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Chemical Regulation in the United States

• Park et al. (2012): At least 3221 chemical signatures 
in pooled human blood samples, many appear to be 
exogenous

• A tapestry of laws covers the chemicals people are 
exposed to in the United States (Breyer, 2009)

• Different testing requirements exist for food 
additives, pharmaceuticals, and pesticide active 
ingredients (NRC, 2007)

• Most other chemicals, ranging from industrial waste 
to dyes to packing materials, are covered by the 
Toxic Substances Control Act (TSCA)

November 29, 2014
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Risk Assessment in the 21st Century

January, 2017

“Translation of high-throughput 
data into risk-based rankings is an 
important application of exposure 
data for chemical priority-setting. 
Recent advances in high-
throughput toxicity assessment, 
notably the ToxCast and Tox21 
programs… and in high-throughput 
computational exposure 
assessment… have enabled first-tier 
risk-based rankings of chemicals on 
the basis of margins of exposure…”

“…The committee sees the 
potential for the application of 
computational exposure science to 
be highly valuable and credible for 
comparison and priority-setting 
among chemicals in a risk-based 
context.”
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What Do We Know About Exposure?
Biomonitoring Data

• Centers for Disease Control and Prevention (CDC) National Health and Nutrition Examination Survey 
(NHANES) provides an important tool for monitoring public health

• Large, ongoing CDC survey of US population: demographic, body measures, medical exam, 
biomonitoring (health and exposure), …

• Designed to be representative of US population according to census data

• Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

• Includes measurements of:

• Body weight
• Height
• Chemical analysis of blood and urine
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Inferred Chemical Intake Rates (mg/kg BW/day)

• Median chemical intake rates (mg / kg body 
weight /day) were inferred from:

• NHANES urine (Wambaugh et al, 2014, Ring 
et al. 2017)

• NHANES serum/blood either using HTTK 
clearance (Pearce et al., 2017)

• Literature clearance estimates were used 
for methodologically challenging 
chemicals not suited to HTTK

Reverse Dosimetry (Tan et al., 2006)



6 of 55 Office of Research and Development

What Do We Know About Exposure?
Exposure Models

“Now it would be very remarkable if any system existing in the real world could be exactly represented by 
any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful 
approximations… The only question of interest is ‘Is the model illuminating and useful?’” George Box

• Human chemical exposures can be coarsely grouped into “near field” sources that are close to the 
exposed individual (consumer or occupational exposures) “far-field” scenarios wherein individuals 
are exposed to chemicals that were released or used far away (ambient exposure) (Arnot et al., 2006). 

• A model captures knowledge and a hypothesis of how the world works (MacLeod et al., 2010)

• EPA’s EXPOsure toolBOX (EPA ExpoBox) is a toolbox created to assist individuals from within 
government, industry, academia, and the general public with assessing exposure
• Includes many, many models
https://www.epa.gov/expobox
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Consensus Exposure Predictions with the 
SEEM Framework

• Different exposure models incorporate knowledge, assumptions, and data (MacLeod et al., 2010)

• We incorporate multiple models into consensus predictions for 1000s of chemicals within the Systematic 
Empirical Evaluation of Models (SEEM) (Wambaugh et al., 2013, 2014)

Hurricane Path 
Prediction is an 

Example of 
Integrating 

Multiple Models

• Evaluation is similar to a sensitivity analysis: What 
models are working? What data are most needed? 
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:

ε ~ N(0, σ2)
Residual error, 
unexplained by 
the regression 
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Weighted HTE Model Predictions

SEEM is a Linear Regression
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Log(Parent Exposure) = a + m * log(Model Prediction) + b* Near Field + ε

Multiple regression models:
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Weighted HTE Model Predictions

Not all models have predictions 
for all chemicals

• We can run SHEDS-HT 
(Isaacs et al., 2014) for 
~2500 chemicals

What do we do for the rest?
• Assign the average value?
• Zero?

SEEM is a Linear Regression
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R2 ≈ 0.14

First Generation SEEM
Wambaugh et al., 2013

• Those chemicals with 
“near-field” – proximate, 
in the home, sources of 
exposure – had much 
higher rates of exposure 
than those with sources 
outside the home 
(Wallace et al.,  1986)

• The only available “high 
throughput exposure 
models in 2013 were for 
far-field sources



11 of 55 Office of Research and Development

R2 ≈ 0.5

Second Generation SEEM

R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume

Wambaugh et al. (2014)



12 of 55 Office of Research and Development

Heuristics of Exposure

Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume
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Collaboration on High Throughput Exposure Predictions
Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet, 

Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

Predictor Reference(s)
Chemicals 
Predicted Pathways

EPA Inventory Update Reporting and Chemical Data 
Reporting (CDR) (2015)

US EPA (2018) 7856 All

Stockholm Convention of Banned Persistent Organic 
Pollutants (2017)

Lallas (2001) 248 Far-Field Industrial and 
Pesticide

EPA Pesticide Reregistration Eligibility Documents (REDs) 
Exposure Assessments (Through 2015)

Wetmore et al. (2012, 2015) 239 Far-Field Pesticide

United Nations Environment Program and Society for 
Environmental Toxicology and Chemistry toxicity model 
(USEtox) Industrial Scenario (2.0)

Rosenbaum et al. (2008) 8167 Far-Field Industrial

USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide

Risk Assessment IDentification And Ranking (RAIDAR) 
Far-Field (2.02)

Arnot et al. (2008) 8167 Far-Field Pesticide

EPA Stochastic Human Exposure Dose Simulator High 
Throughput (SHEDS-HT) Near-Field Direct (2017)

