<EPA

United States
Environmental Protection
Agency

Coming to Terms with the State of the
Science in Environmental Toxicology and
Defining a Path for the Future

\'-

NVT Annual Meeting
June 12, 2019

Rusty Thomas
Director
National Center for Computational Toxicology

The views expressed in this presentation are those of the presenter and do not necessarily reflect
the views or policies of the U.S. EPA



SEPA On Milestone Birthdays, It is a
miamerec Tradition to Examine Where We Are
and Chart a Path for the Future...
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Lack of Toxicity Data

Toxicity Testing

Strategies to Determine
Needs and Priorities

Steering Committee on ldentification of Toxic and Potentially Toxic
Chemicals for Consideration by the National Toxicology Program

Board on Toxicology and Environmental Health Hazards
Commission on Life Sciences

National Research Council

- Major challenge is too many
chemicals and not enough
data

- Total # chemicals = 65,725

- Chemicals with no toxicity
data of any kind = ~46,000

NATIONAL ACADEMY PRESS
Washington, D.C. 1984

The Toxicity Data Landscape for Environmental Chemicals
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$10,000,000

$1,000,000

$100,000

Cost

$10,000
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<EPA That Is Not a Great Way to Start a
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meitieene Gharting a New Path for Toxicology

 Incorporate technological advances to
evaluate large numbers of chemicals
across toxicological space

» Systematically address limitations of in
vitro test systems

» Put results in a dose and exposure
context

» Characterize variability and relevance of
current toxicological test systems

» Delivery of data and models through
decision support tools

 Building confidence through regulatory
focused case studies

National Center for
Computational Toxicology




wEPA Toxicology is Analogous to Trying to
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Create a ‘Picture of Everything’

* In 1997 an artist named Howard Hallis started
drawing a 'Picture of Everything', it took 13
years to complete, stands at 15 x 14 feet.

* The ideal toxicity testing approach provides
comprehensive coverage of relevant
toxicological responses

* It should identify the mechanism/mode-of-
action (with dose-dependence)

* It should identify responses relevant to the
species of interest and include consideration
of metabolism (detoxification/bioactivation)

* Responses should ideally be translated into
tissue-, organ-, and organism-level effects

Picture oveiyig
Howard Hallis

National Center for
Computational Toxicology

* |t must be economical and scalable
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Application of High-Throughput Assays
to Test Thousands of Chemicals

Concentration
Response
Screening

.

ToxCast Assays
Transcription Factors
Transporter
Cytokines
Kinases
Nuclear Receptors
CYP450 / ADME
Cholinesterase
Phosphatases
Proteases
XME metabolism
GPCRs
lon channels

J

~700 Assay Endpoints
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« 96, 384, and 1536-well, laboratory automation compatible
« Relatively expensive (~$20,000 - $30,000 / chemical)

« Coverage of molecular and phenotypic responses

* Multiple assay vendors/labs



wEPA Incorporating High-Content Technologies
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to Increase Biological Coverage

Whole Genome
Transcriptomics
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« 384-well, laboratory automation compatible
« Relatively inexpensive ($2.50 - $1,500 per chemical)
» Broad complementary coverage of molecular and phenotypic responses

» Integration of reference materials and controls for performance standards
* Increased portability

Lo (Expression)
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as a Measure of ‘Cellular Pathology’

Cell Compartments
NUCLEUS RING CYTOPLASM MEMBRANE CELL
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~1,300 total phenotypic endpoints
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Associated with Different MOAs

Berberine Chloride Ca-074-Me Etoposide Rapamycin
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Cell Type Differences (48 hr)

Amperozide
Berberine Chloride q ]
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Taxol - ..
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*Data points represent 5th
percentile of phenotypic
BMDs
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Tested range

Cell_Type
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Variation in Phenotypic Potencies
Across Cell Type and Time

Time Point Differences (U20S cells)
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Chemicals

Log10 Dose (mg/kg bw)
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Comparing ‘Cellular Pathology’ with
In Vivo Effects

Chemicals Where Cellular Effects are Not Protective

In Vivo
POD Chem.Name MoA / Target
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*Results from a single cell type
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wEPA  Incorporating Xenobiotic Metabolism
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in In Vitro Test Systems

