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* The Office of Research and Development (ORD) is the scientific
research arm of EPA
* 562 peer-reviewed journal articles in 2018

* Research is conducted by ORD’s three national laboratories, four
national centers, and two offices organized to address:

* Hazard, exposure, risk assessment, and risk management

e 13 facilities across the United States

* Research conducted by a combination of
Federal scientists (including uniformed
members of the Public Health Service);
contract researchers; and postdoctoral,
graduate student, and post-baccalaureate
trainees

Credit: the Research Triangle Foundaig

ORD Facility in
Research Triangle Park, NC
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“...machine learning can be
thought of as inferring
plausible models to explain
observed data.”

Intelligence

REVIEW 452 | NATURE | VOL 521 | 28 MAY 2015

d0i:10.1038/nature 14541

Probabilistic machine learning
and artlflclal intelligence

Zoubin Ghahramani

How can a machine learn from experience? Probabilistic modelling provides a framework for understanding what learn-
ing is, and has therefore emerged as one of the principal theoretical and practical approaches for designing machines
that learn from data acquired through experience. The probabilistic framework, which describes how to represent and
manipulate uncertainty about models and predictions, has a central role in scientific data analysis, machine learning,
robotics, cognitive science and artificial intelligence. This Review provides an introduction to this framework, and dis-
cusses some of the state-of-the-art advances in the field, namely, probabilistic programming, Bayesian optimization,
data compression and automatic model discovery.

At the EPA we are applying publicly available machine learning algorithms to
bridge data gaps and draw inferences from complex data sets.

Office of Research and Development
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Park et al. (2012): At least 3221 chemical signatures
in pooled human blood samples, many appear to be
exogenous

A tapestry of laws covers the chemicals people are
exposed to in the United States (Breyer, 2009)

Different testing requirements exist for food
additives, pharmaceuticals, and pesticide active
ingredients (NRC, 2007)

Most other chemicals, ranging from industrial waste
to dyes to packing materials, are covered by the
Toxic Substances Control Act (TSCA)

Office of Research and Development

Chemical Regulation in the United States

GIVE A DOG A PHOME
Technology for our furry friends

NewScientist

We've made
150,000 new chemicals

Tis

We touch them,
we wear them, we eat them

But which ones should
we worry about?

SPECIAL REPORT, page 34
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Potential Hazard
from in vitro with

USING
_ Reverse 21ST CENTURY
Toxicokinetics SCIENCE
TO IMPROVE
RISK-RELATED
mg/kg(BW/day EVALUATIONS
Potential
Exposure
Rate

THE NATIONAL ACADEMIES PRESS
Washington, DC

www.nap.edu

January, 2017
Lower Risk ~ Medium Risk  Higher Risk

“...The committee sees the potential for the application of computational exposure science to be highly
valuable and credible for comparison and priority-setting among chemicals in a risk-based context.”
Office of Research and Development
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e Centers for Disease Control and Prevention (CDC) National Health and Nutrition
Examination Survey (NHANES) provides an important tool for monitoring public health

* Large, ongoing CDC survey of US population: demographic, body measures, medical
exam, biomonitoring (health and exposure), ...

* Designed to be representative of US population according to census data

» Data sets publicly available (http://www.cdc.gov/nchs/nhanes.htm)

iNanes

Office of Research and Development National Health and Nutrition Examination Survey

* |ncludes measurements of:

 Body weight
* Height
 Chemical analysis of blood and urine
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* We used data-mining
methods (frequent
itemset mining or FIM,
Borgelt, 2012) to identify
combinations of items
(chemicals) that co-occur
together within samples
from same individual

* J|dentified a few dozen

mixtures present in >30%
of U.S. population

Office of Research and Development

Prevalent Mixtures
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Kapraun et al. (2017)

Identifying Prevalent Mixtures in the NHANES Data
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wEPA What Else Do We Know About Exposure?
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A model captures knowledge and a hypothesis of how the world works (MacLeod et al., 2010)
Isaacs et al. (2014) » Rosenbaum et al. (2008)
“ &L J " Global scale
e Dietary / air
~— Intl::)iflental Ingestnon o / e T T e
Inge;rtie::l of InhaI:tei;tn of air

