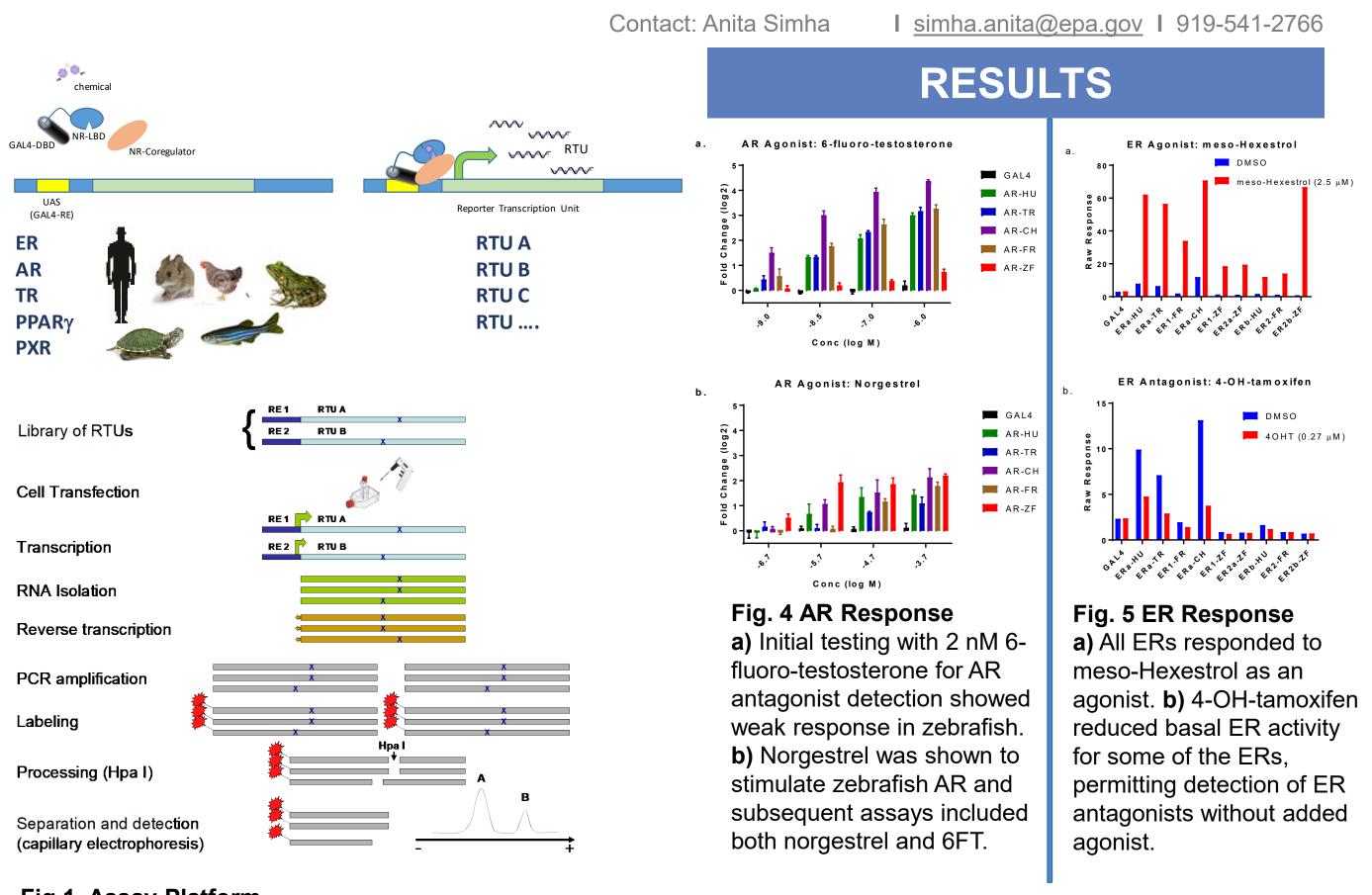
SEPA

Novel In Vitro Approach to Assess Multiple Species' Susceptibility to Potential Endocrine Disruptors

A. Simha⁴, K. Houck¹, C. LaLone², A. Bone¹, R. Judson¹, M. Martin¹, D. Villeneuve², G. Ankley², A. Medvedev³, S. Makarov³

www.epa.gov


¹U.S. EPA National Center for Computational Toxicology, Research Triangle Park, NC; ²U.S. EPA Mid-Continent Ecology Division, Duluth, MN; ³Attagene, Inc., Research Triangle Park, NC; ⁴Oak Ridge Associated Universities, Oak Ridge, TN

OVERVIEW

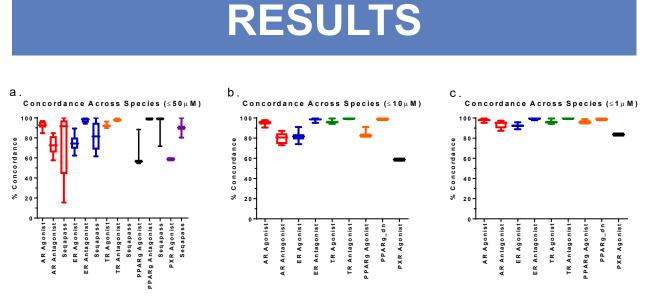
- A multiplexed, multi-receptor transactivation assay was developed to target nuclear receptors from a diverse set of ecological species.
- Screening a targeted library showed correlation between species' receptor sequence similarity and chemical response.

