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Large number of chemicals in commerce
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Lack of Toxicity Data

• Major challenge is too many 
chemicals and not enough data

• Total # chemicals = 65,725 
• Chemicals with no toxicity data 

of any kind = ~46,000
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Costs of Traditional Toxicity Testing

$1,000

$10,000

$100,000

$1,000,000

$10,000,000

C
os

t



How can high-throughput approaches help?
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Toxicity Testing in the 21st Century 
“Toxicity testing is approaching such a scientific pivot 
point. It is poised to take advantage of the revolutions in 
biology and biotechnology. Advances in toxicogenomics, 
bioinformatics, systems biology, epigenetics, and 
computational toxicology could transform toxicity 
testing from a system based on whole-animal testing to 
one founded primarily on in vitro methods ….”

NRC 2007
• Three key components:

• High-throughput screening (HTS) using in vitro assays to 
evaluate the molecular and cellular effects of thousands of 
chemicals

• Toxicity pathways, when sufficiently perturbed or beyond 
adaptive capacity, lead to adverse health outcomes

• Dose-response modeling and in vitro to in vivo extrapolation 
to estimate risk 

Krewski et al, 2010



Computational Toxicology
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ToxCast 
High-throughput screening (HTS), high-
content imaging (HCI), transcriptomics

ToxRefDB
Legacy animal testing data on all guideline testing studies 

used in risk assessment
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modeling 

Virtual Tissue Models
Multi-scale agent-based and models of networks, cells, organs across predict dose-dependent effects of chemicals across life-

stages
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ToxCast: 10 years later …

Richard et al, 2016

X chemicals
Y assays
Z genes
A cells
119 Publications



Computational Toxicology: Future
• Expanded biological coverage to screen thousands 

of additional chemicals 
• High-content imaging (HCI)
• High-throughput transcriptomics (HTTr)

• Tiered-testing to determine whether …
I. Chemicals are potent activators of specific molecular 

initiating events (MIEs).  Use adverse outcome pathway 
(AOP) framework identify adverse outcomes (AO) 
associated with MIE. Estimate point of departure (POD) 
using additional in vitro data and systems modeling

II. Chemicals are not potent but promiscuous. Estimate POD 
using pathway, cellular phenotype perturbations or other 
approach.

III. Chemicals are inactive.

• Chemical potency values derived from in vitro 
studies are quantitatively extrapolated to in 
vivo doses using toxicokinetic modeling 

Thomas et al, 2019

The next generation blueprint of computational toxicology at the 
U.S. Environmental Protection Agency



How do chemical-induced perturbations 
propagate to adverse outcomes? 

Molecular 
Initiating 
Event

Key
Events

Adverse
OutcomeA. Activating MIE produces 

domino effect that results 
in adverse outcome (AOP)

B. Multiple stress-response 
pathways are activated 
resulting in homeostatic 
adaptation.  If perturbation 
exceeds “tipping point” 
then adverse outcome 
produced



Toxicological Tipping Points 

Krewski, Daniel, Daniel Acosta Jr, Melvin Andersen, Henry Anderson, John C 
Bailar 3rd, Kim Boekelheide, Robert Brent, et al. “Toxicity Testing in the 21st 
Century: a Vision and a Strategy.” Journal of Toxicology and Environmental 
Health. Part B, Critical Reviews 13, no. 2–4 (February 2010): 51–138.

 Biological systems are resilient and adapt to 
environmental perturbations

 Tipping points are dose-dependent transitions in 
the system from normal to abnormal functions

 Key questions:-
1. What type of in vitro data are suitable for identifying 

tipping points?

2. How can we used these data to define dose-dependent 
transitions?

3. Can we use tipping points as POD for risk assessment?



What type of data are suitable 
for analyzing tipping points?