“Extracellular” “Intracellular”
Approach Approach
Chemical metabolism in the media or Chemical metabolism inside the cell in
buffer of cell-based and cell-free assays cell-based assays

More closely models effects of hepatic More closely models effects of target
metabolism and generation of circulating tissue metabolism
metabolites

=
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24 X4
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Integrated strategy to model in vivo
metabolic bioactivation and detoxification

I{D
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Application of Extracellular Strategy
to Identify Estrogenic Metabolites

AIME Method: S9 Fraction Immobilization in
Alginate Microspheres on 96- or 384-well peg
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wEPA Application of Intracellular Strategy to
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Identify Cytotoxic Metabolites
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SEPA  Developing Organotypic Culture Models
to Identify Tissue/Organ Effects
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Normal Human
Thyroid Gland ,],

2D Cell Expansion

Donor

N H Cryopreservation
- Bank

Y

‘ QC Validation

Hoechst Phalloidin Merge

Harvest Follicle Attachment and 2D Monolayer 3D Sandwich
Fragments Outgrowth of Cells Culture Culture

National Center for C. Deisenroth, Unpublished
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Blue, Hoechst 33342 /DNA
Green, Phalloidin/Actin

C. Deisenroth, Unpublished
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SEPA  Inhibition of Thyroid Hormone
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Synthesis by Ref Chemical
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wEPA Putting Alternative Test Results
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in a Dose and Exposure Context

(@s)
= “w

Liver Tissue Plasma Protein
Metabolism Partitioning Binding

Population-Based
IVIVE Model -

Oral Dose Required to
Achieve Concentrations
Equivalent to /In Vitro
Bioactivity

Rotroff et al., Tox Sci., 2010
Wetmore et al., Tox Sci., 2012
Wetmore et al., Tox Sci., 2015

National Center for
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& Gitand Bitbucket - HTTK - NCCT X | M Inbox (393) - jfwambaugh@gm= X (R CRAN - Package htik % [ SOT Exposure Specialty Section | X | =+
& C' & httpsy//cran.r-project.org/web/packages/httk/index.html @ o a
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httk: High-Throughput Toxicokinetics

Functions and data tables for simulation and statistical analysis of chemical toxicokinetics ("TK") as in Pearce et al. (2017) <doi:10.18637 /i35 v079.i04> Chemical-specific in vitro data have been
obtained from relatively high throughput exp Both physiologically-based ("PBTK") and empirical (e.g.. one compartment) "TK" models can be parameterized for several hundred chemicals and
multiple species. These models are solved efficiently, often using compiled (C-based) code. A Monte Carlo sampler is included for simulating biological variability (Ring et al, 2017
<do01:10.1016/j.envint. 2017.06.004>) and measurement limitations. Calibrated methods are included for predicting tissue:plasma partition coefficients and volume of distribution (Pearce et al., 2017
<doi:10.1007/510928-017-9548-7=). These functions and data provide a set of tools for in vitro-in vive extrapolation ("IVIVE") of high throughput screening data (e.g.. Tox21, ToxCast) to real-world
exposures via reverse dosimetry (also known as "RTK") (Wetmore et al_, 2013 <doi:10.1093/ toxsci/kfv171=)

Version: 19

Depends: R(z=2.10)

Imports: deSolve, msm. data table, survey, mvtnorm, truncnorm, stats, utils, magrir

Suggests: gaplot, knitr, rmarkdown, Rorsp. GGally. gplots. scales. EnvStats, MASS, RColorBrewer, TeachingDemos, classInt, ks, reshape2, gdata, viridis, CensRegMod, gmodels, colorspace
Published 2019-02-04

Author: John Wambaugh [aut, cre], Robert Pearce [aut], Caroline Ring [aut], Greg Honda [aut]. Jimena Davis [ctb]. Nisha Sipes [cth], Barbara Wetmore [ctb], Woodrow Setzer [ctb]
Maintainer: John Wambaugh <wambaugh john at epa gov=>

BugReports: https:/github.com USEPA/CompTox-ExpoCast-httk.

