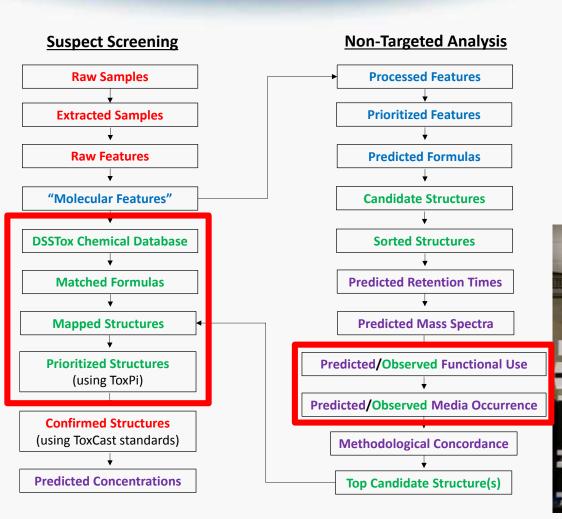


Applications of the US EPA's CompTox chemicals dashboard to support structure identification and chemical forensics using mass spectrometry


Antony Williams¹, Andrew D. McEachran², Jon R. Sobus³ and Emma Schymanski⁴

- 1) National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 - 2) Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 - 3) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC
- 4) Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Campus Belval, Luxembourg

The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

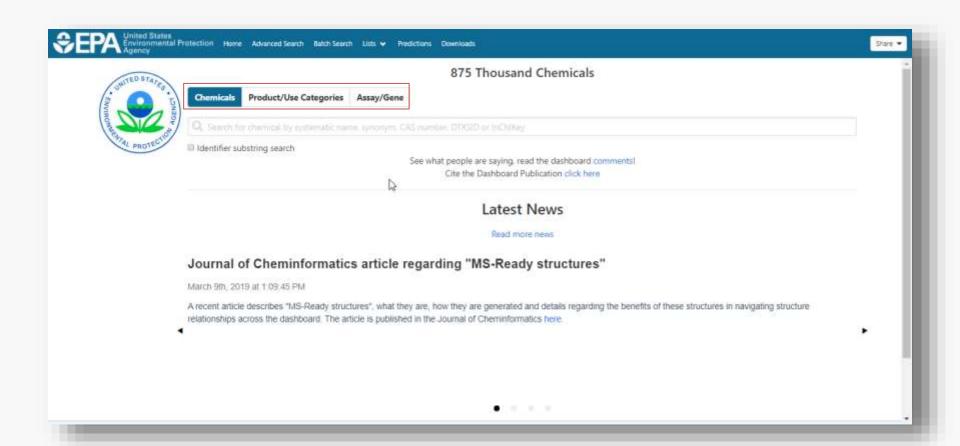
Suspect Screening and Non-Targeted Analysis Workflows

