

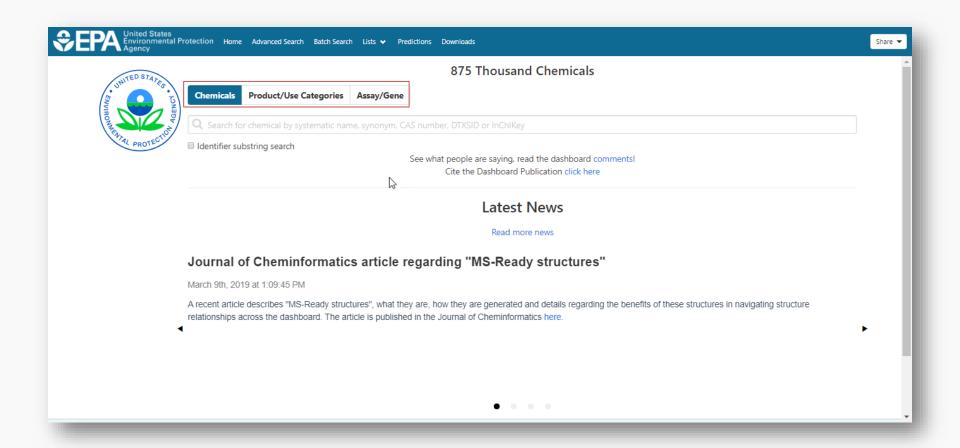
The EPA CompTox Chemicals Dashboard to support structure identification and chemical forensics using mass spectrometry

Antony Williams¹, Alex Chao², Tom Transue³, Tommy Cathey³, Elin Ulrich⁴ and Jon Sobus⁴

- 1) National Center for Computational Toxicology, U.S. Environmental Protection Agency, RTP, NC
 - ?) Oak Ridge Institute of Science and Education (ORISE) Research Participant, RTP, NC
 - 3) General Dynamics Information Technology, RTP, NC
 - 4) National Exposure Research Laboratory, U.S. Environmental Protection Agency, RTP, NC

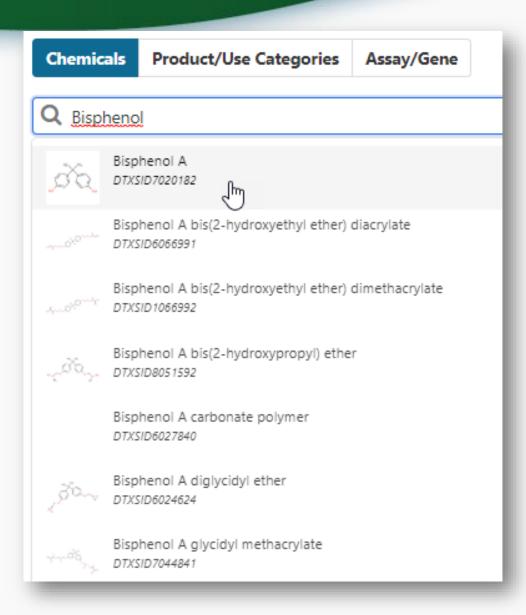
The views expressed in this presentation are those of the author and do not necessarily reflect the views or policies of the U.S. EPA