License: GPL-3

URL hrtps:/www epa. gov/chemical-research 'rapid-chemical-exposure-and-dose-research

NeedsCompilation: ves

Citation: hrtk citation info

Materials: NEWS

CRAN checks: httk results

Downloads:

Reference manual: hitk pdf
Vignettes: Honda et al. (submitted): Updated Armitage et al. (2
Creating Partition Coefficient Evaluation Plots
Age distributions
Global sensitivity_ analysis
Glob:\l >ans1m m a.nal\ 518 ulonm!

014) Model

R package “httk”
Open source, transparent, and peer-reviewed tools and
data for high throughput toxicokinetics (httk)
. Allows in vitro-in vivo extrapolation (IVIVE) and
physiologically-based toxicokinetics (PBTK)
. v1.10 features 942 total chemicals
. Now allows propagation of uncertainty
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Using CaCo2
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Incorporating Measurements and
Predictions of Bioavailability

Using New QSAR
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Wambaugh et al., 2018; Honda, unpublished
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Exposure
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Log(Observed Concentrations)

Adding Inhalation Route of
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® |sopropanol Rat VBL
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Regression slope: 0.57
Regression R*2: 0.51
Regression RMSE: 0.72
RMSE (Identity): 0.91
-4 % Missing:1.61%
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Log(Simulated Concentrations)

Wambaugh et al., 2018; Honda, unpublished
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Relevance of Current Toxicity Models

In US, Section 4(h) in amended TSCA says —

* New approach methods (NAMs) need to provide “information of equivalent or
better scientific quality and relevance...” than the traditional animal models

In Europe, REACH says —

* Annex Xl: “Results obtained from suitable in vitro methods may indicate the
presence of a certain dangerous property or may be important in relation to a
mechanistic understanding, which may be important for the assessment...”
BUT confirmation using standard in vivo tests are still required unless:

» Results are derived from an in vitro method whose scientific validity has been
established by a validation study, according to internationally agreed validation
principles; AND

* Results are adequate for the purpose of classification and labelling and/or risk
assessment; AND

« Adequate and reliable documentation of the applied method is provided.

National Center for
Computational Toxicology
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Toxicity Studies

ToxRefDB Version 2.0

220D species
N dog

3000 >1,200 chemicals BN guinea-pig
I hamster
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Number of studies
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Study Source Study Type

National Center for Katie Paul-Friedman, In Press
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<EPA Qualitative Reproducibility of
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Traditional Toxicity Studies

Reproducibility in Target Organ Effects in Repeat Dose Toxicity Studies

Species Repea'ted Repefa.ted % Concordance
negative positive
d 20 [ h 71.7
Li oL 30 56% concordance across 2 12
iver mouse species )
rat 42 \ VL 71.0
4 N
Kid dog 22 39% concordance across {r 2:';
idney mouse species )
rat 60 \ /L 57.1
dog 64 21 7 77.2
Spleen mouse 93 31 15 77.7
rat 132 84 29 65.7
dog 65 20 7 78.3
Testes mouse 110 20 9 85.6
rat 135 87 23 64.5
dog 76 12 4 87.0
Adrenal gland mouse 109 23 7 83.5
rat 142 83 20 66.1

National Center for

Computational Toxicology LyLy Pham and Katie Paul-Friedman, Unpublished




wEPA Quantitative Reproducibility in

United States
Environmental Protection

Traditional Toxicity Studies

Variability in Quantitative Effect Levels from In Vivo = RMSE ranged from 0.41 to 0.59 log10-mg/kg/day,
Repeat Dose Toxicity Studies depending on model and dataset

0.6

0.51
+ RMSE
£ | X
95% prediction intérval |\ & 1.96 * RMSE
! 1 1 )

0.1 I . .

4 3 b 5 0 1

MLR ACM CHR sU8

0.0
Using an RMSE=0.59, the 95% CI of an LEL/LOAEL is:

\ ) Model \ )
C 10 mg/kg/day = 0.7 — 143 mg/kg/day. >

o
-y

RMSE (log10-mg/kg/day)
(=] (=]
[\ *] w

[
w
o

Two ways to statistically Variability within a specific /
model the data across study type
multiple study types This confidence interval spans the difference

between GHS STOT Category 1 (<10 mg/kg/d)
and Category 2 (<100 mg/kg/d)

national Genter for LyLy Pham and Katie Paul-Friedman, Unpublished
omputational Toxicology




wEPA

United States
Environmental Protection
Agency

...data compiled from 150
compounds with 221 human toxicity
events reported. The results
showed the true positive human
toxicity concordance rate of 71% for
rodent and non-rodent species, with
non-rodents alone being predictive
for 63% of human toxicity and
rodents alone for 43%.