Color Key

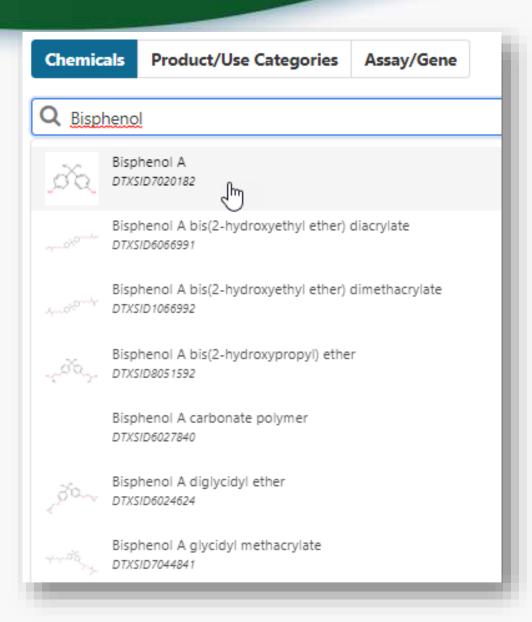
Red = Analytical Chemistry

Blue = Data Processing & Analysis

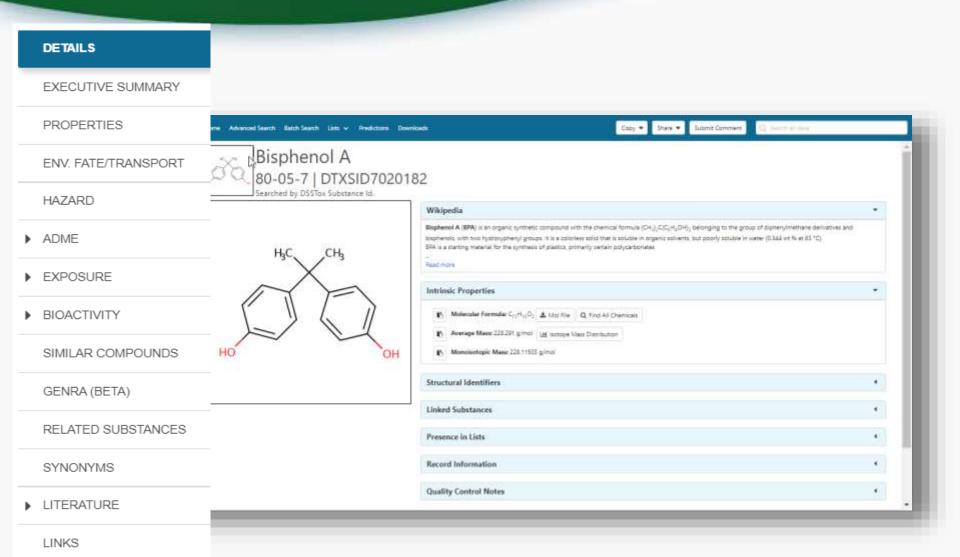
Purple = Mathematical & QSPR Modeling


Green = Informatics & Web Services

CompTox Chemicals Dashboard

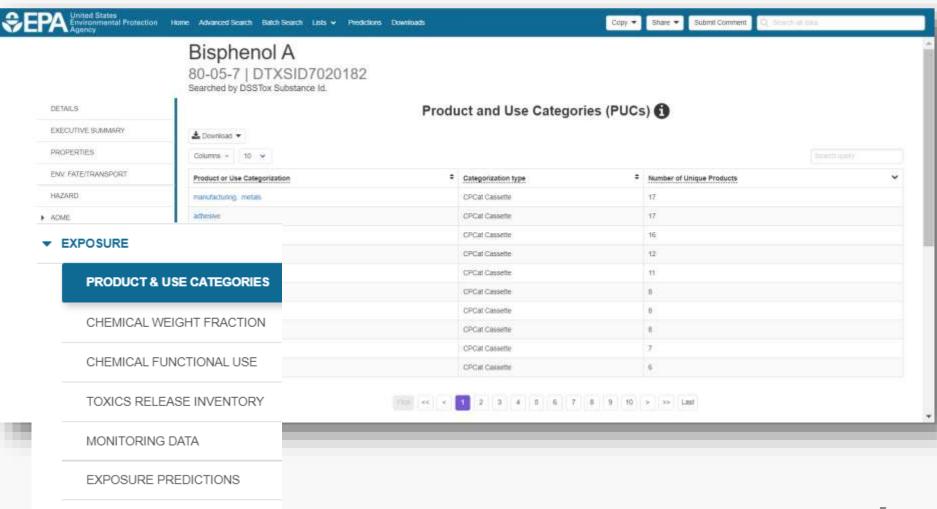

https://comptox.epa.gov/dashboard

BASIC Search

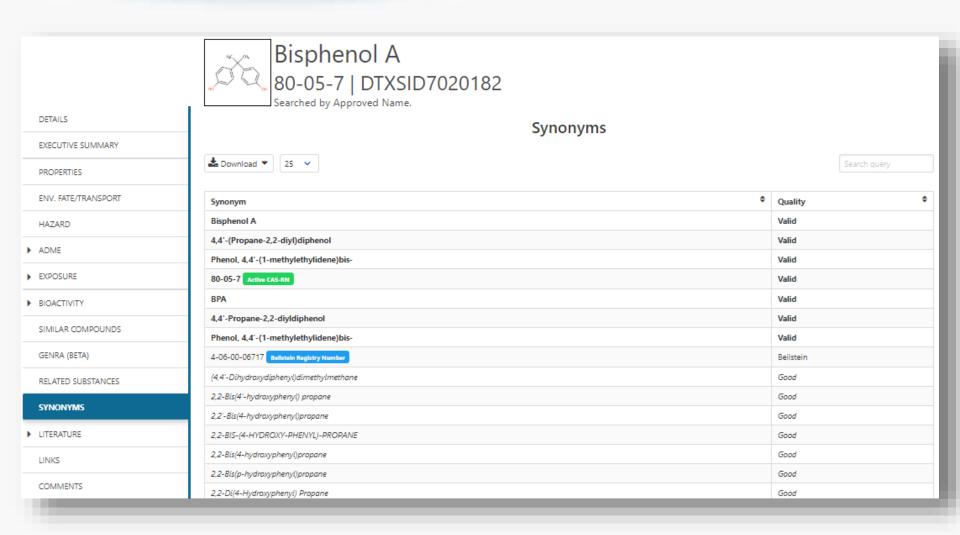


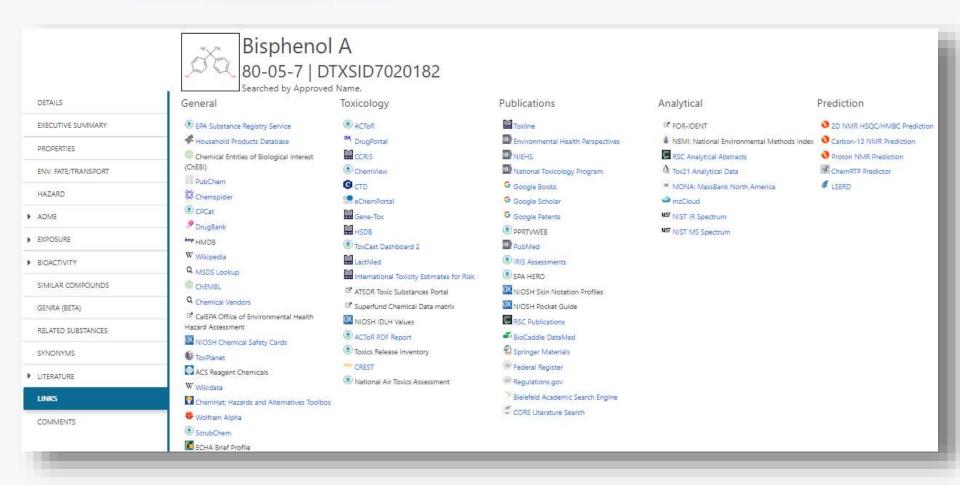
Detailed Chemical Pages

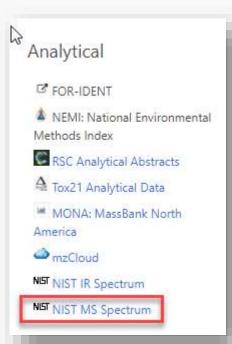
COMMENTS

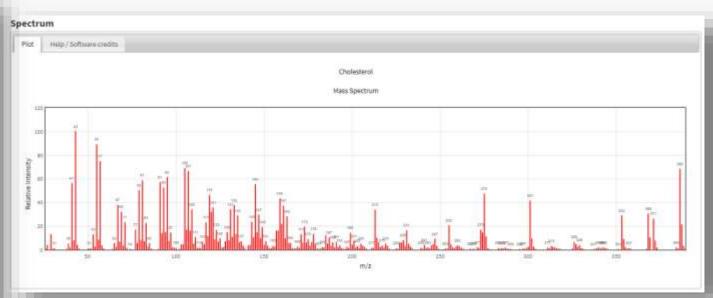


Sources of Exposure to Chemicals

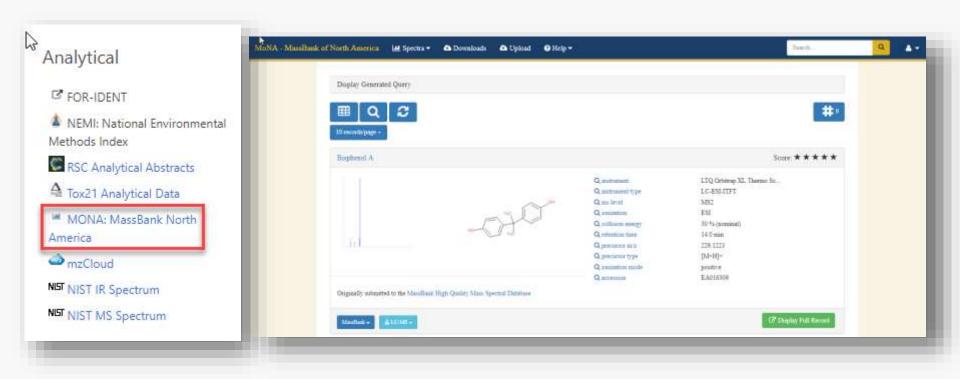

PRODUCTION VOLUME


Identifiers to Support Searches


Link Access



NIST WebBook https://webbook.nist.gov/chemistry/



MassBank of North America https://mona.fiehnlab.ucdavis.edu

BATCH SEARCHING

Aggregate data for a list of chemicals

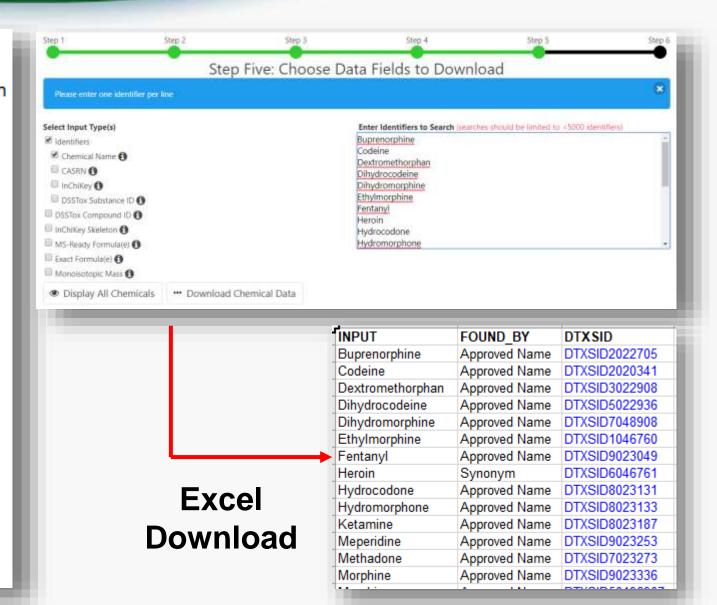
Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas ³, Imma Ferrer b △ 🖾, E.Michael Thurman b, Ana Agüera ³

E Show more


https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Add Other Data of Interest

Chemical Identifiers

- ✓ DTXSID
- Chemical Name
- ☐ DTXCID **(**)
- ✓ CAS-RN
- ✓ InChlKey <a>f
- ☐ IUPAC Name 🚯

Structures

- ☐ Mol File 🚯
- SMILES 1
- InChl String
- ✓ MS-Ready SMILES
- QSAR-Ready SMILES (1)

Intrinsic And Predicted Properties

- Molecular Formula 6
- Average Mass < 1</p>
- ✓ Monoisotopic Mass

 ⑥
- TEST Model Predictions
- OPERA Model Predictions

INPUT	DTXSID	CASRN	MOLECULAR_F	MONOISOTOPIC	MS_READY_SMI
Buprenorph	DTXSID202	52485-79-7	C29H41NO4	467.3035588	[H]C12CC3=C4C
Codeine	DTXSID202	76-57-3	C18H21NO3	299.1521435	[H]C12CC3=C4C
Dextrometh	DTXSID302	125-71-3	C18H25NO	271.1936144	[H]C12CC3=C(C=
Dihydrocode	DTXSID502	125-28-0	C18H23NO3	301.1677936	[H]C12CC3=C4C
Dihydromor	DTXSID704	509-60-4	C17H21NO3	287.1521435	[H]C12CC3=C4C
Ethylmorph	DTXSID104	76-58-4	C19H23NO3	313.1677936	[H]C12CC3=C4C
Fentanyl	DTXSID902	437-38-7	C22H28N2O	336.2201635	CCC(=O)N(C1CC
Heroin	DTXSID604	561-27-3	C21H23NO5	369.1576228	[H]C12CC3=C4C
Hydrocodon	DTXSID802	125-29-1	C18H21NO3	299.1521435	[H]C12CC3=C4C
Hydromorph	DTXSID802	466-99-9	C17H19NO3	285.1364935	[H]C12CC3=C4C
Ketamine	DTXSID802	6740-88-1	C13H16CINO	237.0920418	CNC1(CCCCC1=
Meperidine	DTXSID902	57-42-1	C15H21NO2	247.1572289	CCOC(=O)C1(CC
Methadone	DTXSID702	76-99-3	C21H27NO	309.2092645	CCC(=O)C(CC(C)
Morphine	DTXSID902	57-27-2	C17H19NO3	285.1364935	[H]C12CC3=C4C
Morphinone	DTXSID501	467-02-7	C17H17NO3	283.1208434	[H]C12CC3=C4C
Naloxone	DTXSID802	465-65-6	C19H21NO4	327.1470582	[H]C12CC3=C4C
Naltriben	-	-	-	-	-
Oxycodone	DTXSID502	76-42-6	C18H21NO4	315.1470582	[H]C12CC3=C4C
Oxymorpho	DTXSID502	76-41-5	C17H19NO4	301.1314081	[H]C12CC3=C4C
Propoxyphe	DTXSID102	469-62-5	C22H29NO2	339.2198292	CCC(=O)OC(CC1
Sufentanil	DTXSID602	56030-54-7	C22H30N2O2S	386.2027994	CCC(=O)N(C1=C
Tramadol	DTXSID908	27203-92-5	C16H25NO2	263.188529	COC1=CC=CC(=

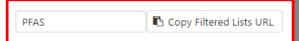
CHEMICAL LISTS

Chemical Lists

Home	Advanced Search	Batch Search	Lists 🕶	Predictions	Downloads
			Lists of Che		
			List of Assa		

Columns ~

mass Copy Filtered Lists URL


List Acronym 🕏	List Name \$	Last Updated 🕏	Number of Chemicals *	List Description
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

PFAS lists of Chemicals

Select List

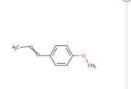
List Acronym	List Name	Last Updated 🕏	Number of Chemicals ♥	List Description			
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.			
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.			
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.			
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.			
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.			
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.			
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.			
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.			
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS			
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)			

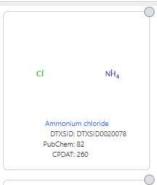
EPAHFR: Hydraulic Fracturing

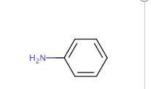
WATER|EPA; Chemicals associated with hydraulic fracturing

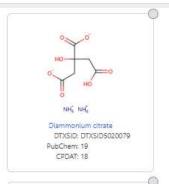
Q Search EPAHFR Chemicals


Identifier substring search


List Details


Description: Chemicals used in hydraulic fracturing fluids and/or identified in produced water from 2005-2013, corresponding to chemicals listed in Appendix H of EPA's Hydraulic Fracking Drinking Water Assessment Final Report (Dec 2016). Citation: U.S. EPA, Hydraulic Fracturing for Oil and Gas: Impacts from the Hydraulic Fracturing Water Cycle on Drinking Water Resources in the United States (Final Report). U.S. Environmental Protection Agency, Washington, D.C. EPA/600/R-16/236F, 2016. https://www.epa.gov/hfstudy


*Note that Appendix H chemical listings in Tables H-2 and H-4 were mapped to current DSSTox content, which has undergone additional curation since the publication of the original EPA HF Report (Dec 2016). In the few cases where a Chemical Name and CASRN from the original report map to distinct substances (as of Jan 2018), both were included in the current EPAHFR chemical listing for completeness; additionally, 34 previously unmapped chemicals in Table H-5 are now registered in DSSTox (all but 2 assigned CASRN) and, thus, have been added to the current EPAHFR listing.