INTRODUCTION

Screening technologies have been developed to identify xenobiotic chemicals that bind nuclear receptors and thus have potential for adverse health effects through disruption of endocrine function. However, the focus has been on human receptors despite environmental exposure to a huge diversity of other species. We evaluated a multiplexed transactivation assay providing the ability to screen for effects across multiple species and nuclear receptors.

Fig 1. Assay Platform.

a)


b)

a) The ligand-binding domains of nuclear receptors shown in Table 1 were cloned into a mammalian one-hybrid system.
b) Receptors were co-transfected with unique RTU reporter genes into HepG2 cells, pooled and treated with chemicals for 24 hours, and separated for reporter expression quantitation.

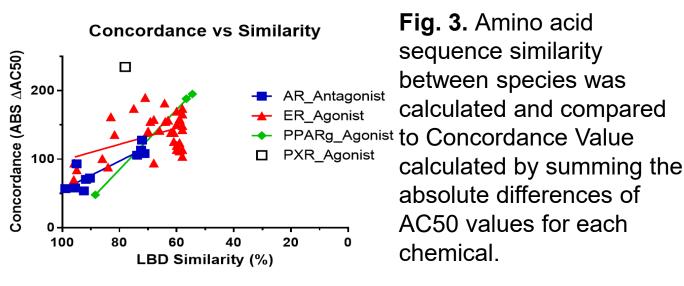
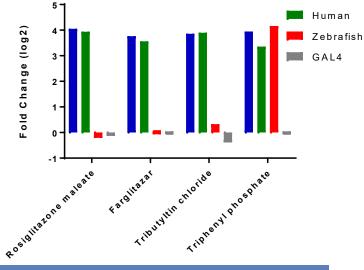

METHODS

Table 1. Receptors & Species

Abbreviation	Gene	ID	Species
ER1-Zf	Estrogen receptor-1 Zebrafish	BC162466	Danio rerio
ER2a-Zf	Estrogen receptor-2A Zebrafish	BC044349	Danio rerio
ER2b-Zf	Estrogen receptor-2B Zebrafish	BC086848	Danio rerio
ER1-Fr	Estrogen receptor-1 Frog	NM_001089617	Xenopus laevis
ER2-Fr	Estrogen receptor-2 Frog	NM_001130954	Xenopus laevis
ER1-Tr	Estrogen receptor-1 Turtle	NM_001282246	Chrysemys picta
ER1-Ch	Estrogen receptor-1 Chicken	NM_205183	Gallus gallus
ERa-Hu	Estrogen receptor-alpha Human	NM_000125	Homo sapiens
ERb-Hu	Estrogen receptor-beta Human	NM_001437	Homo sapiens
AR-Zf	Androgen receptor-Zebrafish	NM_001083123	Danio rerio
AR-Fr	Androgen receptor-Frog	NM_001090884	Xenopus laevis
AR-Tr	Androgen receptor-Turtle	XM_005279527	Chrysemys picta
AR-Ch	Androgen receptor-Chicken	NM_001040090	Gallus gallus
AR-Hu	Androgen receptor-Human	NM_000044	Mus musculus
TRa-Zf	Thyroid receptor-alpha	BC096778	Danio rerio
TRb-Zf	Zebrafish Thyroid receptor-beta Zebrafish	BC163114	Danio rerio
TRa-Fr	Thyroid receptor-alpha Frog	NM 001088126	Xenopus laevis
TRa-Tr	Thyroid receptor-alpha Turtle	XM 005294120	Chrysemys picta
THRa	Thyroid receptor-alpha Human	NM 199334	Homo sapiens
THRb	Thyroid receptor-beta Human	_ NM 000461	Homo sapiens
PPARg-Zf	PPARg Zebrafish	 NM_131467	Danio rerio
PPARg-Ms	PPARg Mouse	NM_001127330	Mus musculus
PPARg-Hu	PPARg Human	_ BC006811	Homo sapiens
PXR-Hu	Pregnane X receptor Human	O75469	Homo sapiens
PXR-Ms	Pregnane X receptor Mouse	O54915	Mus musculus
GAL4	GAL4 Yeast DBD	P04386	Saccharomyces cerevisiae
(control)			


Fig. 2. Concordance across species was calculated by percent agreement (hit or inactive) at the designated potency cutoff: **a**) 50 μ M, **b**) 10 μ M and **c**) 1 μ M.

mouse receptors responded as expected to known agonists; however, ZF receptor was unresponsive. All 3 were strongly activated by the flame retardant triphenyl phosphate.

Response. Human and

Fig. 6. PPARγ

ΡΡΑΚγ

Mouse

CONCLUSIONS

- All receptors responded to reference compounds, indicating human host cell was competent for diverse species
- High potency compounds were similar across species but less similar for lower potencies
- Differences found for some potent compounds, particularly for zebrafish
- LBD similarity between species correlates with compound sensitivity
- Flexible platform readily adaptable to screen multiple receptors/species of interest

Acknowledgements:

- Attagene, Inc. for screening work under EPA contract EP-D-12-054
- Parth Kothiya for data processing

U.S. Environmental Protection Agency

Office of Research and Development *This poster does not reflect EPA policy*.