I

urban air
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Product
Indirect
Indirect
Exposure to
Exposure to 4_————

Constant
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Product Down the Chemlca\ =
Drain ?
>
Release of
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“Now it would be very remarkable if any system existing in the real world could be exactly represented by

any simple model. However, cunningly chosen parsimonious models often do provide remarkably useful

approximations... The only question of interest is ‘Is the model illuminating and useful?’” George Box
Office of Research and Development
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SEEM Framework

* We use Bayesian methods to incorporate multiple models into consensus predictions for
1000s of chemicals within the Systematic Empirical Evaluation of Models (SEEM)
(Wambaugh et al., 2013, 2014; Ring et al., 2018)

Chemicals
with
Monitoring

Data

Dataset 1
Dataset 2

Apply calibration and estimated uncertainty to

xposu re

Inference

Model 1
Model 2

— other Chemica|5

Estimate

Uncertajnty Calibrate

models

X
-«<— Different
* Chemicals

Inferred Intake Rate

B Available Exposure Predictors :

Evaluate Model Performance
and Refine Models

Office of Research and Development
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Agency This is just a fancy linear regression
2 - Wambaugh et al. (2014) Total Same five predictors work for all
““I - Female NHANES demographic groups
1- || || — Male analyzed — stratified by age, sex,
= ReproAgeFemale d bod index:
| il —6-11_years and body-mass index:

Regression Coefficient
o

Office of Research and Development

== 12-19 years °
== 20-65_years
66+years .
BMI_LE 30
BMI_GT 30 °

Industrial and Consumer
use

Pesticide Inert

Pesticide Active

Industrial but no Consumer
use

Production Volume
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o .
I n p a rt I C U I a r, t h e This is an open access article published under an ACS AuthorChaice License, which permits
capying and redistribution of the article ar any adaptations for non-commercial purposes, @

assumption that 100% ket

of [quantity emitted, VIHU " |_
applied, or ingested] is ience & lechn nqu pubs acs orgfest

being applied to each

individual use scenario Risk-Based High-Throughput Chemical Screening and Prioritization
using Exposure Models and in Vitro Bioactivity Assays

IS @ very conservative ) A , o
. Hyeong-Moo Shin*" Alexi Ernstoff Jon A ﬁm::-t,"J" Barbara A. Wetmore,® Susan A. Csiszar,”
assumption for many Peter Fantke,* Xianming Zhang,® Thomas E. McKone,®'1 Olivier Jolliet,* and Deborah H. Bennett

compound / use
scenario pairs.”
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Jon Arnot, Deborah H. Bennett, Peter P. Egeghy, Peter Fantke, Lei Huang, Kristin K. Isaacs, Olivier Jolliet,
Hyeong-Moo Shin, Katherine A. Phillips, Caroline Ring, R. Woodrow Setzer, John F. Wambaugh, Johnny Westgate

o Chemicals
@ e Predictor Reference(s) Predicted Pathways
Py . il EPA Inventory Update Reporting and Chemical Data US EPA (2018) 7856 All
Reporting (CDR) (2015)
Stockholm Convention of Banned Persistent Organic Lallas (2001) 248 Far-Field Industrial and
Pollutants (2017) Pesticide
UNIvERSITY OF EPA Pesticide Reregistration Eligibility Documents (REDs) Wetmore etal. (2012, 2015) 239 Far-Field Pesticide
Exposure Assessments (Through 2015)
UC DAVIS United Nations Environment Program and Society for Rosenbaum et al. (2008) 8167 Far-Field Industrial
Environmental Toxicology and Chemistry toxicity model
UNIVERSITY OF CALIFORNIA _ _
— (USEtox) Industrial Scenario (2.0)
_Ab TEXAS USEtox Pesticide Scenario (2.0) Fantke et al. (2011, 2012, 2016) 940 Far-Field Pesticide
‘f\‘ ARLINGTON - —
Risk Assessment IDentification And Ranking (RAIDAR) Amot et al. (2008) 8167 Far-Field Pesticide
[JI1) Danmarks Far-Field (2.02)
Ee]fmSk?t . EPA Stochastic Human Exposure Dose Simulator High Isaacs (2017) 7511 Far-Field Industrial and
- vemie Throughput (SHEDS-HT) Near-Field Direct (2017) Pesticide
SVEP STage SHEDS-HT Near-field Indirect (2017) Isaacs (2017) 1119 Residential
g ° ) Fugacity-based INdoor Exposure (FINE) (2017) Bennett et al. (2004), Shin et al. (2012) 645 Residential
%z M § RAIDAR-ICE Near_Field (0803) Arnot et al., (2014), Zhang et al. (2014) 1221 Residential
%@4’ \Oe USEtox Residential Scenario (20) Jolliet et al. (2015), Huang et al. (2016,2017) 615 Residential
74y pRo‘ﬂ" USEtox Dieta ry Scenario (20) Jolliet et al. (2015), Huang et al. (2016), 8167 Dietary
Ernstoff et al. (2017)

