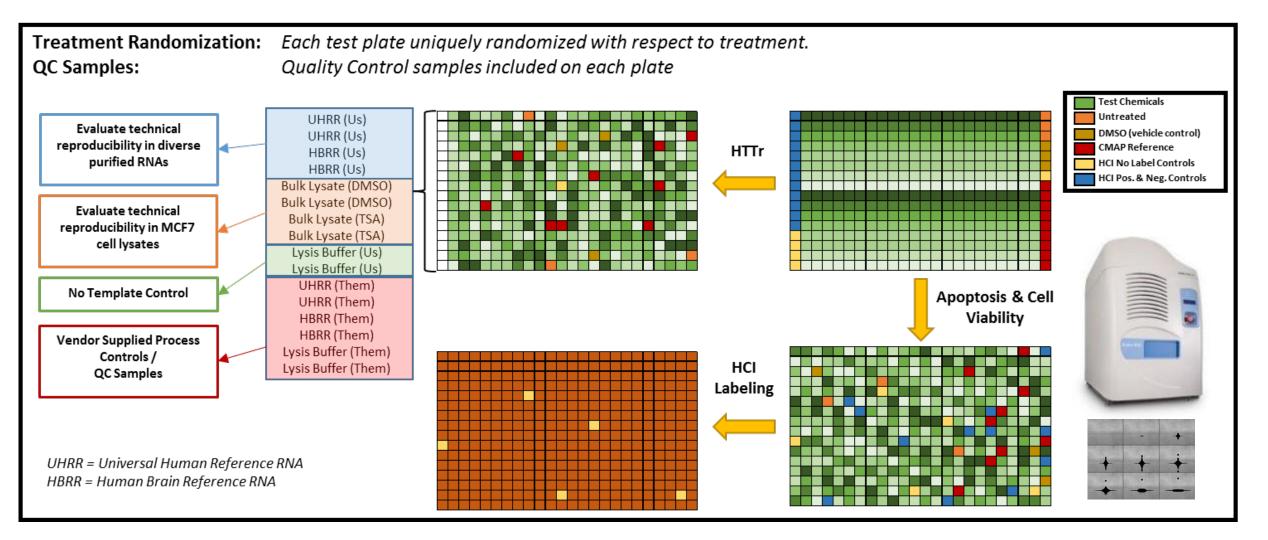

- Broad coverage
- High throughput
- Conc.-response mode
- High content outputs
- Tractable across many cell types / assay formats
- Increasing efficiency and declining cost has made highthroughput transcriptomics (HTTr) a practical option for broad coverage *in vitro* chemical screening.
- Bioactivity-based **potency estimates** can be used to identify *in vitro* **bioactivity thresholds**.
- Gene expression profiles can potentially be used for mechanistic prediction and evaluation of chemical similarity.

LPA United States Environmental Protectio Templated Oligo with Sequencing Readout (TempO-Seq) Agency

Technology

- The **TempO-Seq** human whole transcriptome assay measures the expression of greater than 20,000 transcripts.
- Requires only picogram amounts of total RNA per sample.
- Compatible with purified RNA samples or cell lysates.
- Transcripts in cell lysates generated in 384-well format are barcoded according to well position and combined in a single library for sequencing using industry standard instrumentation.
- Scalable, targeted assay:
 - 1) specifically measures transcripts of interest
 - 2) ~50-bp reads for all genes
 - 3) requires less flow cell capacity than RNA-Seq
- Per sample fastq files are generated and aligned to BioSpyder sequence manifest to generate integer count tables.

