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• The U.S. National Research Council (1983) identified chemical 
risk as a function of both inherent hazard and exposure

• To address the thousands of chemicals in commerce and the 
environment, we need new approach methodologies (NAMs) 
that can inform prioritization of chemicals most worthy of 
additional study

• High throughput risk prioritization needs:
1. High throughput hazard characterization (Dix et al., 2007, 

Collins et al., 2008)
2. High throughput exposure forecasts (Wambaugh et al., 

2013, 2014)
3. High throughput toxicokinetics (i.e., dose-response 

relationship) linking hazard and exposure (Wetmore et 
al., 2012, 2015)

Potential 
Exposure Rate

mg/kg BW/day

Potential Hazard 
from in vitro with 

Reverse 
Toxicokinetics

Lower
Risk

Medium Risk Higher
Risk

Chemical Risk = Hazard x Exposure
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High-Throughput Risk Prioritization

Dose-
Response 

(Toxicokinetics
/Toxicodynamics)

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening (HTS) for in 
vitro bioactivity 
potentially allows 
characterization of 
thousands of 
chemicals for which 
no other testing has 
occurred

NRC (2007)
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In Vitro - In Vivo Extrapolation (IVIVE)
Utilization of in vitro experimental data to predict phenomena in vivo 

• IVIVE-PK/TK (Pharmacokinetics/Toxicokinetics): 
• Fate of molecules/chemicals in body
• Considers absorption, distribution, metabolism, excretion (ADME)
• Uses empirical PK and physiologically-based (PBPK) modeling

• IVIVE-PD/TD (Pharmacodynamics/Toxicodynamics): 
• Effect of molecules/chemicals at biological 

target in vivo
• Assay design/selection important
• Perturbation as adverse/therapeutic effect, 

reversible/ irreversible effeccts

• Both contribute to in vivo effect prediction

NRC (1998)
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

Wetmore et al. (2012, 2015)
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New Exposure Data and Models

Toxicokinetics Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse

High throughput 
models exist to make 
predictions of 
exposure via specific, 
important pathways 
such as residential 
product use and diet

NRC (2012)
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High Throughput Toxicokinetics (HTTK)

 Most chemicals do not have TK data 

 In order to address greater numbers of chemicals we collect in 
vitro, high throughput toxicokinetic (HTTK) data (Rotroff et al., 
2010, Wetmore et al., 2012, 2015)

 HTTK methods have been used by the pharmaceutical industry 
to determine range of efficacious doses and to prospectively 
evaluate success of planned clinical trials (Jamei, et al., 2009; 
Wang, 2010)

 The primary goal of HTTK is to provide a human dose context for 
bioactive in vitro concentrations from HTS (i.e., in vitro-in vivo
extrapolation, or IVIVE) (e.g., Wetmore et al., 2015)

 Secondary goal is to provide open source data and models for 
evaluation and use by the broader scientific community (Pearce 
et al, 2017a)
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• In drug development, 
HTTK methods allow 
IVIVE to estimate 
therapeutic doses for 
clinical studies –
predicted 
concentrations are 
typically on the order 
of values measured in 
clinical trials (Wang, 
2010)

In Vitro Data for HTTK

Cryopreserved 
hepatocyte 
suspension

Shibata et al. (2002) Cryopreserved
Hepatocytes

(10 donor pool for 
human)

Add Chemical
(1 and 10 µM)

Remove Aliquots 
at 15, 30, 60, 120 

min

Analytical 
Chemistry

The rate of disappearance of 
parent compound (slope of 

line) is the hepatic clearance
(µL/min/106 hepatocytes)

We perform the assay at 1 
and 10 µM to check for 

saturation of metabolizing 
enzymes.
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• Most chemicals do 
not have TK data –
we use in vitro HTTK 
methods adapted 
from pharma to fill 
gaps

• Environmental 
chemicals:

Rotroff et al. (2010) 
35 chemicals

Wetmore et al. (2012) 
+204 chemicals 

Wetmore et al. (2015) 
+163 chemicals

Wambaugh et al. 
(submitted)  +389
chemicals
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Simple Model for Steady-State Plasma 
Concentration (Css)

Passive Renal Clearance
(GFR: Glomerular filtration rate
fup: fraction unbound in plasma)

Hepatic Metabolism
(Clint: Scaled hepatic clearance

Ql: Blood flow to liver)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

Wilkinson and Shand (1975)
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Assume that Steady-State is Linear with Dose

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖
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 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get 
concentrations for other doses

Slope = Css for 1 mg/kg/day

Wetmore et al. (2012)

Assume that Steady-State is Linear with Dose

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖
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HTTK Allows Steady-State 
In Vitro-In Vivo Extrapolation (IVIVE)

O
ra

l E
qu
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al

en
t D
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ly

 D
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e

Steady-state Concentration (µM) = in vitro AC500

Prediction

Slope = mg/kg/day per Css
1 mg/kg/day

 Can calculate predicted steady-state concentration (Css) 
for a 1 mg/kg/day dose and multiply to get 
concentrations for other doses Wetmore et al. (2012)

𝐶𝐶𝑠𝑠𝑠𝑠 =
𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑑𝑑𝑜𝑜𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜𝑟𝑟𝑑𝑑

𝐺𝐺𝐺𝐺𝐺𝐺 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 + 𝑄𝑄𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗
𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖

𝑄𝑄𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑜𝑜𝑖𝑖𝑖𝑖𝑖𝑖
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Media/Air 
Exchange

Plastic 
Binding

Chemical

Cell Binding

Media 
Lipid 
and 
Protein 
Binding

[Cfree,invitro]≈fup[Cnominal]

[Cnominal]

[Ccellular]=Kc[Cnominal]

Selecting the appropriate in vitro and in vivo concentrations for extrapolation

in vitro
(nominal testing concentration)

[Conc.] In Vitro

[C
on

c.
] I

n 
Vi

vo

?

? ?

?
[Cfree,plasma]

=
fup[Cplasma]

[Ctissue]
=

Kp[Cfree,plasma]

Red 
Blood 
Cells

Plasma Tissue

[Cblood]
[Cplasma]

=
[Cblood]/Rb:p

in vivo
(mg/kg bodyweight/day)

Renal Clearance
fup*QGFR*[Ckidney,plasma]

Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝑓𝑓𝑢𝑢𝑢𝑢 ∗ 𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

OR Non-Restrictive Metabolic Clearance
𝑄𝑄𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 ∗ 𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

𝑄𝑄𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙 + 𝐶𝐶𝑙𝑙𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑙𝑙𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝

High-Throughput Toxicokinetics (HTTK) for
In Vitro-In Vivo Extrapolation (IVIVE)

Using the generic HTTK physiologically based toxicokinetics model to inform IVIVE…

Honda et al. (2019)
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Optimizing HTTK-based IVIVE
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Various Combinations of IVIVE Assumptions
Honda et al. (2019)

Using PBTK 
Models 

Improves IVIVE
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New Exposure Data and Models

Dose-
Response 

(Toxicokinetics
/Toxicodynamics

Exposure

Hazard

High-Throughput
Risk 

Prioritization

High throughput 
screening + in vitro-
in vivo extrapolation 
(IVIVE) can predict a 
dose (mg/kg bw/day) 
that might be 
adverse



Office of Research and Development20 of 73

ToxCast-derived 
Receptor 
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

Near Field
Far Field

mg/kg bw/day

High Throughput Risk Prioritization in 
Practice

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“
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ToxCast-derived 
Receptor 
Bioactivity 
Converted to 
mg/kg/day with 
HTTK

ExpoCast
Exposure 
Predictions

ToxCast Chemicals

Near Field
Far Field

mg/kg bw/day

High Throughput Risk Prioritization in 
Practice

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“

Higher priority chemicals
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Nearly eight orders of 
magnitude between 
estimated intake rate 
and bioactive 
equivalent dose 