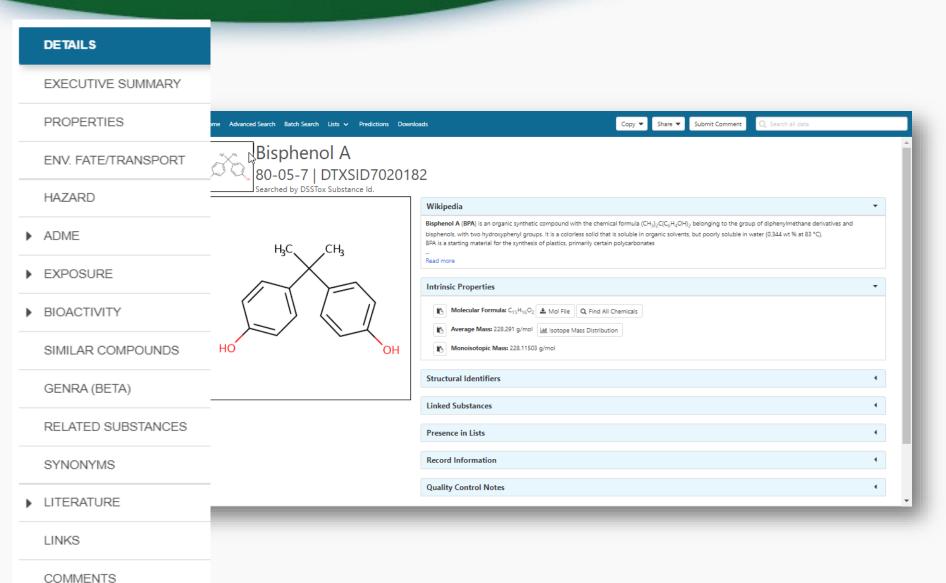
Overview



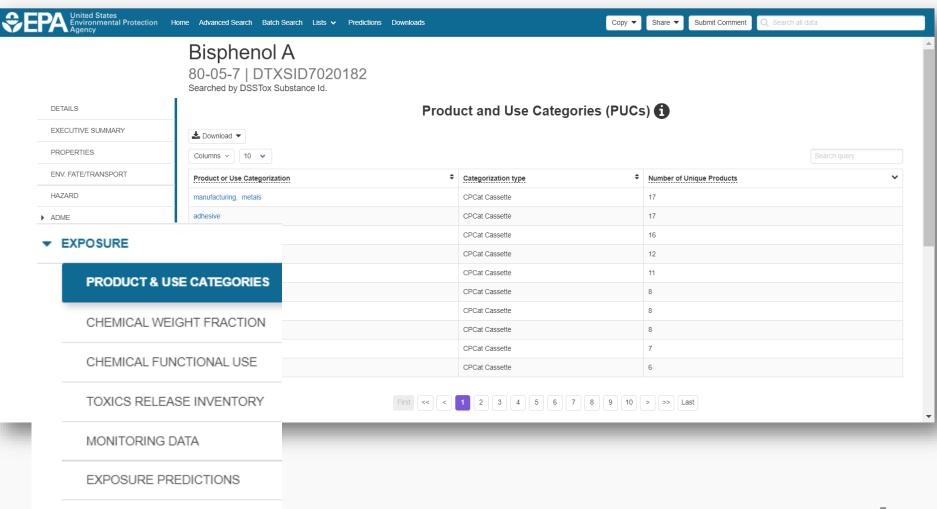
- The CompTox Chemicals Dashboard webbased database of 875k substances
- Associated data including:
 - Experimental and predicted physicochemical data
 - In vivo hazard data
 - In vitro bioactivity screening data
 - Link farm to tens of public resources
- Integrated modules read-across, lit search
- Data mappings and searches supporting
 Mass Spectrometry & structure identification

