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Problem statement

• Chemical regulation is challenged by >80K chemicals on EPA’s inventory under the 
Frank R. Lautenberg Chemical Safety for the 21st Century Act of 2016.

• Requires regulatory affirmation of “low” and “high” priority substances based on 
unreasonable risk utilizing New Approach Methods (NAMs) where possible.

• Automated in vitro assays enable high-throughput screening (HTS) to ‘decode the 
toxicological blueprint of active substances’ that interact with pregnancy.

• Vast HTS data (ToxCast/Tox21) in hand [https://comptox.epa.gov/dashboard], the 
need arises for predictive models of developmental toxicity.  

• Key challenge: model ‘critical phenomena’ in self-organizing embryonic systems that 
compute with complex genetic circuits and multi-cellular networks.
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https://www.epa.gov/chemical-research/toxcast-dashboard 

Shifting toxicology to pathway-based approaches
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https://actor.epa.gov/dashboard/

Example: TNP-470, a synthetic anti-angiogenic fumagillin analog

TNP-470 was 
active (AC50) 
on 82 ToxCast 

assays
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https://actor.epa.gov/dashboard/#chemical/129298-91-5

↓BSK_3C (coronary) proliferation
zebrafish yolk sac edema
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Example: 5HPP-33, a synthetic anti-angiogenic thalidomide analog

5HPP-33 was 
active (AC50) 

on 203 ToxCast 
assays
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https://actor.epa.gov/dashboard/#chemical/105624-86-0
↑TOX21_ERa agonist

↑ATG_ERa transactivation
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How can we integrate the biomolecular data
into pathways and processes that are
relevant to developmental toxicity? 

1. adverse outcome pathways (AOPs)

2. agent-based models (ABMs)
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1. Adverse Outcome Pathways (AOPs)

SOURCE: Dan Villeneuve, USEPA

• With HTS we can test the majority of chemicals in commerce within the decade, but using 
the NAMs for in vitro profiling and assessing toxicity is a challenge.

• Considerable mechanistic data exists in the literature (QSAR and Read-Across, ‘omics, high 
content imaging, small model organisms) but is under-utilized for regulatory toxicology.

aopkb.org

• AOP: says “here is a biological perturbation that can lead to a 
specific adverse outcome, and here is how we think it happens”. 

• AOP-KB: compendium of curated AOPs with demonstrated 
relevance connecting a molecular perturbation to adverse outcome.
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Principles for Building an AOP

SOURCE: Villeneuve et al. (2014) Toxicol Sci

aopwiki.org
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1. AOPs are not chemical-specific (based on biological motifs of failure)

2. AOPs are modular (individual relationships based on weight of evidence)

3. Individual AOPs are a pragmatic simplification (linearized sequence of biology)

4. AOP networks are the functional unit of prediction (in most cases)

5. AOPs are living documents (evolve as knowledge grows)
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AOP framework: developmental vascular toxicity (DVT)

Vasculogenesis

Primary tubular network

Angiogenesis

Remodeling

SOURCE: Knudsen and Kleinstreuer (2011) Birth Defects Res 12



1058 ToxCast chemicals ranked by pVDC ToxPi
(38 circled for validation)

24 ToxCast target assays
(pVDC ToxPi)

AOP-based ranking: predicted vascular disrupting chemicals (pVDCs)
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SOURCE: Saili et al. (2019) Current Opinion Toxicology (under review)

sensitivity 0.89, specificity 0.80
balanced accuracy 87% (PPV 93%, NPV 73%)

inactive

active
cytotoxic
no data

PREDICTED

OBSERVED
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• Approach: build and test self-organizing morphogenetic systems in silico using 
CC3D modeling environment  (www.compucell3d.org). 

• Input: A.I. cast into mathematically-defined cells (agents), synthetic gene 
circuits, and viscoelastic properties to emulate developmental progression.

• Emergence: simulation resolves into normal or perturbed phenotypes reading 
in vitro data input from specific ToxCast assays (cybermorphs).

• Output: probabilistic rendering of where, when and how a developmental 
defect might occur (critical phenomena). 

2. Agent-based models (ABMs)
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Anatomical homeostasis in a self-regulating ‘Virtual Embryo’

SOURCE: Andersen, Newman and Otter 
(2006) Am. Assoc. Artif. Intel.
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Baker et al. (manuscript submitted)

AOP framework: cleft palate as an example
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Cluster A
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Palatal fusion in silico (CompuCell3d.org)

Hutson et al. (2017) Chem Res Toxicol 19



Key event: involution of the Medial Edge Seam (MES)

Jin and Ding (2006) Development

in silico in vivo

State 1

State 2

Bistable hysteresis switch
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Hacking the control network

A.I. = synthetic cell signaling networks
Cybermorphs = simulated loss of function

SOURCE: Hutson et al. (2017) Chem Res Toxicol 21



Reviewer Comment: “Crucial
mechanisms occurring during
palate fusion, especially opposing
palatal shelf adhesion, are not
considered in the model. In fact,
the main reason why Tgf-b3 KO
mice have cleft palate is a failure
of opposing MEE adhesion,
leading to separation of palatal
shelves after their initial contact.
Even in those strains in which
palatal shelves adhere partially, I
have never seen a MES as the one
shown in Fig. 5.”