ToxCast Chemicals

Near Field
Far Field

mg/kg bw/day

High Throughput Risk Prioritization in 
Practice

December, 2014 Panel:
“Scientific Issues Associated with Integrated Endocrine 
Bioactivity and Exposure-Based Prioritization and Screening“

Lower priority chemicals
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Open Source Tools and Data for HTTK

R package “httk”
• Open source, transparent, and peer-

reviewed tools and data for high 
throughput toxicokinetics (httk)

• Available publicly for free statistical 
software R

• Allows in vitro-in vivo extrapolation 
(IVIVE) and physiologically-based 
toxicokinetics (PBTK)

https://CRAN.R-project.org/package=httk

https://cran.r-project.org/package=httk
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What you can do with R Package “httk”?

• Allows one compartment, three-compartment, and PBTK modeling
• Allows conversion of in vitro concentration to in vivo doses
• Allows prediction of internal tissue concentrations from dose regimen (oral and 

intravenous)
• A peer-reviewed paper in the Journal of Statistical software provides a how-to guide 

(Pearce et al., 2017a)
• You can use the built in chemical library or add more chemical information (examples 

provided in JSS paper)
• You can load specific (older) versions of the package
• You can use specific demographics in the population simulator (Ring et al., 2017) 
• You can control the built in random number generator to reproduce the same random 

sequence (function set.seed())
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A General Physiologically-based Toxicokinetic (PBTK) Model

• “httk” includes a generic PBTK model

• Some tissues (e.g. arterial blood) are simple compartments, while others 
(e.g. kidney) are compound compartments consisting of separate blood and 
tissue sections with constant partitioning (i.e., tissue specific partition 
coefficients)

• Exposures are absorbed from reservoirs (gut lumen)

• Some specific tissues (lung, kidney, gut, and liver) are modeled explicitly, 
others (e.g. fat, brain, bones) are lumped into the “Rest of Body” 
compartment.

• The only ways chemicals “leave” the body are through metabolism (change 
into a metabolite) in the liver or excretion by glomerular filtration into the 
proximal tubules of the kidney (which filter into the lumen of the kidney). 

Inhaled Gas

Qliver

Qgut

Qgut

Kidney Blood

Gut Blood

Gut Lumen

QGFR
Kidney Tissue

Liver Blood

Liver Tissue

Qrest

Lung Blood
Lung Tissue Qcardiac

Qmetab

Body Blood

Rest of Body

Qkidney

Arterial  B
loodVe

no
us

  B
lo

od
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Why Build Another Generic PBTK Tool?
SimCYP ADMET Predictor / GastroPlus MEGen IndusChemFate httk

Maker SimCYP Consortium / 
Certara

Simulations Plus UK Health and Safety 
Laboratory

Cefic LRI US EPA

Reference Jamei et al. (2009) Lukacova et al., (2009) Loizou et al. (2011) Jongeneelen et al., (2013) Pearce et al. (2017a)

Availability License, but inexpensive for research License, but inexpensive for research Free:
http://xnet.hsl.gov.uk/megen

Free:
http://cefic-lri.org/lri_toolbox/induschemfate/

Free:
https://CRAN.R-project.org/package=httk

Open Source No No Yes No Yes
Default PBPK Structure Yes Yes No Yes Yes
Expandable PBPK Structure No No Yes No No
Population Variability Yes No No No Yes
Batch Mode Yes Yes No No Yes
Graphical User Interface Yes Yes Yes Excel No
Physiological Data Yes Yes Yes Yes Yes
Chemical-Specific Data 
Library

Many Clinical Drugs No No 15 Environmental Compounds 543 Pharmaceutical and 
ToxCast Compounds

Ionizable Compounds Yes Yes Potentially No Yes
Export Function No No Matlab and AcslX No SBML and Jarnac
R Integration No No No No Yes
Easy Reverse Dosimetry Yes Yes No No Yes
Future Proof XML No No Yes No No