TempO-Seq Assay Illustration



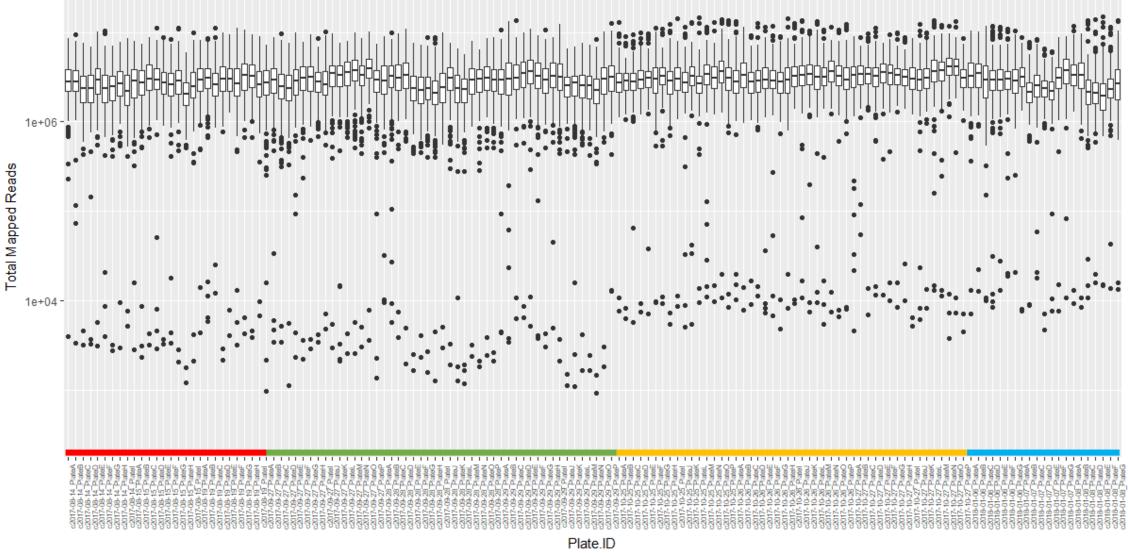
		Study 1: Pilot Screen	Study 2: Large Scale Screen			
				K		
Parameter	Multiplier	Notes	Multiplier	Notes		
Cell Type(s)	1	MCF-7	1	MCF-7		
Culture Condition	2	DMEM + 10% HI-FBS PRF-DMEM + 10% CS-HI-FBS	1	DMEM + 10% HI-FBS ^a		
Chemicals	44	Mechanistic Diversity w/ Redundancy	2,112 (<mark>63</mark>)*	ToxCast ph1, ph2, e1k / ph3		
Time Points:	3	6, 12, 24 hours	1	6 hours		
Assay Formats:	2	TempO-Seq HCI Cell Viability & Apoptosis	2	TempO-Seq HCI Cell Viability & Apoptosis		
Concentrations:	8	3.5 log ₁₀ units; semi log ₁₀ spacing	8	3.5 log ₁₀ units; semi log ₁₀ spacing		
Biological Replicates:	3		3			

*63 Chemicals were screened in duplicate.

SEPA United States Environmental Protection Treatment Randomization & Quality Control Samples