Our Response: see TGF-b3 knockout 
mouse palates transduced with ALK 
vectors in vitro. (from Dudas et al. 2004).

Smart model …

Hutson et al. (2017) Chem Res Toxicol
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Messin’ with the switch: two scenarios for bistable dynamics

Narrow 
hysteresis: 

less resilient 
but reversible

Broad 
hysteresis: 

more resilient 
but irreversible
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ToxCast dataset: 39 ↑EGF-signaling; some also ↓TGF-beta signaling 

ChemicalName
EGFR_up     

(uM AC50)
TGFb1_down   

(uM AC50)
STM          

(uM TI)
ToxRefDB    

(low)
Carbaryl 0.07 1000.00 2.92 POS
Captafol 1.02 3.76 0.35 POS
Fipronil 1.18 1000.00 66.01 POS
Fluazinam 2.39 2.48 10.75 POS
Thiram 4.45 6.95 8.26 POS
Linuron 10.91 1000.00 30.94 POS
Maneb 0.01 1000.00 NEG POS
Propoxur 1.67 1000.00 NEG POS
Captan 4.59 7.15 NEG POS
Bendiocarb 8.75 1000.00 NEG POS
Raloxifene hydrochloride 12.40 15.94 NEG POS
Tri-allate 19.19 x NEG POS
Triflumizole 32.71 19.88 NEG POS
Butachlor 32.71 17.85 NEG POS
Rotenone 0.82 1000.00 0.05 NEG
Zoxamide 14.22 17.37 16.13 NEG
Diuron 16.51 1000.00 68.06 NEG
Forchlorfenuron 0.02 1000.00 NEG NEG
Azamethiphos 0.89 1000.00 NEG NEG
Methylene bis(thiocyanate) 1.14 5.93 NEG NEG
2-(Thiocyanomethylthio)benzothiazole 2.28 6.48 NEG NEG
Methyl isothiocyanate 4.60 1000.00 NEG NEG
Bromacil 20.50 1000.00 NEG NEG
Diphenylamine 32.71 5.95 NEG NEG
TNP-470 7.78 3.97 0.02 x
PharmaGSID_48511 12.19 11.22 0.02 x
4-Pentylaniline 0.00 x NEG x
Monobutyl phthalate 0.01 1000.00 NEG x
Estrone 0.03 1000.00 NEG x
SAR102779 0.05 12.95 NEG x
Niclosamide 0.58 1000.00 NEG x
CP-457920 3.50 1000.00 NEG x
Perfluoroundecanoic acid 6.81 4.76 NEG x
1,2-Benzisothiazolin-3-one 8.22 11.91 NEG x
SB243213A 10.24 x NEG x
Phenolphthalein 16.26 x NEG x
FR167356 17.65 1000.00 NEG x
SB281832 34.72 1000.00 NEG x
p,p'-DDT 38.17 x NEG x 24
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Pathogenesis: simulating the prefusion alterations
pre-critical dose post-critical dose

EGF EGF

TGFb TGFb
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OUTPUT: tipping point 
mapped to concentration 

response (4 µM)

tipping point predicted by
computational dynamics

(hysteresis switch)

Captan in ToxCast

human HTTK model 
2.39 mg/kg/day would 

achieve a steady state of 
4 µM in fetal plasma

Captan in ToxRefDB
NEL = 10 mg/kg/day
LEL  = 30 mg/kg/day

INPUT: switch dynamics

Predictive model: modeling the critical phenomenon 

CompTox Chemicals Dashboard 
exposure prediction

0.88 x 10-7 mg/kg/day
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• NAMs are available for HTS chemical inventories for profiling chemical-biological 
interactions in vitro.  

• AOPs provide a framework for quantitative prediction of cellular and tissue responses to 
molecular perturbation(s).

• Integrative models are needed to ‘decode the toxicological blueprint of active 
substances’ that interact with developing systems.

• Computational biology is uniquely positioned to capture this connectivity and help shift 
decision-making to mechanistic prediction.

• Cell ABMs recapitulate morphogenesis cell-by-cell and interaction-by-interaction as an 
embryonic system advances in time. 

• Computer modeling and simulation puts all key events into motion enabling a new way 
to predictively model multicellular complexity in a self-organizing ‘virtual’ system.

Summary and Conclusions
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Pondering the way forward …

Translational: what do synthetic models of human development - both computational 
and organoids - bring to future of DART testing? 

Investigational: how smart must these models be (A.I.) to support decision-making in 
the animal-free (3Rs) zone?

Operational: what best practices are needed to implement synthetic models into an 
integrative decision framework (eg, AOP-based IATAs)?

Communication: what are the practical considerations for science, engineering, and 
stakeholder engagement (academics, government, industry, NGOs, policy, …)?
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