CompTox Chemicals Dashboard

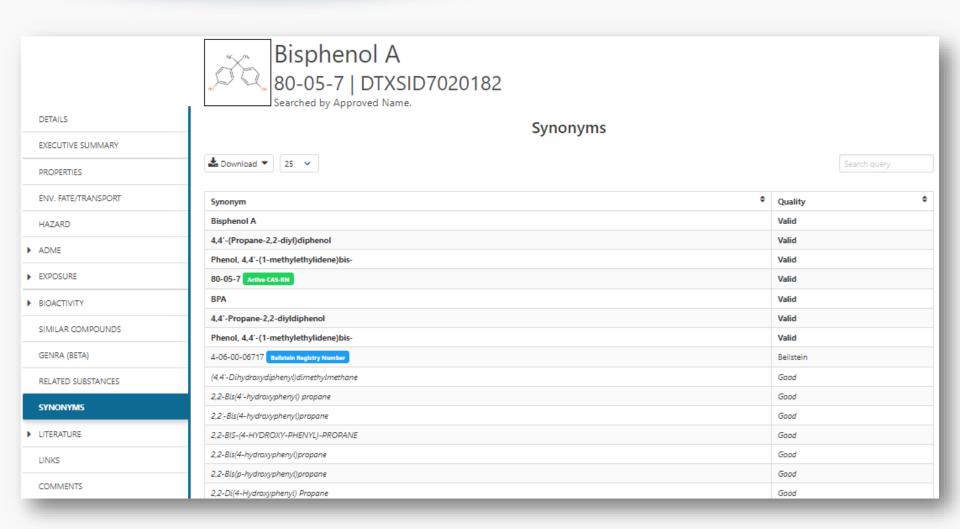

https://comptox.epa.gov/dashboard

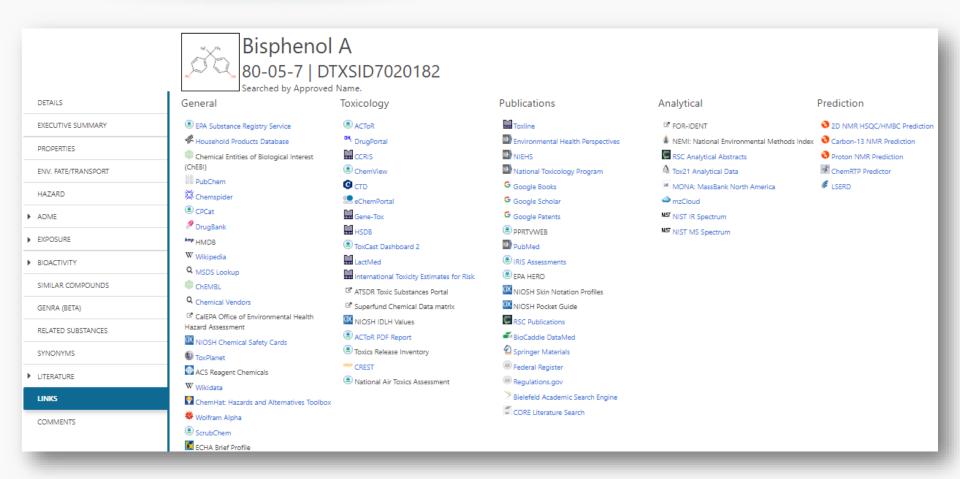

BASIC Search

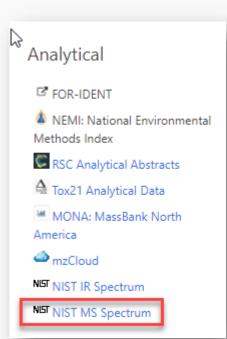
Detailed Chemical Pages

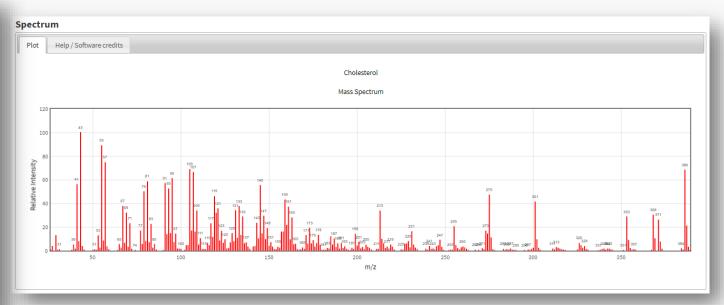


Sources of Exposure to Chemicals

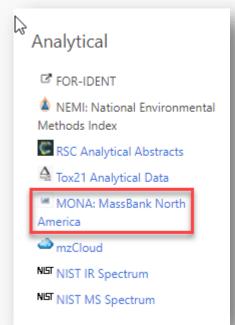

PRODUCTION VOLUME

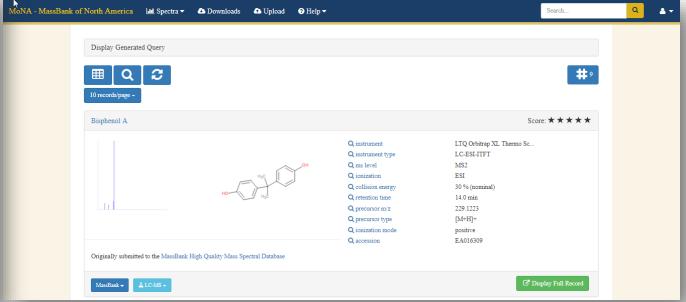

Identifiers to Support Searches


Link Access



NIST WebBook https://webbook.nist.gov/chemistry/





MassBank of North America https://mona.fiehnlab.ucdavis.edu

Batch Searching

Aggregate data for a list of chemicals

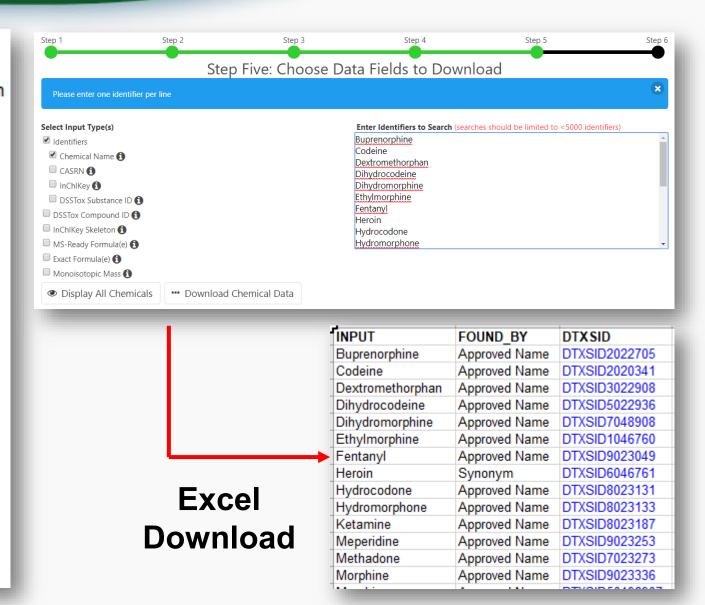
Trends in Environmental Analytical Chemistry

Volume 20, October 2018, e00059

Opioid occurrence in environmental water samples—A review

Marina Celia Campos-Mañas a, Imma Ferrer b ≥ 🖾, E.Michael Thurman b, Ana Agüera a

■ Show more


https://doi.org/10.1016/j.teac.2018.e00059

Get rights and content

Batch Search Names

Buprenorphine Codeine Dextromethorphan Dihydrocodeine Dihydromorphine Ethylmorphine Fentanyl Heroin Hydrocodone Hydromorphone Ketamine Meperidine Methadone Morphine Morphinone Naloxone Naltriben 0xycodone Oxymorphone Propoxyphene Sufentanil Tramadol

Add Other Data of Interest

Chemical Identifiers

- ✓ DTXSID
- Chemical Name
- ☐ DTXCID **(1)**
- ✓ CAS-RN
- ✓ InChlKey <a>f
- ☐ IUPAC Name 🚯

Structures

- ☐ Mol File 🚯
- SMILES 1
- InChl String
- ✓ MS-Ready SMILES
- QSAR-Ready SMILES (1)

Intrinsic And Predicted Properties

- Molecular Formula 6
- Average Mass < 1</p>