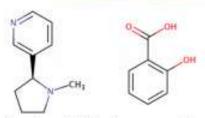

Number of Chemicals: 1640

Batch Search in specific lists

INPUT	DTXSID	MASSBANKREF	NEMILIST	WRTMSD	NORMANPRI	SUSDAT
Buprenorphi	DTXSID202:		_	Υ	-	Υ
Codeine	DTXSID202	Υ	Υ	Υ	Υ	Υ
Dextrometh	DTXSID302:	Υ	Υ	Υ	-	Υ
Dihydrocod	DTXSID502:	Υ	_	Υ	Υ	Υ
Dihydromor	DTXSID704	-	_	-	-	Υ
Ethylmorph	DTXSID104	-	_	Υ	-	Υ
	DTXSID902:	Υ	_	Υ	-	Υ
✓ Meroin	DTXSID604	Υ	_	Υ	Υ	Υ
Hydrocodor	DTXSID802:	Υ	Υ	Υ	Υ	Υ
Hydromorph	DTXSID802:	-	-	Υ	-	Υ
	DTXSID802:	Υ	-	Υ	-	Υ
Meperidine			-	Υ	-	Υ
Methadone	DTXSID702:	Υ	Υ	Υ	-	Υ
✓ Morphine	DTXSID902:	Υ	Y	Υ	Υ	Υ
Morphinone	DTXSID5019	-	_	-	-	Υ
Maloxone	DTXSID802:	-	-	Υ	-	Υ
■ Naltriben	_	-	-	-	-	-
	DTXSID502		Y	Υ	Υ	Υ
Oxymorpho _			-	Υ	-	Υ
■ Propoxyphe	DTXSID102	Υ	Υ	Υ	-	Υ
Sufentanil	DTXSID602	-	-	Υ	-	Υ
Tramadol	DTXSID908	Y	Υ	Υ	Υ	Υ

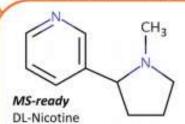
"MS-READY" STRUCTURES

pubs.acs.org/est

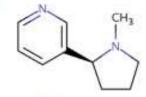


Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*,†© and Antony J. Williams*,‡©

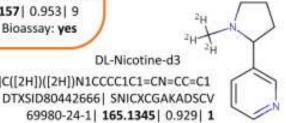

CN1CCC[C@H]1C1=CN=CC=C1 DTXSID10209301 SNICXCGAKADSCV 54-11-5 | 162.1157 | 0.929 | 72 Tox: yes | Expo: yes | Bioassay: yes

Benzoic acid, 2-hydroxy-, compd. with 3-[(2S)-1-methyl-2-pyrrolidinyl]pyridine (1:1)


OC(=O)C1=C(O)C=CC=C1.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID5075319| AIBWPBUAKCMKNS 29790-52-1 300.1474 0.929 6 Tox: no | Expo: yes | Bioassay: no

CN1CCC[C@@H]1C1=CN=CC=C1 DTXSID004635 | SNICXCGAKADSCV 25162-00-9 | 162.1157 | 0.929 | 20 Tox: no | Expo: yes | Bioassay: yes

CN1CCCC1C1=CN=CC=C1 DTXSID3048154 | SNICXCGAKADSCV 22083-74-5 | 162.1157 | 0.953 | 9 Tox: yes | Expo: no | Bioassay: yes


LEGEND: Name, SMILES DTXSID | InChiKey 1st Block CAS | Monoiso, Mass | logP | Sources Data on: Toxicity | Exposure | Bioassays

Nicotine hydrochloride

HCI

CI.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID602093 | HDJBTCAJIMNXEW 2820-51-1 | 198.0924 | 0.929 | 9 Tox: no | Expo: yes | Bioassay: yes

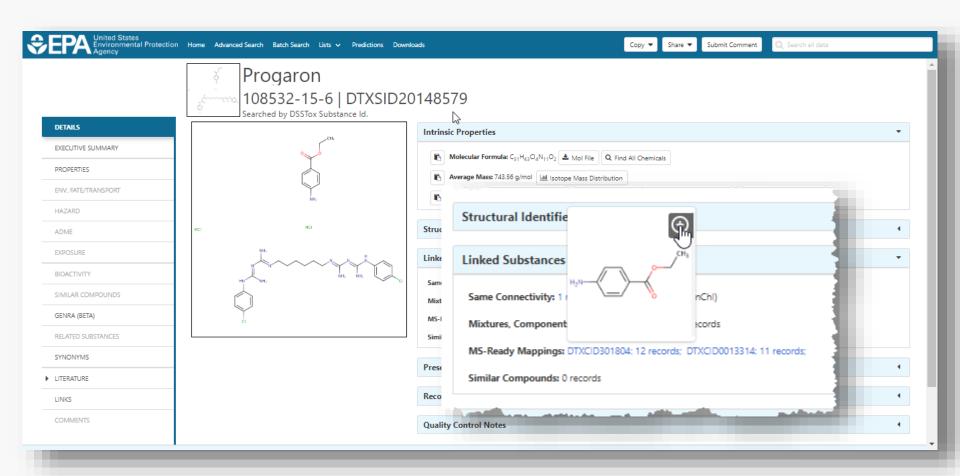
DL-Nicotine-d3 [2H]C([2H])([2H])N1CCCC1C1=CN=CC=C1

> 69980-24-1 | 165.1345 | 0.929 | 1 Tox: no | Expo: no | Bioassay: no

"MS-Ready Structures"

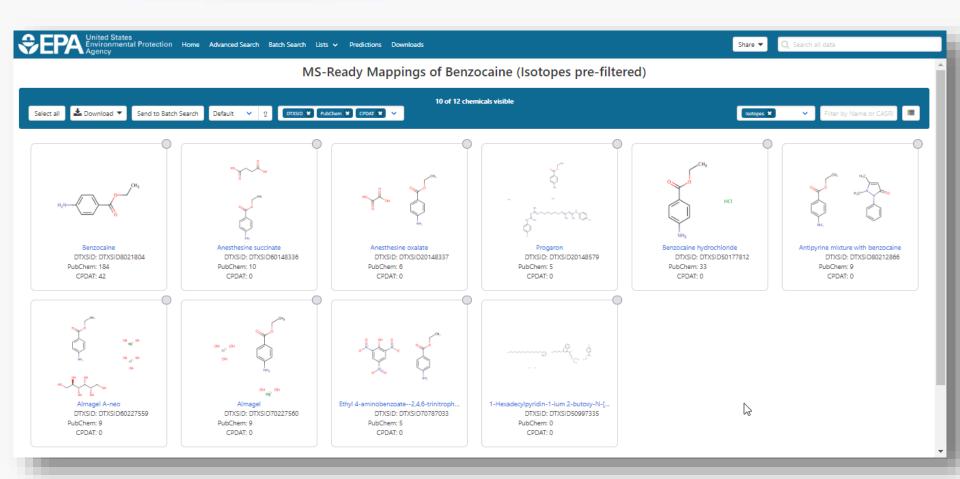
https://doi.org/10.1186/s13321-018-0299-2

McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2 Journal of Cheminformatics

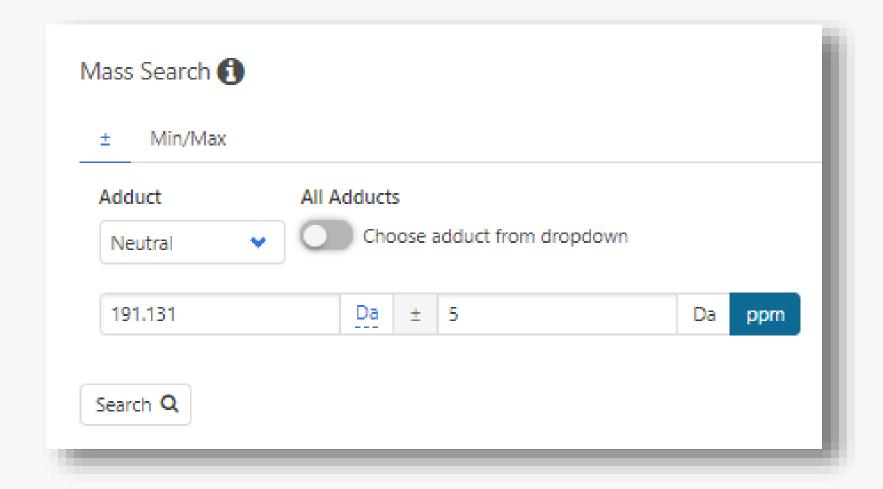

METHODOLOGY

Open Access

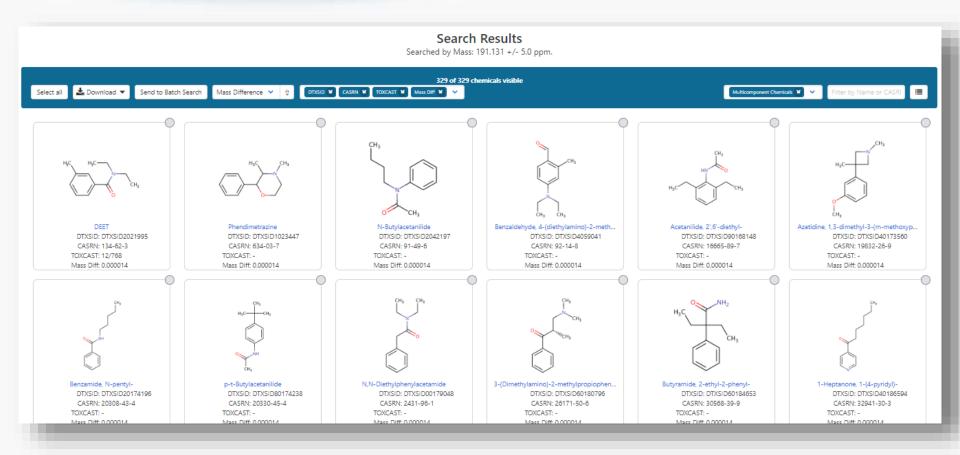
"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