Isaacs (2017) 7511 Far-Field Industrial and 
Pesticide

SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential

Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential

RAIDAR-ICE Near-Field (0.803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential

USEtox Residential Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential

USEtox Dietary Scenario (2.0) Jolliet et al. (2015), Huang et al. (2016), 
Ernstoff et al. (2017)

8167 Dietary

Ring et al., 2019
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Knowledge of Exposure Pathways Limits High 
Throughput Exposure Models

“In particular, the 
assumption that 100% 
of [quantity emitted, 

applied, or ingested] is 
being applied to each 

individual use scenario 
is a very conservative 
assumption for many 

compound / use 
scenario pairs.”
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Heuristics of Exposure

Wambaugh et al. (2014) R2 ≈ 0.5 indicates that we can predict 
50% of the chemical to chemical 
variability in median NHANES 
exposure rates

Same five predictors work for all 
NHANES demographic groups 
analyzed – stratified by age, sex, and 
body-mass index:

• Industrial and Consumer use
• Pesticide Inert
• Pesticide Active
• Industrial but no Consumer 

use
• Production Volume
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Total Chemical 
Intake Rate

(mg/ kg BW/ day)

Consumer 

Dietary

Far-Field
Pesticides

Far-Field
Industrial

Pathway
Yes/No

Chemical-Specific 
Pathway Relevancy (δij) 

Yes/No

Yes/No

Yes/No

Unknown Average Unexplained 
(a0, the grand mean)

Average Unexplained (aconsumer)
SHEDS-HT
FINE
RAIDAR-ICE
USEtox
Production Volume
Average Unexplained (adietary)
SHEDS-HT Dietary
Production Volume
USEtox
RAIDAR
Food Contact Substance Migration

Average Unexplained (aFFpesticide)
Pesticide REDs
USEtox
RAIDAR
Stockholm Convention
Production Volume

Average Unexplained (aFFindustrial)
USEtox
RAIDAR
Stockholm Convention
Production Volume

Predictors SEEM3
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Developing Pathway-Specific Chemical Data

Phillips et al. (2018)

ExpoCast household 
item pilot study 
analyzed 5 examples 
each of 20 diverse 
household items. 

Of 1,632 chemicals 
confirmed or 
tentatively 
identified, 1,445 
were not present in 
CPCPdb

This gives us positive 
reference chemicals 
– negatives even 
harder
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Predicting Exposure Pathways
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Sources of Positives Sources of Negatives
Dietary 24 2523 8865 27 32 73 FDA CEDI, ExpoCast, CPDat 

(Food, Food Additive, Food 
Contact), NHANES Curation

Pharmapendium, CPDat (non-
food), NHANES Curation

Near-Field 49 1622 567 26 24 74 CPDat (consumer_use, 
building_material), ExpoCast, 
NHANES Curation

CPDat (Agricultural, Industrial), 
FDA CEDI, NHANES Curation

Far-Field 
Pesticide

94 1480 6522 21 36 80 REDs, Swiss Pesticides, 
Stockholm Convention, CPDat 
(Pesticide), NHANES Curation

Pharmapendium, Industrial 
Positives, NHANES Curation

Far Field 
Industrial

42 5089 2913 19 16 81 CDR HPV, USGS Water 
Occurrence, NORMAN PFAS, 
Stockholm Convention, CPDat 
(Industrial, Industrial_Fluid), 
NHANES Curation

Pharmapendium, Pesticide 
Positives, NHANES Curation

We use the method of Random Forests to relate chemical structure and properties to exposure pathway

Ring et al., 2019



19 of 55 Office of Research and Development

 Machine learning models 
were built for each of four 
exposure pathways

 Pathway predictions can be 
used for large chemical 
libraries

 Use prediction (and accuracy 
of prediction) as a prior for 
Bayesian analysis

 Each chemical may have 
exposure by multiple 
pathways

Pathway-Based Consensus Modeling of NHANES

Intake Rate (mg/kg BW/day) Inferred from 
NHANES Serum and Urine
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Ring et al., 2019
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Consensus Modeling of Median Chemical Intake 

 We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926  chemicals

 Of 687,359 chemicals evaluated, 30% have 
less than a 50% probability for exposure via 
any of the four pathways and are considered 
outside the “domain of applicability”

 This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

Ring et al., 2019
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Consensus Modeling of Median Chemical Intake 

 We extrapolate to predict relevant 
pathway(s), median intake rate, and credible 
interval for each of 479,926  chemicals

 Of 687,359 chemicals evaluated, 30% have 
less than a 50% probability for exposure via 
any of the four pathways and are considered 
outside the “domain of applicability”

 This approach identifies 1,880 chemicals for 
which the median population intake rates 
may exceed 0.1 mg/kg bodyweight/day.

 There is 95% confidence that the median 
intake rate is below 1 µg/kg BW/day for 
474,572 compounds.

Ring et al., 2019
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• We are using existing chemical data to predict pathways
• Not all chemicals fit within the domain of applicability 
• Need better training data for random (non-targeted 

analysis of environmental media needed)

• Eventually we have got to go beyond NHANES
• Current evaluation based upon  114 chemicals
• Non-targeted analysis of blood may eventually be 

possible

Conclusions

• We can make chemical-specific estimates of intake rate for hundreds of thousands of chemical
• Only predicting median intake rate (and even that has large uncertainty)
• Synthesizing as many models and other data as we can find

• Models incorporate Knowledge, Assumptions and Data (Macleod, et al., 2010)
• The trick is to know which model to use and when
• Machine learning models allow educated guesses Rappaport et al. (2014)
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The views expressed in this presentation are those of the author and do 
not necessarily reflect the views or policies of the U.S. EPA
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