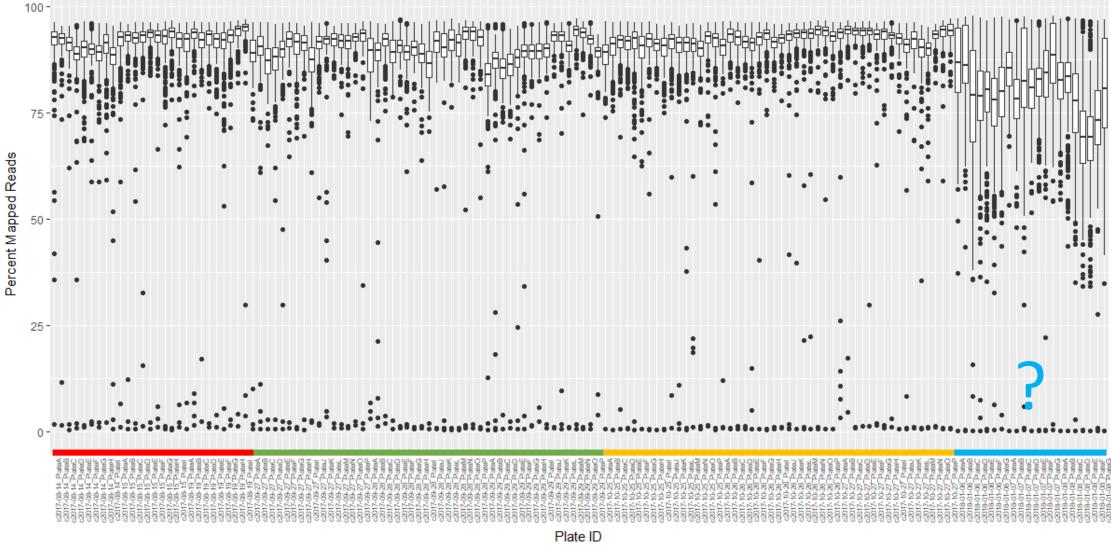
Block and Plate Group Design

n = 4 study blocks n = 144 plates n = 48 plate groups


Plates within a plate group contain the biological replicates for a particular chemical x concentration.

Note: Block 4 was aborted due to an instrument malfunction.

	c2017-08-14	c2017-08-15	c2017-08-19	c2017-09-27	c2017-09-28	c2017-09-29	c2017-10-25	c2017-10-26	c2017-10-26	c2018-01-06	c2018-01-07	c2018-01-08	
pg1	TC00284655	TC00284691	TC00503564										
pg2	TC00284656	TC00284692	TC00503565										
pg3	TC00284657	TC00284693	TC00503566										σ
pg4	TC00284658	TC00284694	TC00503567										BIOCK
pg5	TC00284659	TC00284695	TC00503568										<u> </u>
pg6	TC00284660	TC00284696	TC00503569										
pg7	TC00284661	TC00284697	TC00503570										F
pg8	TC00284662	TC00284698	TC00503571										
pg9	TC00284663	TC00284699	TC00503572										
og10				TC00503636	TC00503868	TC00503900							
og11				TC00503637	TC00503869	TC00503901							
og12				TC00503638	TC00503870	TC00503902							
og13				TC00503639	TC00503871	TC00503903							
og14				TC00503640	TC00503872	TC00503904							
og15				TC00503641	TC00503873	TC00503905							
og16				TC00503642	TC00503874	TC00503906							
og17				TC00503643	TC00503875	TC00503907							Ē
og18				TC00503644	TC00503876	TC00503908							5
og19				TC00503645	TC00503877	TC00503909							
og20				TC00503646	TC00503878	TC00503910							1 "
og21				TC00503647	TC00503879	TC00503911							
og22				TC00503648	TC00503880	TC00503912							
og23				TC00503649	TC00503881	TC00503913							
og24				TC00503650	TC00503882	TC00503914							
og25				TC00503651	TC00503883	TC00503915							
og26				100000000000000000000000000000000000000	1000000000	100000000000000000000000000000000000000	TC00503932	TC00503964	TC00503996				
og27							TC00503933	TC00503965	TC00503997				-
og28							TC00503934	TC00503966	TC00503998				-
og29							TC00503935	TC00503967	TC00503999				-
							TC00503935	TC00503968	TC00504000				-
og30							TC00503930	TC00503969	TC00504000				-
og31													C
og32							TC00503938	TC00503970	TC00504002				
og33							TC00503939	TC00503971	TC00504003				
og34							TC00503940	TC00503972	TC00504004				
og35							TC00503941	TC00503973	TC00504005				L C
og36							TC00503942	TC00503974	TC00504006				
og37							TC00503943	TC00503975	TC00504007				
og38							TC00503944	TC00503976	TC00504008				
og39							TC00503945	TC00503977	TC00504009				
og40							TC00503946	TC00503978	TC00504010				
og41							TC00503947	TC00503979	TC00504011				
og42										TC00504082	TC00504100	TC00504118	
og43										TC00504083	TC00504101	TC00504119	
pg44										TC00504084	TC00504102	TC00504120	ā
og45										TC00504085	TC00504103	TC00504121	
pg46										TC00504086	TC00504104	TC00504122	
pg47										TC00504087	TC00504105	TC00504123	U
og48										TC00504088	TC00504106	TC00504124	


Total Mapped Reads, By Plate

The distribution of total mapped reads is remarkably consistent across plates and blocks.