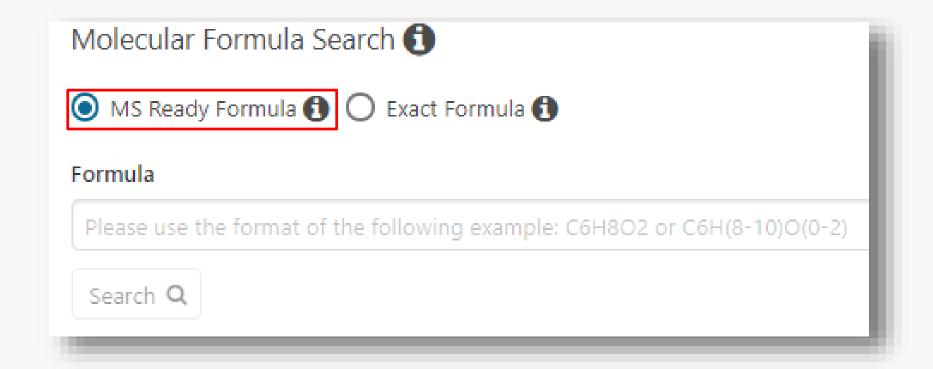

Andrew D. McEachran 1,2*, Kamel Mansouri 1,23, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

MS-Ready Mappings Set



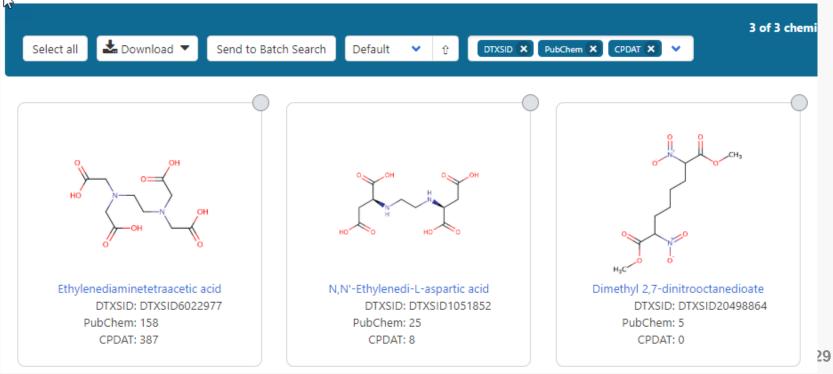
MASS AND FORMULA SEARCHING

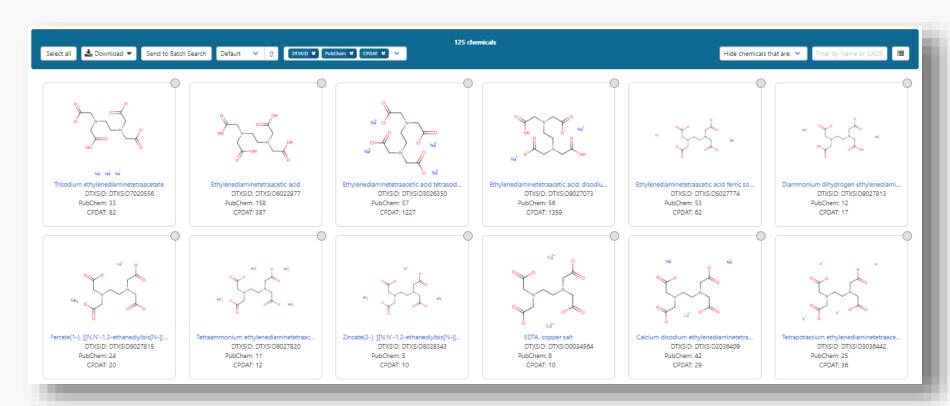

Advanced Searches Mass Search


Advanced Searches Mass Search


MS-Ready Structures for **Formula Search**

MS-Ready Structures Batch Searches

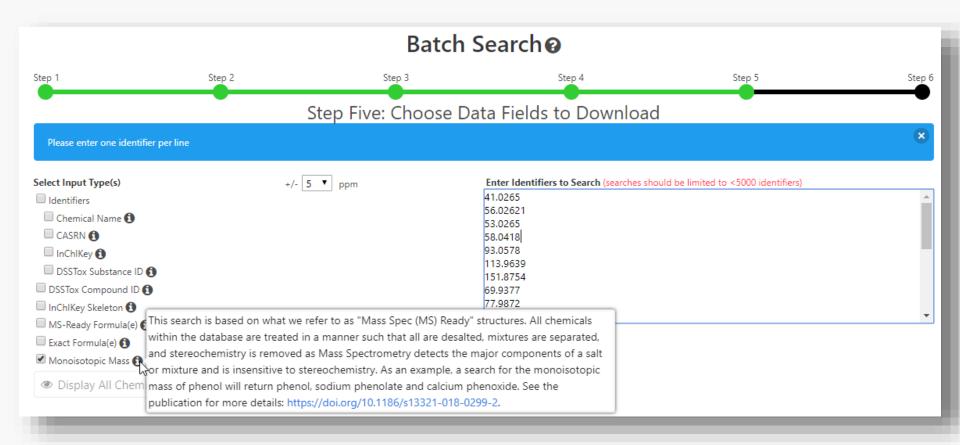



EXACT Formula: C10H16N2O8: 3 Hits

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged

Batch Searching

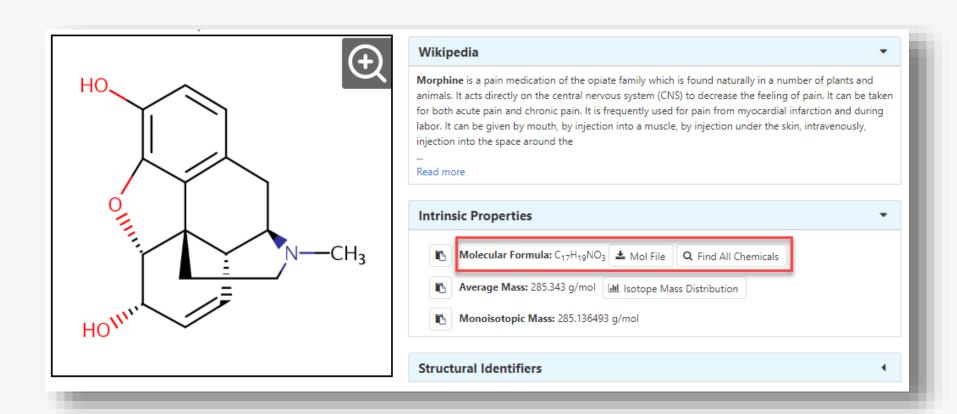

 Singleton searches are useful but we work with thousands of masses and formulae!

Typical questions

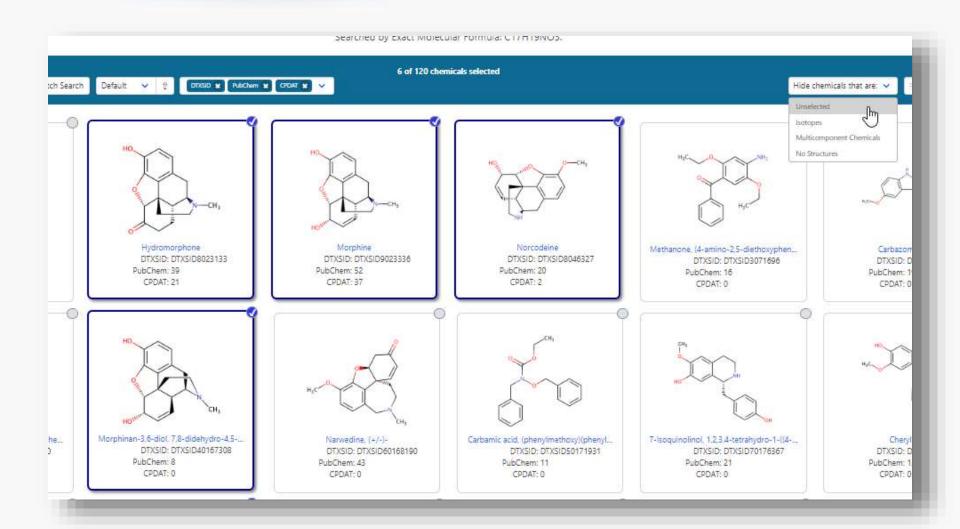
- What is the list of chemicals for the formula C_xH_yO_z
- What is the list of chemicals for a mass +/- error
- Can I get chemical lists in Excel files? In SDF files?
- Can I include properties in the download file?