National Center for
Computational Toxicology

Human Relevance of Current In Vivo
Toxicological Models

Regulatory Toxicology and Pharmacology 32, 56-67 (2000)

doi:10.1006/rtph.2000.1399, available online at http://www.idealibrary.
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Concordance of the Toxicity of Pharmaceuticals
in Humans and in Animals

Harry Olson,' Graham Betton,” Denise Robinson,’ Karluss Thomas,® Alastair Monro,' Gerald Kulaja,"

Patrick Lilly,” James Sanders,’ Glenn Sipes,” William Bracken,” Michael Dorato,’ Koen Van Deun,

10
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This report summarizes the results of a multina-
tional pharmaceutical company survey and the out-
come of an International Life Sciences Institute (ILSI)
Workshop (April 1999), which served to better under-
stand concordance of the toxicity of pharmaceuticals
observed in humans with that observed in experimen-
tal animals. The Workshop included representatives
from academia, the multinational pharmaceutical in-
dustry, and international regulatory scientists. The
main aim of this project was to examine the strengths
and weaknesses of animal studies to predict human
toxicity (HT). The database was developed from a sur-
vey which covered only those compounds where HTs
were identified during clinical development of new
pharmaceuticals, determining whether animal toxic-
ity studies identified concordant target organ toxici-
ties in humans. Data collected included codified com-
pounds, therapeutic category, the HT organ system
affected, and the species and duration of studies in
which the corresponding HT was either first identified
or not observed. This survey includes input from 12
pharmaceutical companies with data compiled from
150 compounds with 221 HT events reported. Multiple
HTs were reported in 47 cases. The results showed the
true positive HT concordance rate of 71% for rodent
and nonrodent species, with nonrodents alone being
predictive for 63% of HTs and rodents alone for 43%.
The highest incidence of overall concordance was seen
in hematological, gastrointestinal, and cardiovascular
HTs, and the least was seen in cutaneous HT. Where
animal models, in one or more species, identified con-
cordant HT, 94% were first observed in studies of 1
month or less in duration. These survey results sup-
port the value of in vivo toxicology studies to predict
for many significant HTs associated with pharmaceu-
ticals and have helped to identify HT categories that
may benefit from improved methods. © 2000 Academic Pross

0273-2300/00 $35.00
Copyright @ 2000 by Academic Press
All rights of reproduction in any form reserved

INTRODUCTION

A vitally important theme in toxicology is the search
for and the assessment of in vitre and in vive models
that are predictive for adverse effects in humans ex-
posed to chemicals. The conduct of toxicology studies in
laboratory animals is driven by experience, historical
precedence, and governmental requirements, and the
results of these studies usually, and reasonably, lead to
restrictions on the use, or method of use, of the chem-
icals concerned. Such a process must be based on the
assumption that the current choice of animal models
and the design of the studies are truly predictive of
human hazard. The reliability of this assumption has
far-reaching repercussions in terms of the potential for
inappropriate use of animals and the unnecessary de-
privation of, or restrictions in the use of, valuable
chemicals including pharmaceuticals. Identification of
any weaknesses in the assumption could lead to revi-
sions of existing regulations and stimulate the search
for better metheds for the safety evaluation of chemi-
cals in the future.

There have been relatively few attempts to method-
ically assess the correlation between the toxicity
caused by chemicals in animals and in humans. This is
not surprising, given that the toxicity of many chemi-
cals observed in humans is after accidental exposure,
the quantitative details of which in terms of duration
and intensity are often not known. Chemicals, which
are components of the diet, either macro- or micro-, are
more susceptible to evaluation of their toxicity in ani-
mals and in humans, provided that the means to carry
out epidemiological studies are available. However, a
rich source of relevant information is pharmaceutical
chemicals. For these, the human exposure is controlled
and measured accurately. In addition, clinical studies
of drugs employ systematic clinical examinations and
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Data

Now with 875,000 chemicals (up
from ~760,000).