- ✓ Monoisotopic Mass

 ⑥
- ☐ TEST Model Predictions 🕦
- OPERA Model Predictions

INPUT	DTXSID	CASRN	MOLECULAR_FO	MONOISOTOPIC	
Buprenorphi	DTXSID202	52485-79-7	C29H41NO4	467.3035588	[H]C12CC3=C4C
Codeine	DTXSID202	76-57-3	C18H21NO3	299.1521435	[H]C12CC3=C4C
Dextrometh	DTXSID302	125-71-3	C18H25NO	271.1936144	[H]C12CC3=C(C=
Dihydrocode	DTXSID502	125-28-0	C18H23NO3	301.1677936	[H]C12CC3=C4C
Dihydromor	DTXSID704	509-60-4	C17H21NO3	287.1521435	[H]C12CC3=C4C
Ethylmorph	DTXSID104	76-58-4	C19H23NO3	313.1677936	[H]C12CC3=C4C
Fentanyl	DTXSID902	437-38-7	C22H28N2O	336.2201635	CCC(=O)N(C1CC
Heroin	DTXSID604	561-27-3	C21H23NO5	369.1576228	[H]C12CC3=C4C
Hydrocodon	DTXSID802	125-29-1	C18H21NO3	299.1521435	[H]C12CC3=C4C
Hydromorph	DTXSID802	466-99-9	C17H19NO3	285.1364935	[H]C12CC3=C4C
Ketamine	DTXSID802	6740-88-1	C13H16CINO	237.0920418	CNC1(CCCCC1=
Meperidine	DTXSID902	57-42-1	C15H21NO2	247.1572289	CCOC(=0)C1(CC
Methadone	DTXSID702	76-99-3	C21H27NO	309.2092645	CCC(=O)C(CC(C)
Morphine	DTXSID902	57-27-2	C17H19NO3	285.1364935	[H]C12CC3=C4C
Morphinone	DTXSID501	467-02-7	C17H17NO3	283.1208434	[H]C12CC3=C4C
Naloxone	DTXSID802	465-65-6	C19H21NO4	327.1470582	[H]C12CC3=C4C
Naltriben	-	-	-	-	-
Oxycodone	DTXSID502	76-42-6	C18H21NO4	315.1470582	[H]C12CC3=C4C
Oxymorpho	DTXSID502	76-41-5	C17H19NO4	301.1314081	[H]C12CC3=C4C
Propoxyphe	DTXSID102	469-62-5	C22H29NO2	339.2198292	CCC(=O)OC(CC1
Sufentanil	DTXSID602	56030-54-7	C22H30N2O2S	386.2027994	CCC(=O)N(C1=C
Tramadol	DTXSID908	27203-92-5	C16H25NO2	263.188529	COC1=CC=CC(=

Chemical Lists of Interest...