f ' .
Office of Research and Development Ring et al. (2018)
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Total Chemical
Intake Rate

(mg/ kg BW/ day)

—

Office of Research and Development

Chemical-Specific J—

Pathway Pathway Relevancy (6;)
— Consumer Yes/No —
¥
P
— Dietary Yes/No —
¥
o
. Far-l.zl.eld Yes/No S
Pesticides
P
. Far—FleI.d Yes/No -
Industrial
¥
~— Unknown

Exposure Predictors

Average Unexplained (a
SHEDS-HT

FINE

RAIDAR-ICE

USEtox

Production Volume
Average Unexplained (agietay)

SHEDS-HT Dietary

Production Volume

USEtox

RAIDAR

Food Contact Substance Migration

consumer)

Average Unexplained (ae esticide)
Pesticide REDs

USEtox

RAIDAR

Stockholm Convention

Production Volume
Average Unexplained (aggingustrial)

USEtox

RAIDAR

Stockholm Convention
Production Volume
Average Unexplained
(ag, the grand mean)

Ring et al. (2018)
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We use the method of Random Forests to relate chemical structure and properties to exposure pathway

24 |
Near-Field 49 1622 567

Far-Field 94 1480 6522

Negatives

Pesticide

Far Field 42 5089 2913
Industrial

Office of Research and Development

&l OOB Error Rate

21

19

Positives Error

32

24

36

16

Balanced
Accuracy

73

74

80

81

Sources of Positives

FDA CEDI, ExpoCast, CPDat (Food,
Food Additive, Food Contact),
NHANES Curation

CPDat (consumer_use,
building_material), ExpoCast,
NHANES Curation

REDs, Swiss Pesticides, Stockholm
Convention, CPDat (Pesticide),
NHANES Curation

CDR HPV, USGS Water Occurrence,
NORMAN PFAS, Stockholm
Convention, CPDat (Industrial,
Industrial_Fluid), NHANES Curation

Sources of Negatives

Pharmapendium, CPDat (non-food),
NHANES Curation

CPDat (Agricultural, Industrial), FDA
CEDI, NHANES Curation

Pharmapendium, Industrial Positives,
NHANES Curation

Pharmapendium, Pesticide Positives,
NHANES Curation

Ring et al. (2018)



Pathway-Based Consensus Modeling of NHANES
wEPA 4 5

United States i =
Environmental Protection 1077 R = 0816

Agency RMSE = 0.929 Pathway(s)
= Machine learning models
were built for each of four

exposure pathways

Consumer

Consumer, Industrial
Consumer, Pesticide
Consumer, Pesticide, Industrial

1071 Dietary, Consumer

B Dietary, Consumer, Industrial
- s g #® Dietary, Consumer, Pesticide
Pathway predlCtlonSt can be A& Dietary, Consumer, Pesticide, Industrial
used for large chemical + Dietary, Pesticide, Industrial
libraries gf;ﬂ:‘;

107 1 Pesticide, Industrial

= Use prediction (and accuracy
of prediction) as a prior for
Bayesian analysis

Of 687,359 chemicals
evaluated, 30% have less
than a 50% probability for

exposure via any of the four

Consensus Model Predictions

10—13.