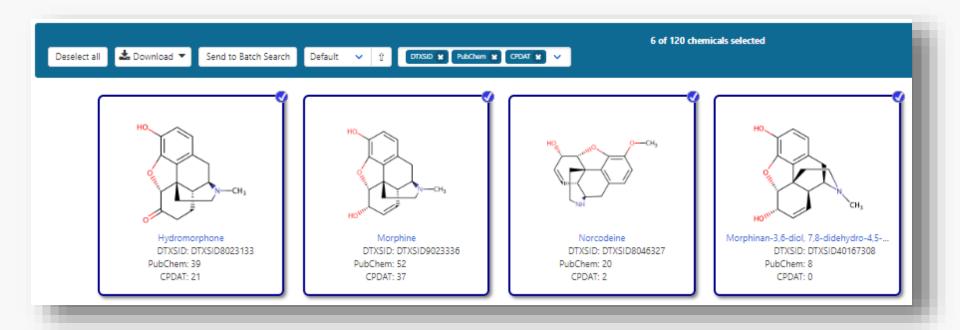
Batch Searching Formula/Mass

Searching batches using MS-Ready Formula (or mass) searching


	Ommu	ia (Oi	i i i a o	o) scarcing			
	4 A	В	С	D	E	F	G
1	INPUT	DTXSID	CASRN	PREFERRED NAME	MOL FORMULA	MONOISOTOPIC MASS	DATA SOURCES
2	C14H22N2O3	DTXSID2022628	29122-68-7	Atenolol	C14H22N2O3	266.163042576	46
3	C14H22N2O3	DTXSID0021179	6673-35-4	Practolol	C14H22N2O3	266.163042576	32
4	C14H22N2O3	DTXSID4048854	841-73-6	Bucolome	C14H22N2O3	266.163042576	20
5	C14H22N2O3	DTXSID1045407	13171-25-0	Trimetazidine dihydrochloride	C14H24Cl2N2O3	338.116398	19
6	C14H22N2O3	DTXSID0045753	56715-13-0	R-(+)-Atenolol	C14H22N2O3	266.163042576	19
7	C14H22N2O3	DTXSID2048531	5011-34-7	Trimetazidine	C14H22N2O3	266.163042576	14
8	C14H22N2O3	DTXSID10239405	93379-54-5	Esatenolol	C14H22N2O3	266.163042576	12
9	C14H22N2O3	DTXSID50200634	52662-27-8	N-(2-Diethylaminoethyl)-2-(4-hydroxyphenoxy)acetamide	C14H22N2O3	266.163042576	7
1	C14H22N2O3	DTXSID4020111	51706-40-2	dl-Atenolol hydrochloride	C14H23CIN2O3	302.1397203	6
1	1 C14H22N2O3	DTXSID1068693	51963-82-7	Benzenamine, 2,5-diethoxy-4-(4-morpholinyl)-	C14H22N2O3	266.163042576	5
13	C18H34N2O6S	DTXSID3023215		Lincomycin	C18H34N2O6S	406.213757997	35
1	C18H34N2O6S	DTXSID7047803	859-18-7		C18H35CIN2O6S	442.1904357	22
14		DTXSID20849438		PUBCHEM_71432748	C18H35CIN2O6S	442.1904357	1
1	C10H12N2O	DTXSID1047576	486-56-6	Cotinine	C10H12N2O	176.094963014	40
1	C10H12N2O	DTXSID8075330	50-67-9	Serotonin	C10H12N2O	176.094963014	22
1	7 C10H12N2O	DTXSID8044412	2654-57-1	4-Methyl-1-phenylpyrazolidin-3-one	C10H12N2O	176.094963014	18
1	C10H12N2O	DTXSID80165186	153-98-0		C10H13CIN2O	212.0716407	11
1	C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine	C10H12N2O	176.094963014	10
2	C10H12N2O	DTXSID10196105	443-31-2	6-Hydroxytryptamine	C10H12N2O	176.094963014	9
2	1 C10H12N2O	DTXSID90185693	31822-84-1	1,4,5,6-Tetrahydro-5-phenoxypyrimidine	C10H12N2O	176.094963014	7
2	C10H12N2O	DTXSID40178777	2403-66-9	2-Benzimidazolepropanol	C10H12N2O	176.094963014	7
2	C10H12N2O	DTXSID80157026	13140-86-8	N-Cyclopropyl-N'-phenylurea	C10H12N2O	176.094963014	6
2	C10H12N2O	DTXSID30205607		4-Hydroxytryptamine	C10H12N2O	176.094963014	6
2	C14H18N4O3	DTXSID5023900	17804-35-2	Benomyl	C14H18N4O3	290.137890456	68
2	C14H18N4O3	DTXSID3023712	738-70-5		C14H18N4O3	290.137890456	51
2	C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
2		DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
	C14H18N4O3	DTXSID20152671	120075-57-2	6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
	C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-		290.137890456	3
	C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-		308.14845514	3
	C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
	C14H18N4O3	DTXSID80241156		L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny		437.191048229	3
	C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam		290.137890456	3
	C12H11N7		396-01-0		C12H11N7	253.107593382	52
3	C12H11N7	DTXSID00204465			C12H11N7	253.107593382	7
3		DTXSID5064621	7300-26-7		C12H9N7	251.091943318	4
3		DTXSID00848025			C12H13N7O4S	351.074973101	1
3	C12H11N7	DTXSID50575293	92310-83-3	(1E)-N-Phenyl-1,2-bis(1H-1,2,4-triazol-1-yl)ethan-1-imine	C12H11N7	253.107593382	1
4		DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2	151.063328534	75
1	L CSHOVIO3	DTYSIDE026667	13/1 201 3	Mothyl 2 aminohonzoato	CSHONIOS	1E1 UE3338E34	50

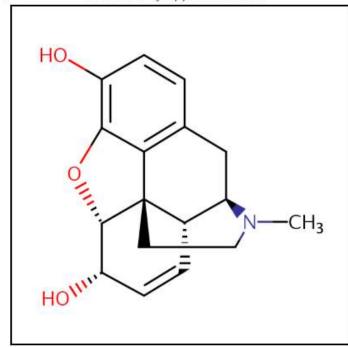
SUPPORTING FUNCTIONALITY FOR MASS-SPEC

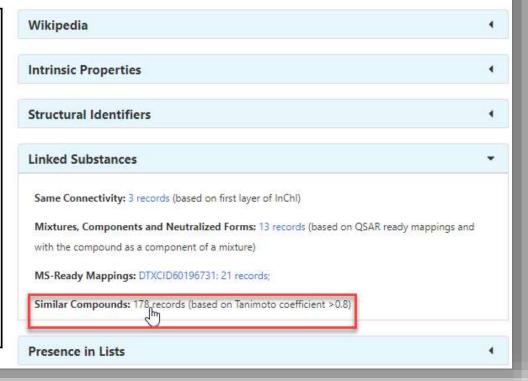

Formula-Based Search


Select Chemicals of Interest

Prune to list of interest

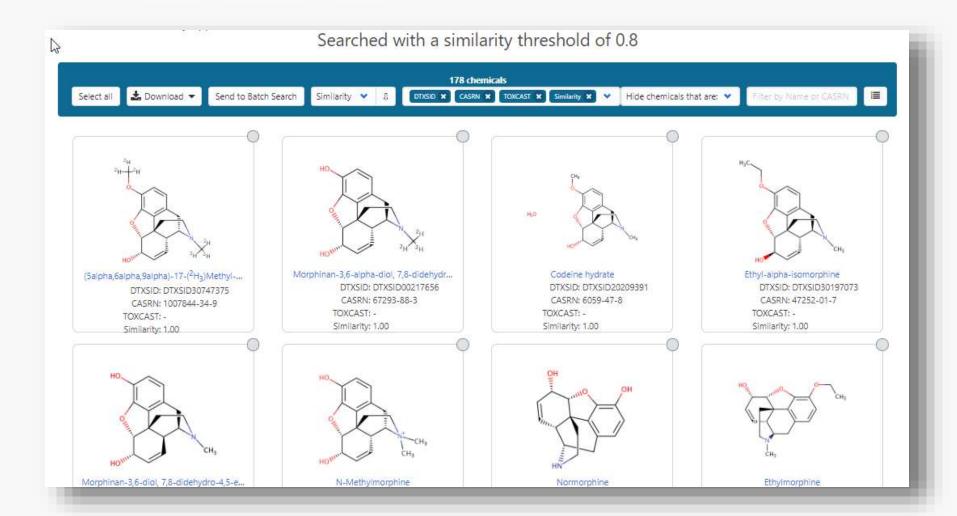
Structure Similarity Searches





Morphine

57-27-2 | DTXSID9023336


Searched by Approved Name.

Structure Similarity Searches

Literature Searching

Morphine

57-27-2 | DTXSID9023336

Searched by Approved Name.

Abstract Sifter

1) Select PubMed starting point query then 2) click on Retrieve. Select a Query Term Retrieve Articles Select a Query Term Hazard Fate and Transport Metabolism/PK/PD Chemical Properties Exposure Mixtures Male Reproduction Androgen Disruption Female Reproduction GeneTox Cancer Clinical Trials Embryo and embryonic development Child (infant through adolescent) Dust and Exposure Food and Exposure Water and Exposure Algae Disaster / Emergency

O	ntionally.	edit the	query	before	retrieving.
\sim	puonuny,	Cuit till	quely	DOIDIG	rouneving.

"57-27-2" OR "Morphine"

Literature Searching

Child (Intant through adolescent)

Dust and Exposure

Food and Exposure

Water and Exposure

Algae

Disaster / Emergency

Uptionally, edit the query before retrieving.

("57-27-2" OR "Morphine") AND ((water OR groundwater OR drinking water) AND Environmental Exposure)

Literature Searching

37 of 37 articles loaded...

Authors Authors Journal Rev And thei Krizman-Matasic; Kostanjevecki; Ahel; Terzic Journal of chromatography. A Dominate Poon; Aleksa; Carnevale; Kapur, Goodyer; Koren Waters o Vazquez-Roig; Andreu; Blasco; Morillas; Picó Environmental science and pollution research inter Chemosphere
and thei Krizman-Matasic; Kostanjevecki; Ahel; Terzic Journal of chromatography. A pominate Poon; Aleksa; Carnevale; Kapur, Goodyer; Koren Therapeutic drug monitoring waters o Vazquez-Roig; Andreu; Blasco; Morillas; Picó Environmental science and pollution research inter fface an Berset; Brenneisen; Mathieu Chemosphere
pominate Poon; Aleksa; Carnevale; Kapur, Goodyer; Koren Therapeutic drug monitoring waters o Vazquez-Roig; Andreu; Blasco; Morillas; Picó Environmental science and pollution research inter frace an Berset; Brenneisen; Mathieu Chemosphere
waters o Vazquez-Roig; Andreu; Blasco; Morillas; Picó Environmental science and pollution research inter fface an Berset; Brenneisen; Mathieu Chemosphere
rface an Berset; Brenneisen; Mathieu Chemosphere
contami Zuccato; Castiglioni; Bagnati; Chiabrando; Grassi; Water research
nate lev Bones; Thomas; Paull Journal of environmental monitoring : JEM
e drugs Hummel; Löffler; Fink; Ternes Environmental science & technology
ster trea Kumar; Tscharke; O'Brien; Mueller; Wilkins; Padhye The Science of the total environment
scence Mohammadian; Najafi; Miladi-Gorji Developmental psychobiology
during Foppe; Hammond-Weinberger; Subedi The Science of the total environment
ected illi Gao; Banks; Li; Jiang; Lai; Mueller; Thai The Science of the total environment
maceuti Causanilles; Ruepert; Ibáñez; Emke; Hernández; d The Science of the total environment
polysac Mottaz; Schönenberger; Fischer; Eggen; Schirmer; Environmental pollution (Barking, Essex : 1987)
prolifer Haydari; Safari; Zarbakhsh; Bandegi; Miladi-Gorji Neuroscience letters
to an en Parolini; Magni; Castiglioni; Binelli Ecotoxicology and environmental safety
uth Aus Tscharke; Chen; Gerber; White The Science of the total environment ▼

Example Online Resources for MS

NORMAN
Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

DO WE REALLY NEED ANOTHER DATABASE?

Is a bigger database better?