Chemical Lists

Home	Advanced Search	Batch Search	Lists 🕶	Predictions	Downloads
				emicals Jhn	
			List of Assa	ays O	

Columns ~

mass Copy Filtered Lists URL

List Acronym 🕏	List Name \$	Last Updated ♦	Number of Chemicals ♥	List Description
HDXEXCH	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - Under HDX Conditions	2018-11-07	592	Observed species (deuterated and undeuterated) from the HDXNOEX list under hydrogen deuterium exchange conditions (Ruttkies, Schymanski et al. in prep.)
HDXNOEX	MASSPECDB: Hydrogen Deuterium Exchange Standard Set - No Exchange	2018-11-07	765	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule high resolution mass spectrometry (Ruttkies, Schymanski et al. in prep.)
MASSBANKEUSP	MASSPECDB: MassBank.EU Collection: Special Cases	2017-07-16	263	The MassBank.EU list contains curated chemicals (Schymanski/Williams) associated with the literature/tentative/unknown/SI spectra available on MassBank.EU that are not available as part of the full MassBank collection of reference standard spectra.
MASSBANKREF	MASSPECDB: MassBank Reference Spectra Collection	2017-07-13	1267	This MassBank list contains chemicals associated with the full MassBank collection of reference standard spectra available on MassBank.EU, MassBank.JP and MassBank of North America as well as the Open Data collection, curated by Williams/Schymanski.
MYCOTOXINS	MASSPECDB: Mycotoxins from MassBank.EU	2017-08-02	88	This is a set of mycotoxins, initiated by the contribution of spectra of 90 mycotoxins to MassBank.EU by Justin Renaud and colleagues from Agriculture and Agri-Food Canada, Government of Canada

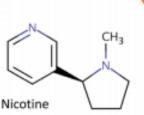
PFAS lists of Chemicals

Select List

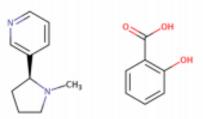
List Acronym	List Name \$	Last Updated 🕏	Number of Chemicals 🕏	List Description
EPAPFAS75S1	PFAS EPA: List of 75 Test Samples (Set 1)	2018-06-29	74	PFAS list corresponds to 75 samples (Set 1) submitted for initial testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFAS75S2	PFAS EPA: List of 75 Test Samples (Set 2)	2019-02-21	75	PFAS list corresponds to a second set of 75 samples (Set 2) submitted for testing screens conducted by EPA researchers in collaboration with researchers at the National Toxicology Program.
EPAPFASCAT	PFAS EPA Structure- based Categories	2018-06-29	64	List of registered DSSTox "category substances" representing PFAS categories created using ChemAxon's Markush structure-based query representations.
EPAPFASINSOL	PFAS EPA: Chemical Inventory Insoluble in DMSO	2018-06-29	43	PFAS chemicals included in EPA's expanded ToxCast chemical inventory found to be insoluble in DMSO above 5mM.
EPAPFASINV	PFAS EPA: ToxCast Chemical Inventory	2018-06-29	430	PFAS chemicals included in EPA's expanded ToxCast chemical inventory and available for testing.
EPAPFASRL	PFAS EPA: Cross-Agency Research List	2017-11-16	199	EPAPFASRL is a manually curated listing of mainly straight-chain and branched PFAS (Per- & Poly-fluorinated alkyl substances) compiled from various internal, literature and public sources by EPA researchers and program office representatives.
PFASKEMI	PFAS: List from the Swedish Chemicals Agency (KEMI) Report	2017-02-09	2416	Perfluorinated substances from a Swedish Chemicals Agency (KEMI) Report on the occurrence and use of highly fluorinated substances.
PFASMASTER	PFAS Master List of PFAS Substances	2018-07-26	5061	PFASMASTER is a consolidated list of PFAS substances spanning and bounded by the below lists of current interest to researchers and regulators worldwide.
PFASOECD	PFAS: Listed in OECD Global Database	2018-05-16	4729	OECD released a New Comprehensive Global Database of Per- and Polyfluoroalkyl Substances, (PFASs) listing more than 4700 new PFAS
PFASTRIER	PFAS Community- Compiled List (Trier et al., 2015)	2017-07-16	597	PFASTRIER community-compiled public listing of PFAS (Trier et al, 2015)