= Each chemical may have pathways and are
exposure by multiple considered outside the
pathways : - “domain of applicability”

1P 107 10
Intake Rate (mg/kg BW/day) Inferred from

f i [
Office of Research and Development NHANES Serum and Urine Ring et al. (2018)



EPA Exposure Estimates Allow Chemical

United States ° o , 0 °
Ignvaltgg\r;mental Protection Prlorltlzatlon
High throughput in vitro
'screening can estimate doses

I needed to cause bioactivity

o | S i g |$| " El$. AL 7| (e.g., Wetmore et al., 2015)
1 | Iﬁlﬁ . ' é‘ ¢l E!] 2 Exposure intake rates can
i o ST et 050 "
= — g $ éﬁ E ' , T be inferred from
S . é « (1117 biomarkers
= (e.g., Ring et al., 2018)
Qo 1=
< i mg/kg BW/day
o0
=
£ 7

Potential
Hazard from
in vitro with

Reverse
Toxicokinetic

potentics
Chemicals Monitored by CDC NHANES Exposure

Estimated Equivalent Dose or Predicted Exposure

Rate

Lower Medium Higher

Office of Research and Development Ring et al. (2017) Risk  Risk Risk
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Chemical Structure
and Property
Descriptors
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Predicting Chemical Function From Structure

additive

additive_for_liquid_system
|

Use Database (FUSE)

additive_for_rubber

\ 4

adhesion_promaoter

antimicrobial

antioxidant

antistatic_agent

| | 1 |
additive . . . . )
= T additive adhesion anti- anti- antistatic
additive for liquid . F .
for rubber promoter microbial oxidant agent
system
buffer catalyst chelator colorant. crosslinker emollient emulsifier
| 1 |
buffer || catalyst | chelator colorant crosslinker emollient || emulsifier ||
————— | ———— | ——
emulsion_stabilizer film_forming_agent flame_retardant flaverant foam_boosting_agent foamer fragrance
N ] 1 [
. film foam
1 emulsion . flame .
Ar forming flavorant boosting foamer \ fragrance
stabilizer retardant
agent agent \
L | ]
hair_e i hair_dye heat_stabilizer icating_agent masking_agent monomer
I 1 ]
1 hair condi- = heat lubricatin maskin
. hair dye . humectant ubricating g monomer
1 tioner stabilizer agent agent
| ——|
oral_care I organic_pigment I oxidizer perfumer ph_stabilizer | jplastic I
. \
rgani — H hoto- T
oral care o_ - oxidizer perfumer p. . .p. ? 2 plasticizer
pigment stabilizer initiator |||
|
preservative reducer rheclogy_modifer skin_conditioner skin_protectant soluble_dye solvent
b | | |
] pre- rheology skin condi- skin soluble
. reducer . . solvent
1 _servative modifier tioner protectant dye
—— | )| ey | |\
surfactant ubiquitous uv_absorber vinyl viscosity_controlling_agent wetting_agent whitener
§ ] ] I
viscosit
— uv . .y wetting .
surfactant ubiquitous vinyl controlling whitener
- absorber L ent agent

Machine Learning Based Classification Models

Office of Research and Development

(Random Forest, Breiman, 2001)

Prediction of
Of Potential
Alternatives from
Chemical Libraries

Phillips et al. (2017)
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Functional Use
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* At the EPA we are applying publicly available machine learning algorithms to bridge data gaps and draw

inferences from complex data sets.

* We can make chemical-specific estimates of intake rate for hundreds of thousands of chemical
* Synthesizing as many models and other data as we can find

Estimate

 Different models incorporate Knowledge, Assumptions Uncertainty Calibrate models
and Data (Macleod, et al., 2010)
* The trick is to know which model to use and when

* Machine learning models allow educated guesses

-« Different
* We are using existing chemical data to predict pathways Chemicals
* Not all chemicals fit within the domain of applicability

* Need better training data for machine learning

Inferred Intake Rate

>

Available Exposure Predictors

The views expressed in this presentation are those of the author and do
Office of Research and Development not necessarily reflect the views or policies of the U.S. EPA
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