We want to do a statistical analysis (using R) for as many chemicals as possible
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Oral Equivalent Dose Examples

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 
quantile, for Acetochlor (published value):

get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.95 
quantile, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1")

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 
0.5, and 0.95 quantile, for Acetochlor (published values):

get_wetmore_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for human, 0.05, 
0.5, and 0.95 quantiles, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",which.quantile=c(0.05,0.5,0.95))

#State-state oral equivalent dose (mg/kg BW/day) to produce 0.1 uM serum concentration for rat, 0.95 
quantile, for Acetochlor (calculated value):

calc_mc_oral_equiv(0.1,chem.cas="34256-82-1",species="Rat")
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Interspecies Extrapolation Examples

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for human for Acetochlor (calculated value):

calc_mc_css(chem.cas="34256-82-1")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (should produce errors since 
there is no published value, 0.5 quantile only):

get_wetmore_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for rat for Acetochlor (calculated value):

calc_mc_css(chem.cas="34256-82-1",species="Rat")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (published value):

get_wetmore_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.5 quantile for rat for Acetochlor (calculated value):

calc_mc_css(chem.cas="34256-82-1",species="Rat",which.quantile=0.5)

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (should produce error since 
there is no published value, human and rat only):

get_wetmore_css(chem.cas="34256-82-1",species="Mouse")

#Steady-state concentration (uM) for 1 mg/kg/day for 0.95 quantile for mouse for Acetochlor (calculated value):

calc_mc_css(chem.cas="34256-82-1",species ="Mouse")

calc_mc_css(chem.cas="34256-82-1",species ="Mouse",default.to.human=T)
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Generic PBTK Models

There is nothing new about the idea of generic PBTK models…
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Generic PBTK Models

There is nothing new about the idea of generic PBTK models…
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Open Source, Verifiable, Reproducible

“…the default state of new and modernized Government 
information resources shall be open and machine readable.”

“Although publication of a PBPK model in a peer-
reviewed journal is a mark of good science, subsequent 

evaluation of published models and the supporting 
computer code is necessary for their consideration for 

use in [Human Health Risk Assessments]”
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Doing Statistical Analysis with HTTK

 If we are to use HTTK, we need confidence in predictive ability

 In drug development, HTTK methods estimate therapeutic doses for clinical studies – predicted 
concentrations are typically on the order of values measured in clinical trials (Wang, 2010)

– For most compounds in the environment there will be no clinical trials 

 Uncertainty must be well characterized
– We compare to in vivo data to get empirical estimates of HTTK uncertainty
– ORD has both compiled existing (literature) TK data (Wambaugh et al., 2015) and conducted new 

experiments in rats on chemicals with HTTK in vitro data (Wambaugh et al., 2018)
– Any approximations, omissions, or mistakes should work to increase the estimated uncertainty 

when evaluated systematically across chemicals
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Building Confidence in TK Models

Predicted Concentrations
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Cohen Hubal et al. (2018)

• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data
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• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data
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• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
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Building Confidence in TK Models
• In order to evaluate a chemical-specific TK model for “chemical x” 

you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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Building Confidence in TK Models
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• In order to evaluate a chemical-specific TK model for “chemical x” 
you can compare the predictions to in vivo measured data
• Can estimate bias
• Can estimate uncertainty
• Can consider using model to extrapolate to other situations 

(dose, route, physiology) where you don’t have data

• However, we do not typically have TK data

• We can parameterize a generic TK model, and evaluate that 
model for as many chemicals as we do have data
• We do expect larger uncertainty, but also greater confidence in 

model implementation 
• Estimate bias and uncertainty, and try to correlate with 

chemical-specific properties
• Can consider using model to extrapolate to other situations 

(chemicals without in vivo data)
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In Vivo TK Database

40Sayre et al. (in preparation)

 EPA is developing a public database of concentration vs. 
time data for building, calibrating, and evaluating TK 
models