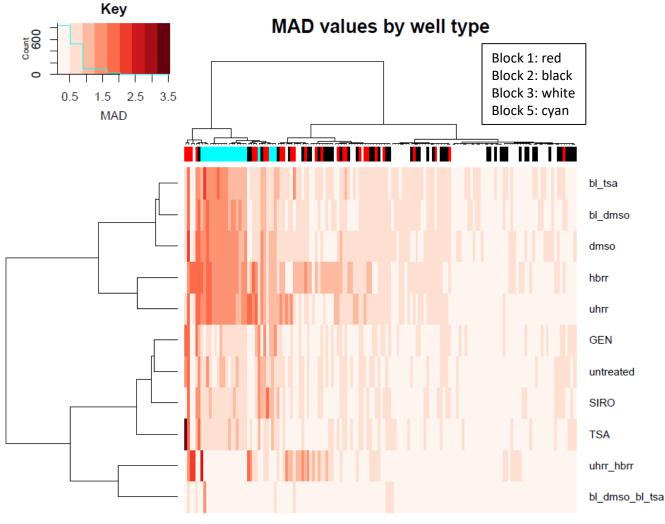
Percent Mapped Reads, By Plate

However, the distribution of mapping rate is very different for Block 5

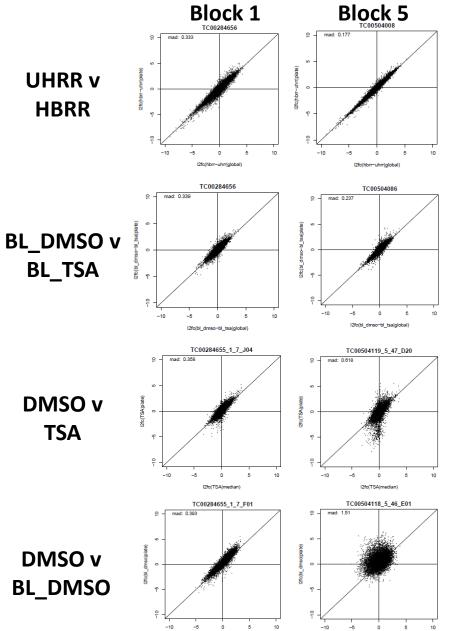
Plate-wise Comparison of FC to Global FC

- Start with data from QC samples of each type:
 - Standardized Reference Materials:
 - Reference Treatments and Vehicle Controls:
- For each sample type, create a **matrix of samples x probes** → log2(counts)
 - Eliminate all probes with <95% of samples having non-zero values
 - Replace remaining NULL (i.e. zero) values with 0.5
 - Normalize each sample to 10⁶ counts before taking log2
- For each sample type, create a **global median count** profile using data across all plates
- For each QC sample pairing of interest:
 - Calculate a l2fc matrix on each plate
 - Calculate a global l2fc matrix using the global median count profile
 - Plot platewise l2fc versus global l2fc
 - Calculate median absolute deviation (MAD) of residuals