Cellular stress responses

• Multiple stress-activated pathways are activated 
to counter chemical effects to maintain 
homeostasis:-

• Heat-shock response
• Ubiquitin-proteasome system
• Endoplastmic reticulum (ER) stress 
• Mitochondrial stress
• Lysosomal stress
• DNA damage response

• There is cross-talk between stress-response 
pathways

• Overwhelming cellular adaptive capacity leads to 
cell death / autophagy

Kourtis & Tavernarakis, 2011



Vliet et al, 2014

A powerful technology to interrogate the phenotypic 
state of cells by analyzing single cell data

High Content Imaging (HCI)



Study Design: Stress responses using HCI
Cell model: Human hepatoma HepG2
Treatments:

Test chemicals: 978
Controls: (-) DMSO; (+) CCCP, Taxol
Conc: 0.39, 0.78, 1.56, 3.12, 6.24, 12.5, 25, 50, 100, 200 µM
Duration: 1, 24 and 72 h.
Reps: 2 on plate

Assay: High-content imaging (HCI) 
Stress Kinase (SK): c-Jun
Oxidative Stress (OS): H2AX
Mitochondrial function (MMP): MitoTracker Red
Mitochondrial mass (MM): MitoTracker Red
Mitotic arrest (MA): PH3
Cytoskeletal stability (Mt): Tubulin
Cell cycle arrest (CCA): Hoechst 33342
Nuclear size (NS): Hoechst 33342
Cell number (CN): Hoechst 33342

Data:
~400 plates
~100,000 wells
~2,400,000 images
~30,000 chemical-conc-time-response points

M e a s u r e  D y n a m i c  
p h e n o t y p i c  
r e s p o n s e  o f  c e l l s  
t o  c h e m i c a l s



Processing HCI data

Raw Image
(Hoechst)

Intensity 
Analysis

Object
Identification

Nuclear intensity
distribution

I m a g e  a n a l y s i s  a n d  c e l l  l e v e l  f e a t u r e  f e a t u r e e x t r a c t i o n  c o n d u c t i n g  
b y  C y p r o t e x I n c .  ( p r o p r i e t a r y  s o f t w a r e )
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n u c l e a r  s i z e  ( N S )  
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HCI to bioactivity profiles 

 Plate-level median-normalization – fold-change from background
 Report log2(fold change): decrease (BLUE), increase (RED) or no 

effect (YELLOW)
 Multi-dimensional bioactivity profile – “deviation from normal state” of 

HepG2 cells

Shah et al, 2016



Mitochondrial  disruptors

 log2(fold change): decrease (BLUE), increase (RED) or no effect (YELLOW)
 Bioactivity profile:  “deviation from normal state” of HepG2 cells



Complex perturbations 



How can we use HCI data to 
identify tipping points?



Trajectories: system perturbation, |X|

Shah et al, 2016



Trajectories and pert. “velocity”

Velocity – rate of change of aggregate system perturbation



Trajectories: perturbation & 
velocity 

Some perturbation
Recovery

Adaptive stress response?
Partial recovery

Adaptive capacity exceeded/
Cell injury? 
No recovery



Tipping point for system recovery

Shah et al, 2016



Shah et al, 2016



 ~340/967 chemicals 
had critical 
concentration

 ~170/967 chemicals 
always produced 
recovery

 Critical concentration 
more sensitive than cell 
loss

Shah et al, 2016



Shah et al, 2016



S u m m a r y

 Bio log ica l  systems are  res i l ient
 The boundar y  between adaptat ion  and 

advers i ty  i s  complex  !
 System tra jector y  ana lys i s  can  revea l  the  

t ipp ing  po int  between adaptat ion  and 
advers i ty

 Tipp ing  po ints  can  be  ca lcu lated  f rom HTS  
data  to  est imate  c r i t i ca l  concentrat ions  o f  
chemica l s  

 Addi t iona l  work  under way  to  eva luate  
ut i l i ty  o f  c r i t i ca l  concentrat ions  for  r i sk  
assessment  

Normal 
Biologic
Function

Cellular
Changes

Adaptive
Stress
Responses

Adverse
Outcomes

System Trajectories:
Some perturbation/
Recovery
Adaptive stress response/
Recovery
Adaptive capacity exceeded/
Cell injury/ 
No recovery

Biologic Pertubations:
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