 Curation and development ongoing, but to date includes:
• 198 analytes (EPA, National Toxicology Program, 

literature)
• Routes: Intravenous, dermal, oral, sub-cutaneous, and 

inhalation exposure

 Database will be made available through web interface and 
through the “httk” R package

 Standardized, open source curve fitting software invivoPKfit
used to calibrate models to all data:

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit

https://github.com/USEPA/CompTox-ExpoCast-invivoPKfit
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Observed Total Clearance

• We estimate clearance from two 
processes – hepatic metabolism 
(liver) and passive glomerular 
filtration (kidney)

• This appears to work better for 
pharmaceuticals than other 
chemicals:

• ToxCast chemicals are 
overestimated

• Non-pharmaceuticals may be 
subject to extrahepatic 
metabolism and/or active 
transport

Pharmaceuticals
Other Chemicals

Wambaugh et al. (2018)
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Variability

Different crayons 
have different 

colors…
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Variability

Different crayons 
have different 

colors, and none 
of them are the 
“average” color
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Slide from Caroline Ring (ToxStrategies)
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Population simulator for HTTK

Ring et al. (2017)

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 

Slide from Caroline Ring (ToxStrategies)

(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 
PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)
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Population simulator for HTTK

Predict physiological 
quantities

Tissue masses
Tissue blood flows
GFR (kidney function)
Hepatocellularity

Correlated Monte Carlo 
sampling of physiological 
model parameters built 
into R “httk” package 
(Pearce et al., 2017):

Sample NHANES 
biometrics for 
actual individuals:

Sex
Race/ethnicity
Age
Height
Weight
Serum creatinine

Regression equations from literature 
(McNally et al., 2014)

(+ residual marginal variability) 
(Similar approach used in SimCYP [Jamei et al. 2009], GastroPlus, 

PopGen [McNally et al. 2014], P3M [Price et al. 2003], physB [Bosgra et al. 2012], etc.)

Ring et al. (2017)Slide from Caroline Ring (ToxStrategies)
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Uncertainty

Until I open the 
box, I don’t know 

what colors I 
have...

…especially if my 
six-year-old has 
been around.
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Analytical Chemistry is an HTTK Bottleneck

Figure from Chantel Nicolas

• In Wetmore et al. (2012), the rapid equilibrium dialysis (RED) assay (Waters et al. 2008) failed 
for fraction unbound in plasma (fup) 38% of the chemicals.

fup

fup

• For HTTK we always need to develop a chemical-specific method for quantitating amount of chemical in vitro
• This is very different from HTS where the  same readout (e.g., bioluminescence) can be used for most chemicals
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The HTTK in vitro assays need to measure differences in chemical concentration

• Area of the internal standard (ITSD) at a known, fixed concentration 
fluctuates with time

• Find a peak that corresponds to chemical of interest, and then follow 
the ratio R of the chemical peak to the ITSD
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New HTTK Measurements and
Uncertainty Analysis
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The HTTK in vitro assays need to measure differences in chemical concentration

• Area of the internal standard (ITSD) at a known, fixed concentration 
fluctuates with time

• Find a peak that corresponds to chemical of interest, and then follow 
the ratio R of the chemical peak to the ITSD

• For new measurements HTTK (>200 compounds to data) performed by 
Cyprotex, we have modified RED protocol to use a titration of plasma 
protein (10%, 30%, 100%) of physiological concentration

• Keeps chemical concentration in the same range

• Analyzed data in Bayesian framework that included a model for 
analytical chemistry

• Bayesian approach gives a credible interval (range of values that 
would be consistent with the data) – quantitative uncertainty
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New Plasma Binding Protocol Reduces Uncertainty

• New protocol performs assay at 100%, 
30%, and 10% of physiologic protein 
concentration

• Median uncertainty for 100% 
physiological concentration only:
+-5.5%

Wambaugh et al. (submitted)
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• New protocol performs assay at 100%, 
30%, and 10% of physiologic protein 
concentration

• Median uncertainty for 100% 
physiological concentration only: 
+-5.5%

• Median uncertainty for three-point 
assay: +-1.4%

New Plasma Binding Protocol Reduces Uncertainty

Wambaugh et al. (submitted)



Office of Research and Development53 of 73

New Data!