UHRR, HBRR, BL_DMSO, BL_TSA DMSO, TSA, SIRO, GEN, Untreated

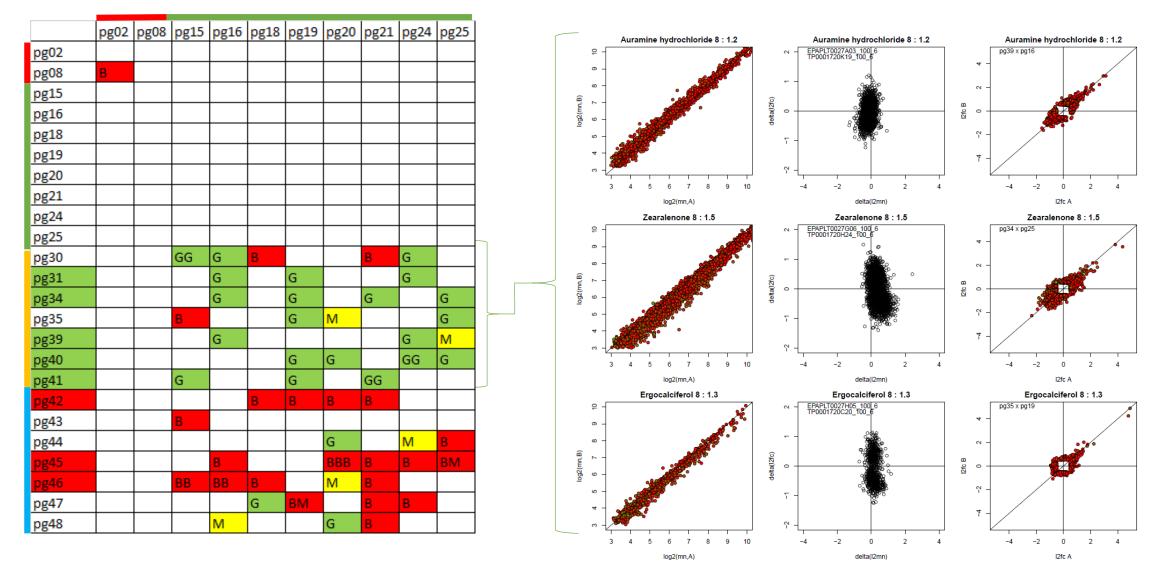

Comparisons of Interest

UHRR	HBRR		
BL_DMSO	BL_TSA		
DMSO	TSA		
DMSO	SIRO		
DMSO	GEN		
DMSO	Untreated		


**Also compared DMSO to each of the Standardized Reference Materials.

MAD of Residuals as a Plate Level QC Flag

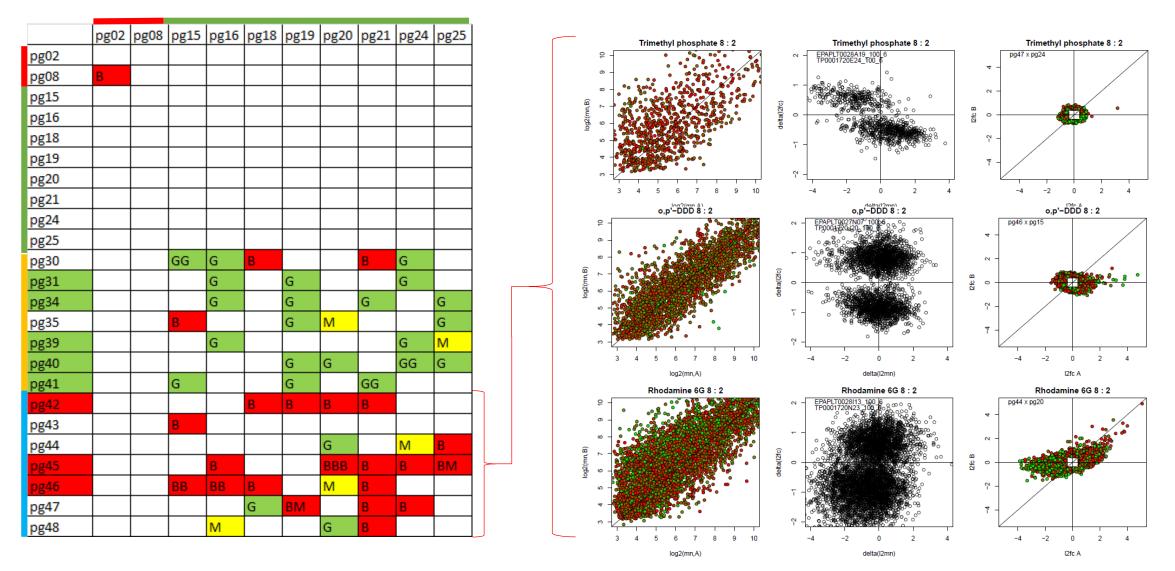
What is the implication of poor performing reference chemical treatments on the reliability of screening results?