Journal of The American Society for Mass Spectrometry

___ January 2012, Volume 23, <u>Issue 1</u>, pp 179–185 | <u>Cite as</u>

Identification of "Known Unknowns" Utilizing Accurate Mass Data and ChemSpider

Authors Authors and affiliations

James L. Little , Antony J. Williams , Alexey Pshenichnov, Valery Tkachenko

- ChemSpider was 26 million chemicals then
- Much BIGGER today
- Is bigger better??

Comparing Search Performance

Anal Bioanal Chem (2017) 409:1729–1735 DOI 10.1007/s00216-016-0139-z

RAPID COMMUNICATION

Identifying known unknowns using the US EPA's CompTox Chemistry Dashboard

Andrew D. McEachran 1 · Jon R. Sobus 2 · Antony J. Williams 3

- Dashboard content was 720k chemicals
- Only 3% of ChemSpider size
- What was the comparison in performance?

SAME dataset for comparison

Compound class	Number in class	Average rank	Number of compounds in each position rank-ordered						
			#1	#2	#3	#4	#5+		
Pharmaceutical drug	72	1.4	55	9	6	2			
Industrial chemicals	42	5.5	28	6	3		5		
Personal care products	8	6.1	3	1			4		
Steroid hormones	7	1.0	7						
Perfluorochemicals	6	1.2	5	1					
Pesticides	12	2.3	6	2	3		1		
Veterinary drugs	3	1.3	2	1					
Dyes	2	1.0	2						
Food product/natural compounds	4	3.8	2			1	1		
Illicit drugs	2	2.0	1		1				
Misc. molecules	3 ^a	1.3	2	1					

How did performance compare?

Summary statistics and rank-ordered position in the CompTox Chemistry Dashboard and ChemSpider of the 89 compound subset from the Little et al. [7] study

		Average ran	Average rank		Number in each position rank-order						
_		(±SD)		#1	#2	#3	#4	#5+			
Mass-based	Dashboard	1.2 ± 0.7		77 ^a	5	3	3				
	ChemSpider	$2.2 \pm 6.1^{\text{b}}$		68	8	7	1	5			
Formula-based	Dashboard	1.1 ± 0.4		78 ^a	8	2					
	ChemSpider	1.3 ± 1.0		77	8	2	1	2			

^aOne chemical (tephrosin) not present in the Dashboard

Data Quality is important

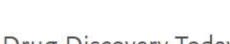
Data quality in free web-based databases!

Drug Discovery Today

Volume 17, Issues 13-14, July 2012, Pages 685-701

Keynote

Towards a gold standard: **ELSEVIER**


quality in public domain

databases and approaches

⊞ Show

Drug Discovery Today

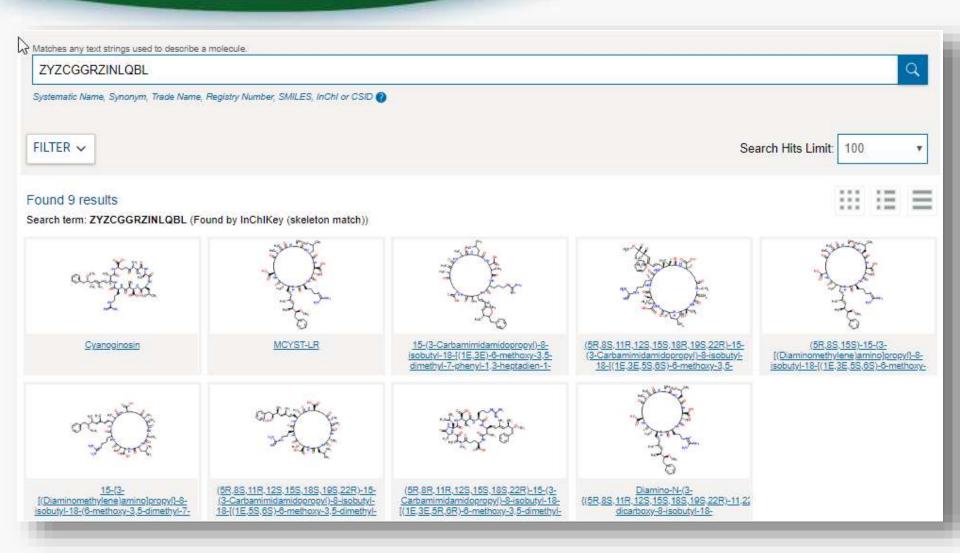
Machines first, humans second: on the importance

Antony). of algorithmic interpretation of open chemistry

data

Alex M Clark M, Antony J Williams and Sean Ekins

Journal of Cheminformatics 2015 7:9


https://doi.org/10.1186/s13321-015-0057-7 © Clark et al.; licensee Springer. 2015

Received: 24 November 2014 | Accepted: 23 February 2015 | Published: 22 March 2015

and content

Will the correct Microcystin LR Stand Up? ChemSpider Skeleton Search

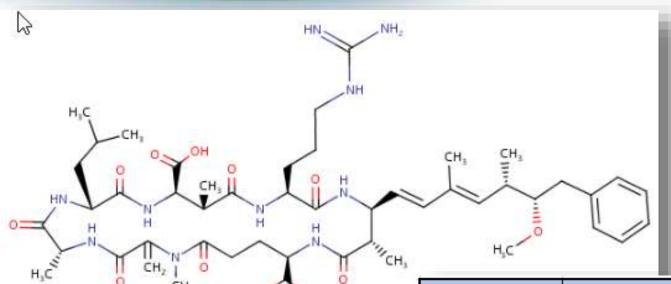
International Chemical Identifier

$$O = H_3C$$

$$CH_3$$

$$O = H_3C$$

$$CH_3$$


$$O = H_3C$$

$$O = H_3$$

InChl=1S/C49H74N10O12/c1-26(2)23-37-46(66)58-40(48(69)70)30(6)42(62)55-35(17-14-22-52-49(50)51)45(65)54-34(19-18-27(3)24-28(4)38(71-10)25-33-15-12-11-13-16-33)29(5)41(61)56-36(47(67)68)20-21-39(60)59(9)32(8)44(64)53-31(7)43(63)57-37/h11-13,15-16,18-19,24,26,28-31,34-38,40H,8,14,17,20-23,25H2,1-7,9-10H3,(H,53,64)(H,54,65)(H,55,62)(H,56,61)(H,57,63)(H,58,66)(H,67,68)(H,69,70)(H4,50,51,52)/b19-18+,27-24+/128-,29-,30-,31+,34-,35-,36+,37+,38-,40+1m0/s1

Comparing ChemSpider Structures

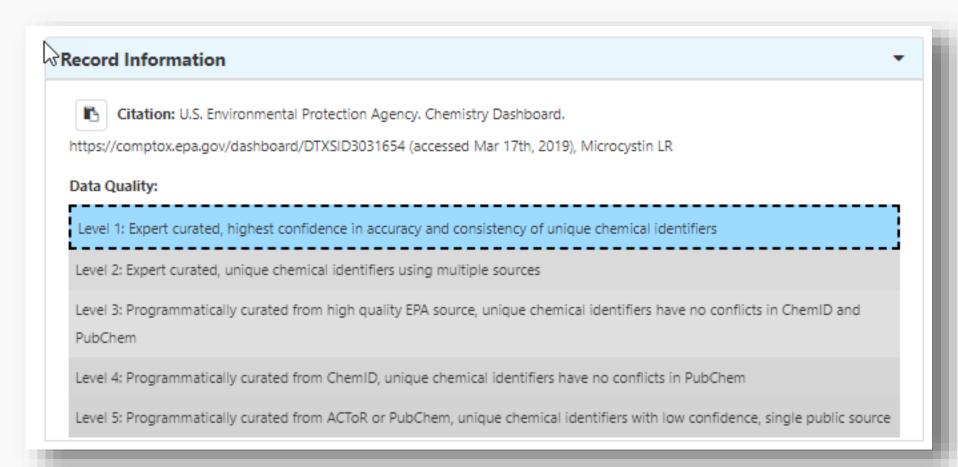
ChemSpiderID	Standard InChIKey Stereolayer
WIKIPEDIA	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+
CompTox	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+
<u>4941647</u>	t28-,29-,30-,31+,34-,35-,36+,37+,38-,40+
<u>393078</u>	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
57618348	t28-,29-,30-,31+,34-,35-,36+, 37- ,38-,40+
<u>29342071</u>	t28-,29-,30-,31+, 34+ ,35-,36+, 37- ,38-,40+
<u>7987594</u>	t28-, 29?,30? ,31+, 34? ,35-, 36?,37- ,38-, 40?
22900854	t28-, 29?,30+,31-,34+,35+,36-,37-, 38-, 40-
<u>19692240</u>	NONE
2831283	NONE

Comparing ChemSpider Structures

ChemSpiderID	ChemSpiderID InChIKey		# Different
WIKIPEDIA	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
CompTox	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>4941647</u>	ZYZCGGRZINLQBL-JCGNTXOTSA-N	10/10	0
<u>393078</u>	ZYZCGGRZINLQBL-GWRQVWKTSA-N	10/10	1
57618348	ZYZCGGRZINLQBL-UPPCHHEJSA-N	10/10	1
<u>29342071</u>	ZYZCGGRZINLQBL-IIJTUTQBSA-N	10/10	2
7987594	ZYZCGGRZINLQBL-BESLYTPASA-N	5/10	6
22900854	ZYZCGGRZINLQBL-QAXSDTKVSA-N	9/10	8
<u>19692240</u>	ZYZCGGRZINLQBL-ORZJCNCZSA-N	0/10	10
<u>2831283</u>	ZYZCGGRZINLQBL-UHFFFAOYSA-N	0/10	10

Other Searches

UniChem


Pub Chem	About
B	_
SEARCH FOR	
ZYZCGGRZINLQ	BL
Treating this query as a text search	h.
Compounds (17)	