New experimental 
measurements of fup and Clint
are reported for 418 and 467 
chemicals, respectively. These 
data raise the HTTK chemical 
coverage of the ToxCast 
Phase I and II libraries to 57%. 
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Quantifying the Impact of Uncertainty

Wambaugh et al. (submitted)
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New IVIVE For 393 ToxCast Chemcials

Including chemical-specific uncertainty only caused changes in whether or not 
exposure and bioactivity overlapped in a small region

Wambaugh et al. (submitted)
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The Impact of Measurement Uncertainty

Only six more chemicals overlap Wambaugh et al. (submitted)
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Media

Lung Blood Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR
Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

Lung Tissue

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B

lo
od

Gut Tissue

Non-Exposed Skin Tissue

Non-Exposed Skin Blood

Exposed Skin Blood

Exposed Skin Tissue

Standard httk 1.8 PBTK Model

New HT-PBTK Models

Dermal Exposure Route

• We are working to augment the basic HT-PBPTK model with new PBTK 
models

• For example, inhalation PBTK will allow for calculation of “inhalation 
equivalent doses” instead of oral equivalents

• Each model will be released publicly upon peer-reviewed publication

• Pre-publication models can be shared under a MTA

• We assume there will be coding errors and over-simplifications, so each 
publication involves curation of evaluation data from the scientific 
literature and through statistical analysis
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Media

Lung Blood Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR
Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

Lung Tissue

CLmetabolism

Tissue Blood
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Qgut

Arterial  BloodVe
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Non-Exposed Skin Tissue

Non-Exposed Skin Blood

Exposed Skin Blood

Exposed Skin Tissue

Standard httk 1.8 PBTK Model

New HT-PBTK Models

Dermal Exposure Route
EPA, Unilever, INERIS
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Media

Lung Blood Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR
Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

Lung Tissue

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B

lo
od

Gut Tissue

Non-Exposed Skin Tissue

Non-Exposed Skin Blood

Exposed Skin Blood
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Standard httk 1.8 PBTK Model

New HT-PBTK Models
Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR

Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B
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od

Gut Tissue

Lung Tissue

Lung Blood

Lung Arterial Blood

Qlung

Inhaled air

Dermal Exposure Route
EPA, Unilever, INERIS

Gas Inhalation 
Exposure Route

EPA, USAF
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Generic Gas Inhalation Model

Linakis et al. (in preparation)
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In Vivo TK database 
allowed rapid 

development and 
evaluation
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Generic Gas Inhalation Model

Linakis et al. (in preparation)
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Generic model also 
helped data 

curation (units on 
axis in paper were 

wrong)
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Generic Gas Inhalation Model

Figure from Matt Linakis (USAFSAM)
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Correct
Used 4h 
exposure instead 
of 2h
Used mg/m3 
dose units 
instead of ppm
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Media
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Inhaled Aerosol

Dermal Exposure Route
EPA, Unilever, INERIS

Aerosol Inhalation 
Exposure Route 

(with APEX model)
EPA, USAF

Gas Inhalation 
Exposure Route

EPA, USAF
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Dermal Exposure Route
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Gas Inhalation 
Exposure Route
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Aerosol Inhalation 
Exposure Route 

(with APEX model)
EPA, USAFSAM

Human Gestational Model
EPA, FDA

MotherFetus



Office of Research and Development65 of 73

Media

Lung Blood Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR
Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