High throughput in vitro assay
information including new assays and
more detailed descriptions

In vivo toxicity values for human
health and eco

QSAR predictions for chemical
properties

Important lists (e.g., PFAS)
ADME and exposure
Functional use

Literature search interface

Read across workflow

National Center for
Computational Toxicology
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Enabling Translation Through Data
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EPA Integrating Data for Regulatory
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Application with Decision Support Tools

—— » RapidTox is a suite of workflows that
T ——— facilitate the application of data surfaced in
7,097 TSBTT o 7,007 the CompTox dashboard in diverse

assessment decision contexts

 Flexible integration of information related to
chemical properties, fate and transport,
hazard, exposure, and risk assessment

0 o |

« Enable expert users to review the
assumptions made, refine results, and
record the decisions

* Presents data from new approach methods
together with traditional toxicology data

H
£
[ ]

Three workflows currently under
e i development
——— « Chemical binning for TSCA (OCSPP)
« Emergency response (OLEM)

 Site-specific screening assessments (OLEM)

National Center for
Computational Toxicology




“EPA Translation of Results Through
Regulatory Focused Case Studies

Environmental Protection
Agency

W ity Environment * Multiple international case studies
BNA Report” . .

stemming from 2016 inter-governmental
workshop

Reproduced with permission from Daly Environment Report,
223 DEN 1, 118116, Copyght 2016 by The Bureauof
National Affairs, Inc. (800-372-1033) hitp:/www.bna.

Practitioner Insights: Bringing New Methods for Chemical Safety into the

- Example: In Vitro Bioactivity as a

The recently amended toxics law requires the EPA to take significant strides towards us- . "
ing non-animal safey tests for chemicals. EPA's Dr. Robert Kavlock explores this challenge O n S e rv a Ive O I n O e a l l re
and reports on a recent international workshop the agency convened that lays the ground-

work for tests that can reduce reliance on animals, costs and in many cases provide better

information.
Chemical

Dr. Rogert Kaviock =
e Researchin
) ety Toxicology

©CRR T, O, s Tndnd X005, XX 200

ey e « Participants include EPA, Health Canada,
et ) ! o Biain T 8. Pt Mot e . i s o’
e ECHA, EFSA, JRC, and A*STAR

the underpinning of
for the agency.
The views expressed]

those of the author d  VOfice of Resesech snd Devlo s, US.
represent the views

ABSTRACT: Changss in chemical regulations wordwide have

COPYRIGHT © 2016 BY THE

2016], NAMs for tosidty tesin
e el
rge amoun o data i il nbmaion gps i bt \uuni

ey, Coe s b wd o o e dorsng of oy ol o

* Goal: Determine whether in vitro bioactivity
from broad high-throughput screening
studies (e.g., ToxCast) can be used as a
= w conservative point-of-departure and when
compared with exposure estimates serve to
prioritize chemicals for future study or as
lower tier risk assessment.
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2. Next Steps
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Case Study Evaluating Bioactivity as a
Protective Point-of-Departure
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For ~92% of the
chemicals, PODy,,
was conservative.

(~100-fold on
average)

Chemicals where
POD s was not
conservative
enriched in

National Center for
Computational Toxicology
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International case study with EPA, ASTAR, ECHA,
Health Canada, and EFSA
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- Charting a new path in toxicology will require a
continued commitment to a different future

- New technologies exist for rapidly and
comprehensively covering toxicological space at
significantly less cost

- Addressing previous technical limitations such as a
lack of metabolism and organ/tissue effects are
within reach

- New methods should be evaluated in the context of
the variability and relevance of existing models

- Enabling application of new technologies to
regulatory with require delivery and integration using
a broad range of IT tools

- Partnering with regulators on case studies will
increase confidence and acceleration application to
chemical risk assessment

National Center for
Computational Toxicology
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