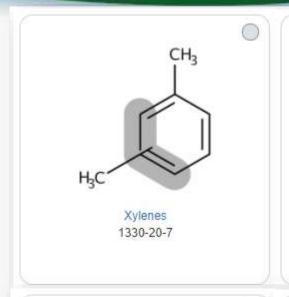
Show	Show All ▼ entries								
	CMR. Query InChl	src_id	Source	src_compound_id					
	matches	1	ChEMBL	CHEMBL444092					
	matches	4	Guide to Pharmacology	<u>4735</u>					
	matches	6	KEGG Ligand	<u>C05371</u>					
	matches	7	ChEBI	<u>6925</u>					
	matches	9	ZINC	ZINC000169715525					
	matches	9	ZINC	ZINC000255288110					
	matches	9	ZINC	ZINC000255288111					
	matches	9	ZINC	ZINC000255288112					
	matches	9	ZINC	ZINC000255288113					
	matches	9	ZINC	ZINC000255288114					
	matches	9	ZINC	ZINC000255288115					
	matches	9	ZINC	ZINC000583653042					
	matches	9	ZINC	ZINC000669680403					
	matches	10	eMolecules	<u>26754757</u>					
	matches	10	eMolecules	<u>31239828</u>					
	matches	11	IBM Patent System	DA3C2F25F29692734272194ED0E2C009					
	matches	14	FDA SRS	EQ8332842Y					
			Db.Cha						

Delivering a Better Database

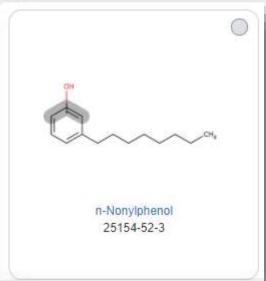
We have full time curators checking data

UVCB CHEMICAL SUBSTANCES

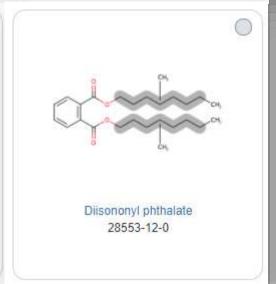
UVCB Chemicals

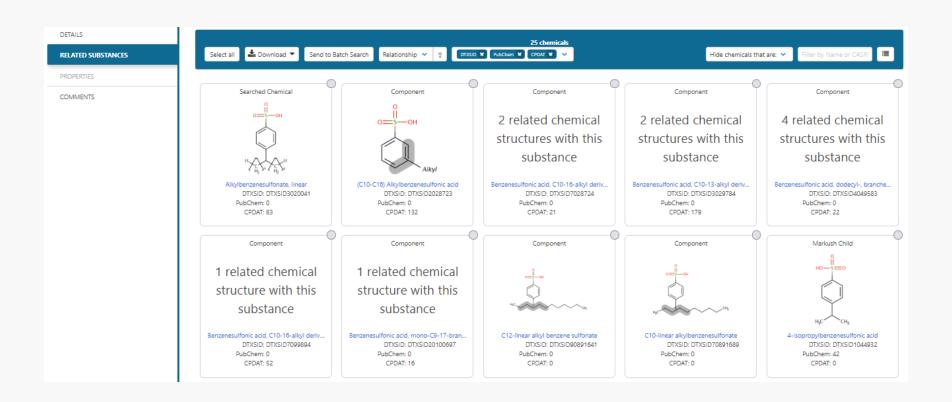

Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials (UVCB Substance) on the TSCA Inventory

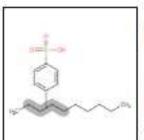
This paper is a compendium of information related to the broad class of chemical substances referred to as UVCBs for the Toxic Substances Control Act (TSCA) Chemical Substance Inventory. These chemical substances cannot be represented by unique structures and molecular formulas.

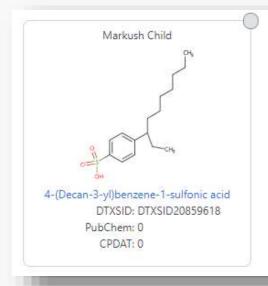

"Markush Structures"

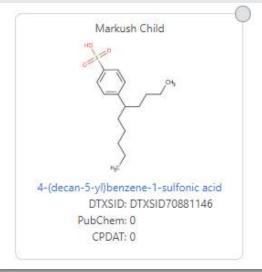
https://en.wikipedia.org/wiki/Markush_structure

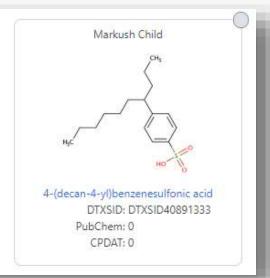





UVCB: Complex Surfactants


UVCB: Complex Surfactants





C10-linear alkylbenzenesulfonate NOCAS_891689 | DTXSID70891689

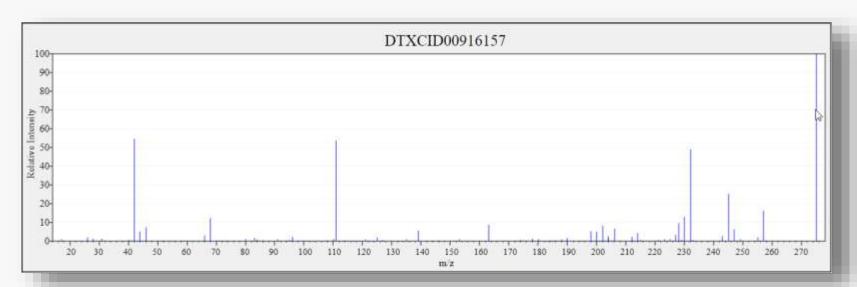
Searched by DSSTox Substance Id.

WORK IN PROGRESS

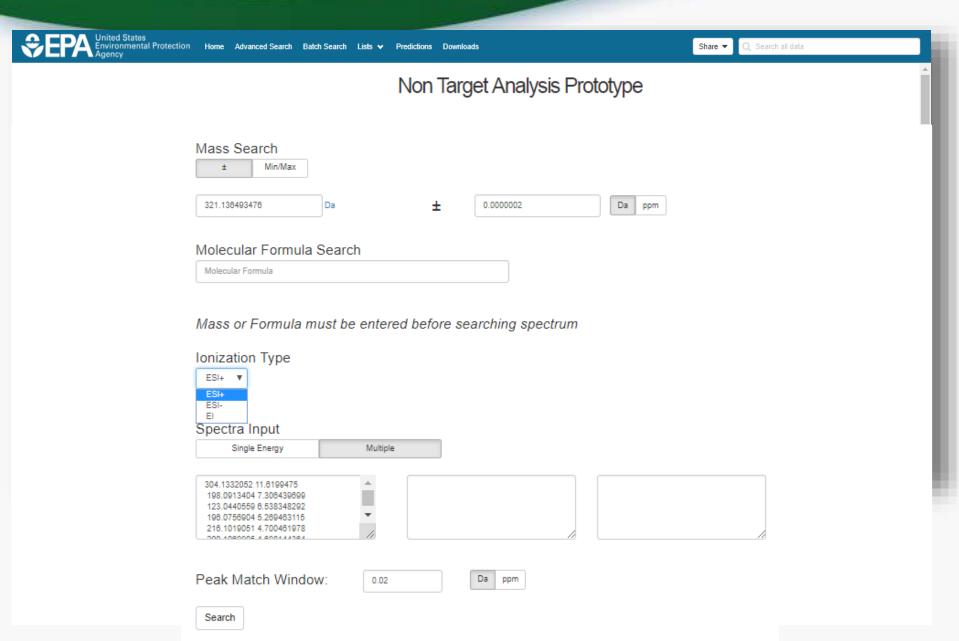
Work in Progress

CFM-ID

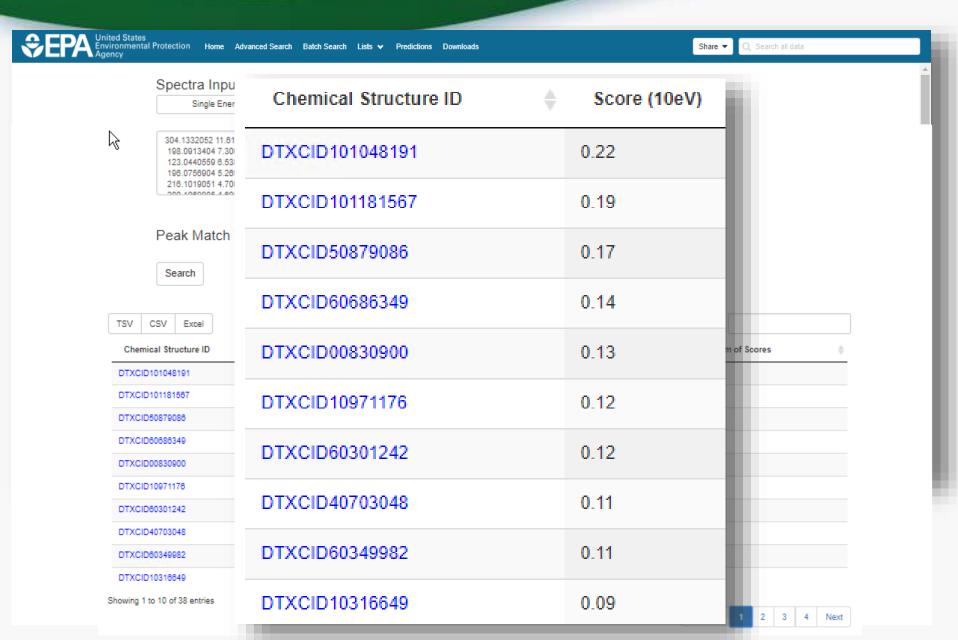
- Viewing and Downloading pre-predicted spectra
- Search spectra against the database