Lung Tissue

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B

lo
od

Gut Tissue

Non-Exposed Skin Tissue

Non-Exposed Skin Blood

Exposed Skin Blood

Exposed Skin Tissue

Standard httk 1.8 PBTK Model

New HT-PBTK Models
Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

Gut Blood

QGFR

Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B

lo
od

Gut Tissue

Lung Tissue

Lung Blood

Lung Arterial Blood

Qlung

Inhaled air

Gut Blood

Qcardiac

Qliver

Qgut

Qrichly
perfusedRest-of-Body Blood

QGFR
Rest-of-Body

Liver Blood

Liver Tissue

Qkidney

CLmetabolism

Tissue Blood

Kidney Tissue

Qgut

Arterial  BloodVe
no

us
  B

lo
od

Gut Tissue

Lung Tissue

Lung Blood
Qlung

Gut Lumen
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Human Gestational Model
EPA, FDA

MotherFetus
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15%

Maternal dosimetry Maternal dosimetry

Fetal dosimetry

4%

Fetal dosimetry

9%

• Decrease in maternal 
plasma concentrations 
for retinoid analogues 
ranged from 8-15%

• Decrease in Fetal 
plasma concentrations 
for retinoid analogues 
ranged from 4-9%

Normalized initial plasma concentration for each retinoid analogue Maternal/Fetal HTTK Model Predictions 
for Retinoid Analogues:

Slide from Annie Lumen, FDA
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HTTK is (mostly) Documented
Within R: type “help(httk)”
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HTTK is (mostly) Documented
Within R: type “help(httk)”
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HTTK is (mostly) Documented
Within R: type “help(httk)”
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HTTK is (mostly) Documented
Within R: type “help(httk)”
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Does My Chemical Have HTTK Data?

> library(httk)

> get_cheminfo()

[1] "2971-36-0"   "94-75-7"     "94-82-6"     "90-43-7"     "1007-28-9"  

[6] "71751-41-2"  "30560-19-1"  "135410-20-7" "34256-82-1"  "50594-66-6" 

[11] "15972-60-8"  "116-06-3"    "834-12-8"    "33089-61-1"  "101-05-3"   

[16] "1912-24-9"   "86-50-0"     "131860-33-8" "22781-23-3"  "1861-40-1" …

> get_cheminfo(info="all")

Compound CAS logP
pKa_Acce
pt pKa_Donor MW Human.Clint

Human.Clint.p
Value

Human.Funbou
nd.plasma

DSSTox_Substance_I
d Structure_Formula Substance_Type

2,4-d 94-75-7 2.81 <NA> 2.81 221.03 0 0.149 0.04 DTXSID0020442 C8H6Cl2O3 Single Compound
2,4-db 94-82-6 3.53 <NA> 4.5 249.09 0 0.104 0.01 DTXSID7024035 C10H10Cl2O3 Single Compound
2-phenylphenol 90-43-7 3.09 <NA> 10.6 170.211 2.08 0.164 0.04 DTXSID2021151 C12H10O Single Compound
6-desisopropylatrazine 1007-28-9 1.15 1.59 <NA> 173.6 0 0.539 0.46 DTXSID0037495 C5H8ClN5 Single Compound

> "80-05-7" %in% get_cheminfo()
[1] TRUE

subset(get_cheminfo(in
fo="all"),Compound%in%
c("A","B","C"))

Is a chemical available?

All data on chemicals A, B, C
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• HTTK allows dosimetric adjustment of high-throughput screening 
(HTS) data across thousands of chemicals. 

• New, chemical-specific in vitro experiments have been conducted 
by Cyprotex, using a revised protocol for measuring protein binding

• Overall, variability contributed more significantly to Css estimations 
of the 95th percentile

• Comparison between high throughput toxicokinetics (HTTK) 
predicted concentrations and in vivo data is a valuable approach for 
evaluation and establishing confidence

• Recent analyses indicate that some properties (e.g. average and 
maximum concentration) can be predicted with confidence.

• A new database of in vivo concentration vs. time data is being 
developed (Sayre, in preparation)

Conclusions

The views expressed in this presentation are those of the author 
and do not necessarily reflect the views or policies of the U.S. EPA

Potential 
Exposure Rate

mg/kg BW/day

Potential hazard 
from in vitro
converted to 

dose by  HTTK

Lower
Risk

Medium Risk Higher
Risk
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