l2fc(bl_dmso|median)

Figures courtesy of Richard Judson

l2fc(bl_dmso|median)

Reproducibility of Duplicate Chemicals



- "Good" performance of plate-based reference chemical treatments in blocks 2 & 3.
- Screening results of duplicates across blocks 2 & 3 were highly correlated

Figures courtesy of Richard Judson

Reproducibility of Duplicate Chemicals

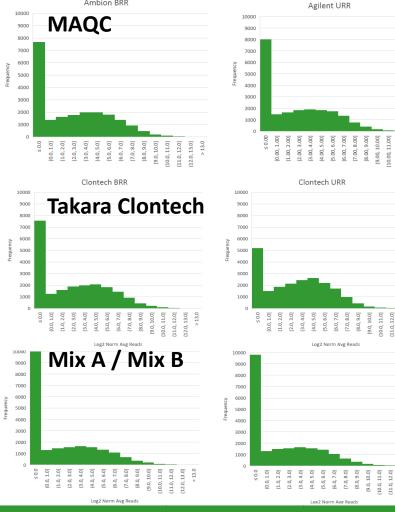
- "Poor" performance of plate-based reference chemical treatments in Block 5.
- Duplicate comparisons involving block 5 were poorly correlated

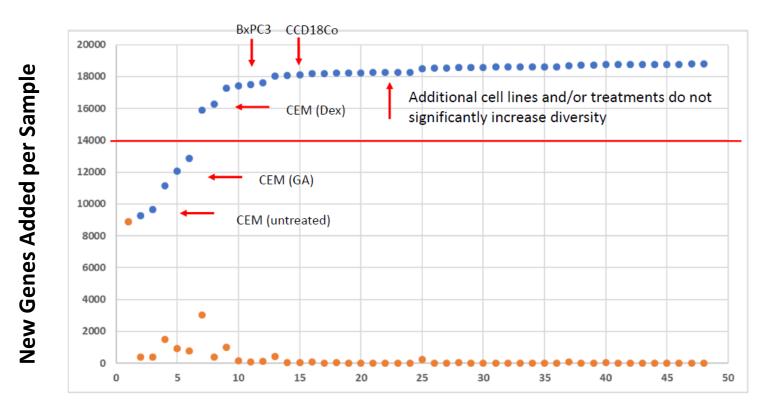
MAQC Replacement Project

Background:NCCT initially envisioned using MAQC human reference mRNAs as a QC sample pairingOne of the commercially-available MAQC human reference mRNA samples has been discontinued.

Objective:Produce two human-derived purified mRNA products as replacement for MAQC reference mRNAs.Produce two analogous lysate products as a commercially available lysate standards.

Approach: Use a combination of human-derived cell lines (with pharmacological treatments) to produce two reference RNA / lysate pools with similar number of expressed genes and dynamic range of fold-change as the MAQC samples.