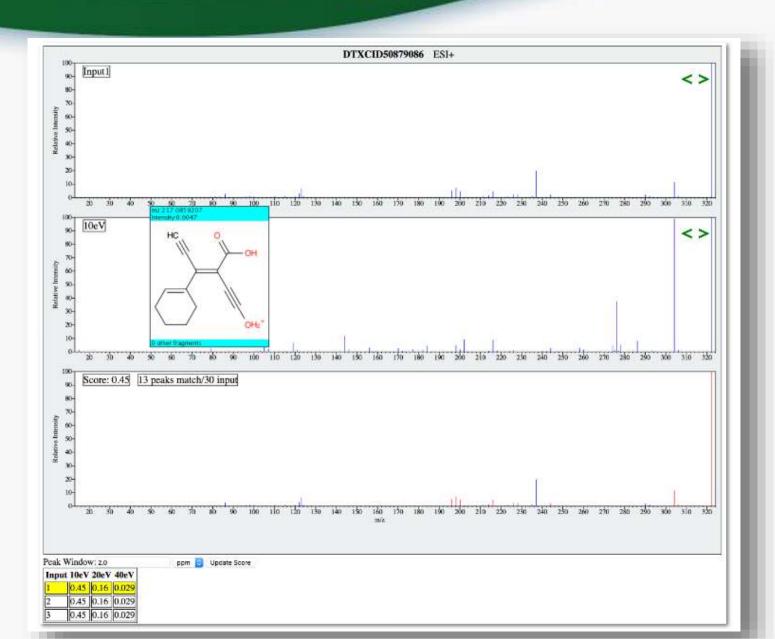

Predicted Mass Spectra

http://cfmid.wishartlab.com/

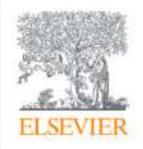


- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard


Search Expt. vs. Predicted Spectra


Search Expt. vs. Predicted Spectra

Spectral Viewer Comparison


Work in Progress

- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction

Moving to Relative Retention Times

Journal of Hazardous Materials

Volume 363, 5 February 2019, Pages 277-285

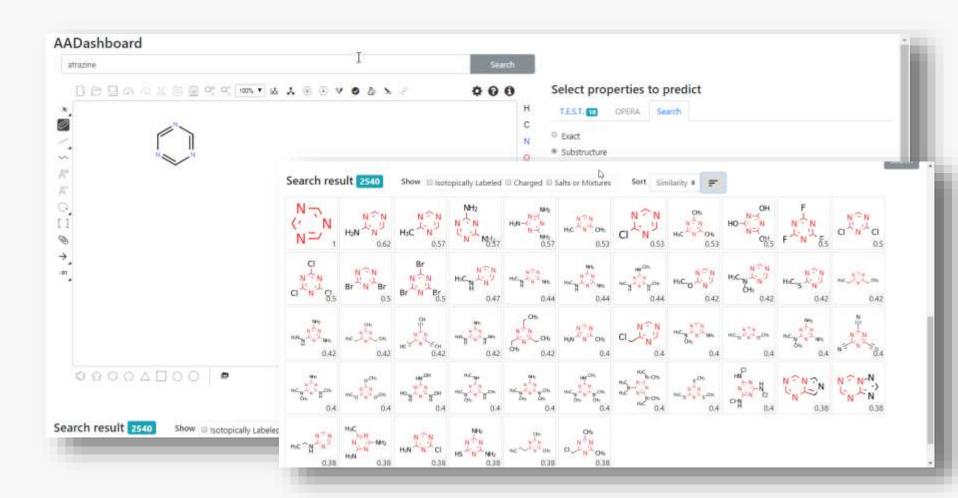
Development and application of retention time prediction models in the suspect and non-target screening of emerging contaminants

Reza Aalizadeh, Maria-Christina Nika, Nikolaos S. Thomaidis 🖰 🖾

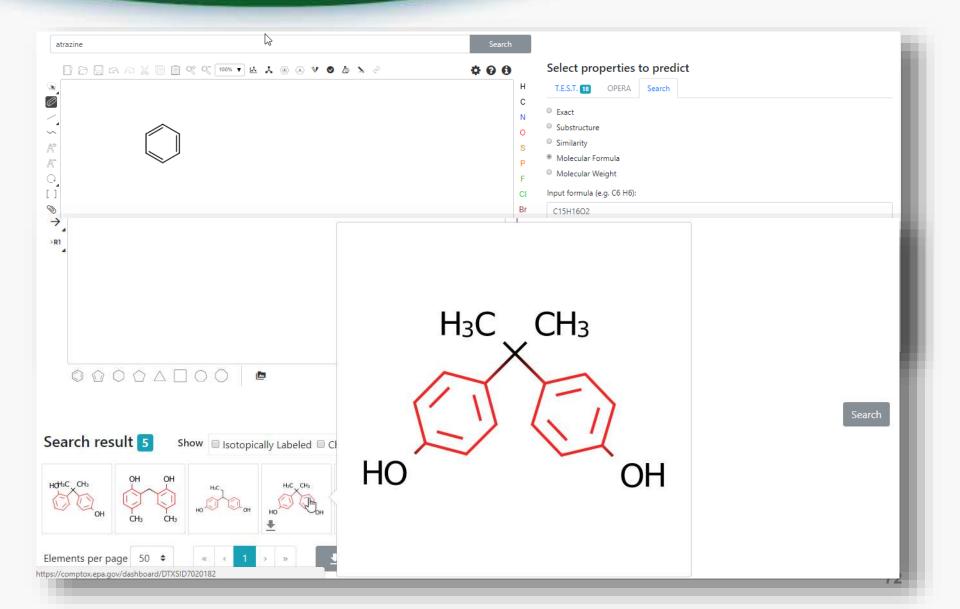
■ Show more

https://doi.org/10.1016/j.jhazmat.2018.09.047

Get rights and content


Work in Progress

- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search


Prototype Development

Prototype Development

Work in Progress

- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search
- Integration of predicted ion mobility data

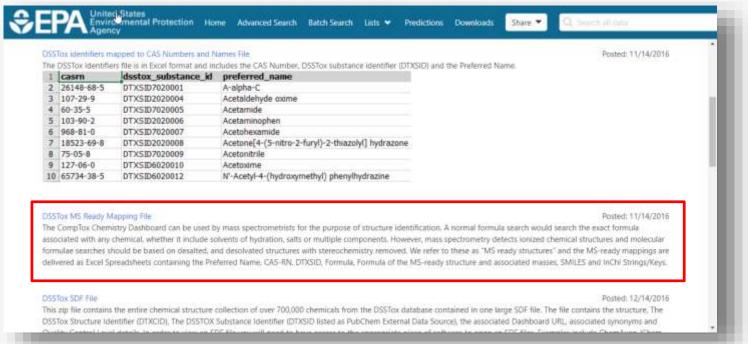
Collision Cross Section Prediction

PNNL Collision Cross Section Database

	Search					<u></u>	-	l †	T	±
Showing 1 to 25 of 1000 rows 25 rows per page		(1	2	3	4	5		40	•

Chemical	SMILES	InChi	Formula	Mass ^	CCS (Å ²)	
(3E)-pent-3-en-2-one	*	*	C ₅ H ₈ O	84.0575	[M-H] ⁻ 112.1 ISICLE Lite v0.1.0 [M+Na] ⁺ 112.6 ISICLE Lite v0.1.0 [M+H] ⁺ 113.1 ISICLE Lite v0.1.0	
$H_{9}C - \frac{CH_{9}}{S} = 0$ Dimethyl sulfone	*	*	C ₂ H ₆ O ₂ S	94.0089	[M-H] ⁻ 106.9 ISICLE Lite v0.1.0 [M+Na] ⁺ 107.3 ISICLE Lite v0.1.0 [M+H] ⁺ 108.1 ISICLE Lite v0.1.0	
isothiocyanatocyclopropan e	*	*	C ₄ H ₅ NS	99.0143	[M-H] ⁻ 111.9 ISICLE Lite v0.1.0 [M+Na] ⁺ 112.1 ISICLE Lite v0.1.0 [M+H] ⁺ 110.0 ISICLE Lite v0.1.0	•

Work in Progress



- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Retention Time Index Prediction
- Structure/substructure/similarity search
- Integration of predicted ion mobility data
- Access to API and web services for programmatic access

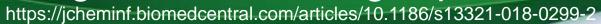
API services and Open Data

- Groups waiting on our API and web services
- Mass Spec companies instrument integration
- Release will be in iterations but for now our data are available

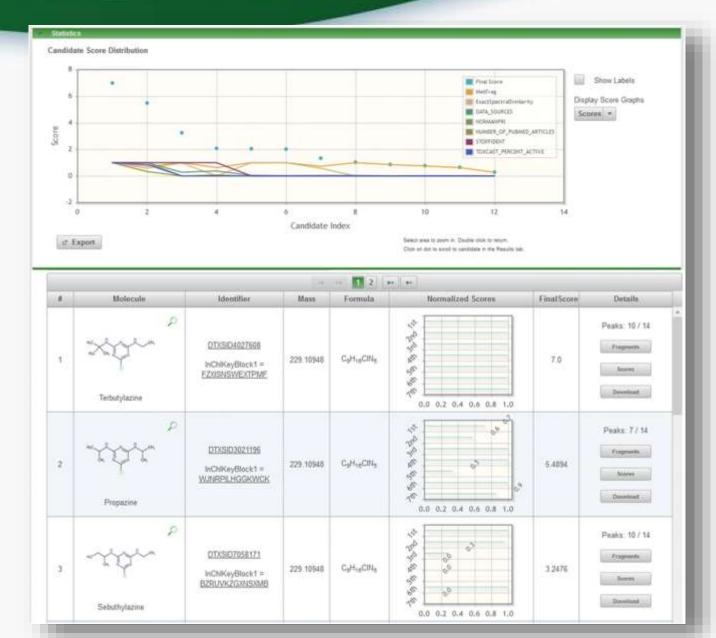
SIDE EFFECTS OF SHARING OPEN DATA

NORMAN Suspect List Exchange

https://www.norman-network.com/?q=node/236

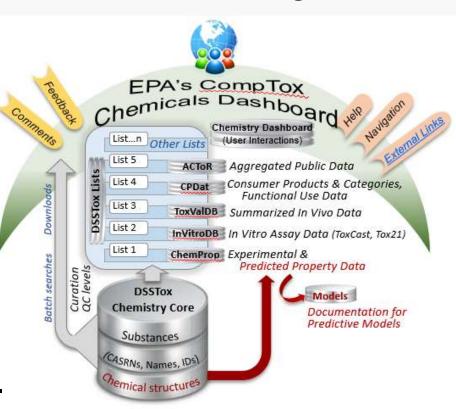


NORMAN


Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

	ı		
Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Integration to MetFrag in place



Conclusion

- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Dashboard and contents are one part of the solution
- Future releases will offer even more utility
- We are committed to open API development with time..

Acknowledgements

EPA-RTP

- An enormous team of contributors from NCCT, especially the IT software development team
- Our curation team for their care and focus on data quality
- Multiple centers and laboratories across the EPA
- Many public domain databases and open data contributors



Antony Williams

NCCT, US EPA Office of Research and Development,

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

https://doi.org/10.1186/s13321-017-0247-6