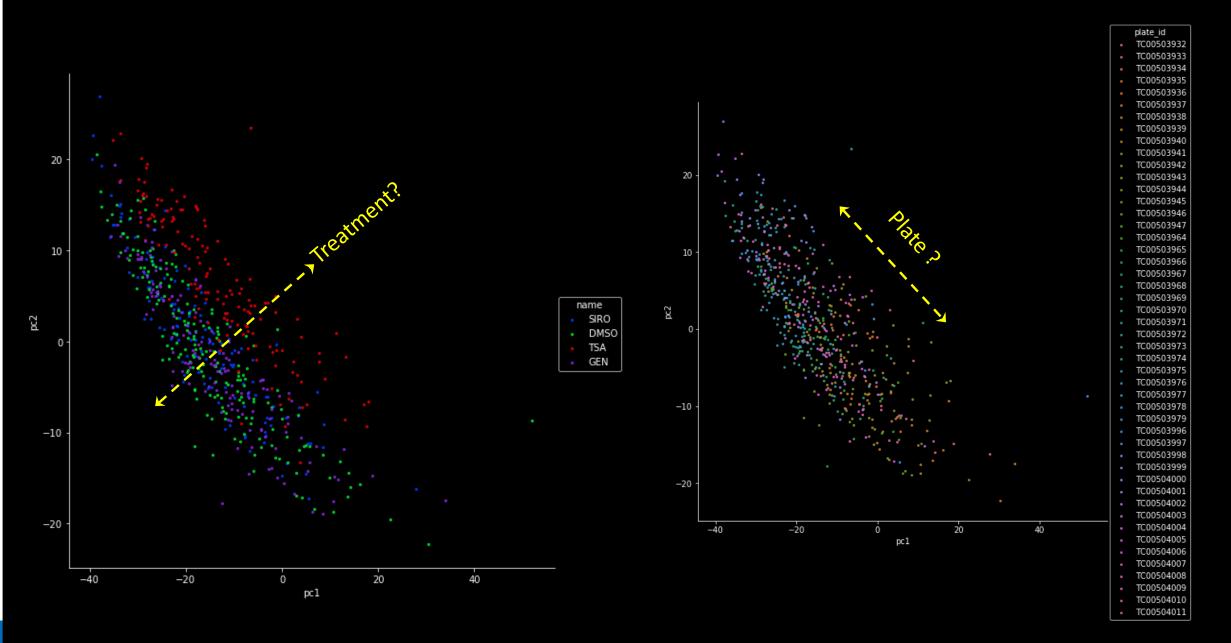

Demonstrate performance using the TempO-Seq whole transcriptome assay.



Ambion BRR

MAQC Replacement Project

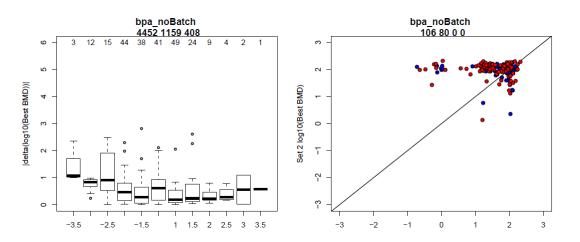
	max log2 fold difference	min log2 fold difference
Thermo Brain/ Agilent URR	13.297	-16.425
Lysate Mix A/ Lysate Mix B	13.760	-13.941
Clontech Brain/ Clontech URR	16.162	-7.035


Mix A = Equal volume of Untreated CEM, Untreated CCD18Co, Dex treated CEM, GA treated CEM

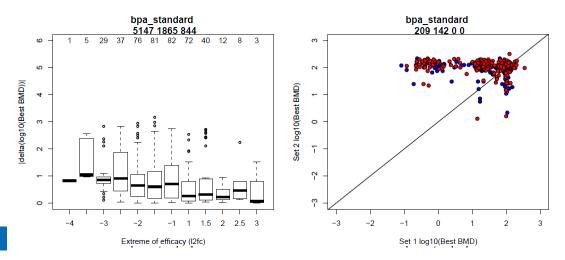
Mix B = Equal volume of Untreated CEM, Untreated BxPC3, Dex treated CEM, GA treated CEM

Figures courtesy of BioSpyder

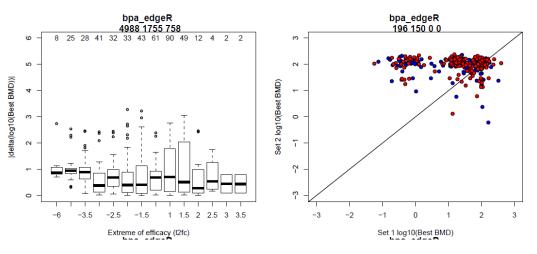
Plate (i.e. Batch) Effects in HTTr Screening Data?

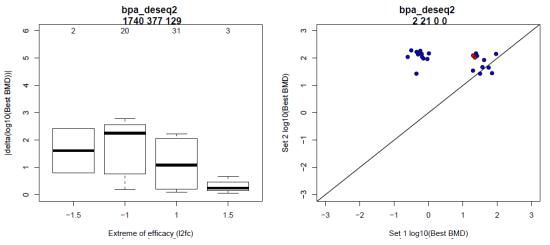

Accounting for Plate Effects in CR Modeling

- To date, it is unknown how potential plate / batch effects in HTTr screening data influences hit.call determinations and potency estimation.
- NCCT has started exploring methods to remove / account for plate (i.e. batch) effects in the HTTr concentration-response modeling pipeline.
- BMDExpress2.0
 - Currently not configured to address plate effects during the concentration-response modeling process.
 - A pre-processing step is required prior to loading data in BMDExpress to accout for / remove batch effects (ex. limma removeBatchEffect)
- ToSCR (i.e. TempO-Seq Concentration Response)
 - A novel developed by NCCT for concentration-response modeling of count data.
 - Utilizes the shrinkage estimation for dispersions functionality of DESeq2.
 - Includes "plate" as a covariate in the concentration-response modeling procedure (i.e. variable intercept).
 - Shrinkage and plate effect functionalities can be turned ON or OFF.

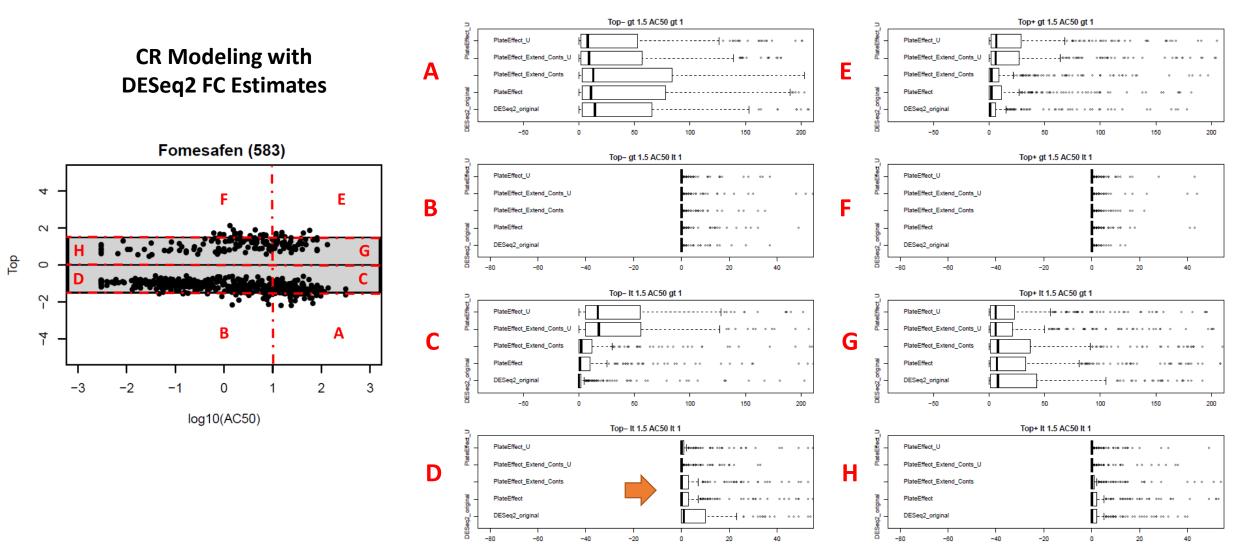

EPA United States Environmental Protection Agency The Effect of Batch Correction on Concordance of Screening Data

• Bisphenol A was tested in both the MCF-7 HTTr Pilot and MCF-7 HTTr Screen


Standard Normalization, No Batch Correction


Standard Normalization, With Batch Correction

edgeR Normalization, With Batch Correction


DESeq2 Normalization, With Batch Correction

Figures courtesy of Derik Haggard

Accounting for Plate Effects in CR Modeling

• Incorporation of **plate effects** in the DESeq2 model reduces the abundance of low potency / low efficacy hitcalls.

Figures courtesy of Richard Judson

Questions / Discussion