Batch Search in specific lists

	INPUT	DTXSID	MASSBANKREF	NEMILIST	WRTMSD	NORMANPRI	SUSDAT
i	Buprenorph	DTXSID202:	-	_	Υ	-	Υ
	Codeine	DTXSID202	Υ	Υ	Υ	Υ	Υ
	Dextrometh	DTXSID302:	Υ	Υ	Υ	-	Υ
	Dihydrocode			-	Υ	Υ	Υ
$-\overline{N}$	Dihydromor			-	-	-	Υ
	Ethylmorph			-	Υ	-	Υ
_ ::	Fentanyl	DTXSID902:	Υ	_	Υ	-	Υ
M V	Heroin	DTXSID604	Υ	_	Υ	Υ	Υ
₩ N.	Hydrocodor	DTXSID802:	Υ	Υ	Υ	Υ	Υ
œ IV	Hydromorph	DTXSID802:	-	_	Υ	-	Υ
	Ketamine	DTXSID802:	Υ	_	Υ	-	Υ
₩ N-	Meperidine	DTXSID902:	Υ	_	Υ	-	Υ
<u> </u>	Methadone	DTXSID702:	Υ	Υ	Υ	-	Υ
₩ N	Morphine	DTXSID902:	Υ	Υ	Υ	Υ	Υ
	Morphinone	DTXSID5019	-	_	-	-	Υ
<u>~</u> №	Naloxone	DTXSID802:	-	_	Υ	-	Υ
	Naltriben	-	-	-	-	-	-
	Oxycodone	DTXSID502:	Υ	Υ	Υ	Υ	Υ
$-\overline{N}$	Oxymorpho	DTXSID502:	-	_	Υ	-	Υ
	Propoxyphe	DTXSID102:	Υ	Υ	Υ	-	Υ
_ ::	Sufentanil	DTXSID602:	-	_	Υ	-	Υ
	Tramadol	DTXSID908	Υ	Υ	Υ	Υ	Υ

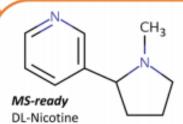


"MS-ready" Structures

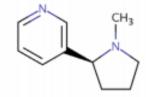

pubs.acs.org/est

Open Science for Identifying "Known Unknown" Chemicals

Emma L. Schymanski*,† and Antony J. Williams*,† 0

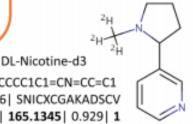

CN1CCC[C@H]1C1=CN=CC=C1 DTXSID1020930| SNICXCGAKADSCV 54-11-5 | 162.1157 | 0.929 | 72 Tox: yes | Expo: yes | Bioassay: yes

Benzoic acid, 2-hydroxy-, compd. with 3-[(2S)-1-methyl-2-pyrrolidinyl]pyridine (1:1)


OC(=O)C1=C(O)C=CC=C1.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID5075319 | AIBWPBUAKCMKNS 29790-52-1 300.1474 0.929 6 Tox: no | Expo: yes | Bioassay: no

CN1CCC[C@@H]1C1=CN=CC=C1 DTXSID004635 | SNICXCGAKADSCV 25162-00-9 | 162.1157 | 0.929 | 20 Tox: no | Expo: ves | Bioassay: ves

CN1CCCC1C1=CN=CC=C1 DTXSID3048154 | SNICXCGAKADSCV 22083-74-5 | 162.1157 | 0.953 | 9 Tox: yes | Expo: no | Bioassay: yes


LEGEND: Name, SMILES DTXSID | InChlKey 1st Block CAS | Monoiso. Mass | logP | Sources Data on: Toxicity | Exposure | Bioassays

Nicotine hydrochloride

HCI

CI.CN1CCC[C@H]1C1=CN=CC=C1 DTXSID602093 | HDJBTCAJIMNXEW 2820-51-1 | 198.0924 | 0.929 | 9 Tox: no | Expo: yes | Bioassay: yes

[2H]C([2H])([2H])N1CCCC1C1=CN=CC=C1 DTXSID80442666| SNICXCGAKADSCV 69980-24-1 | 165.1345 | 0.929 | 1

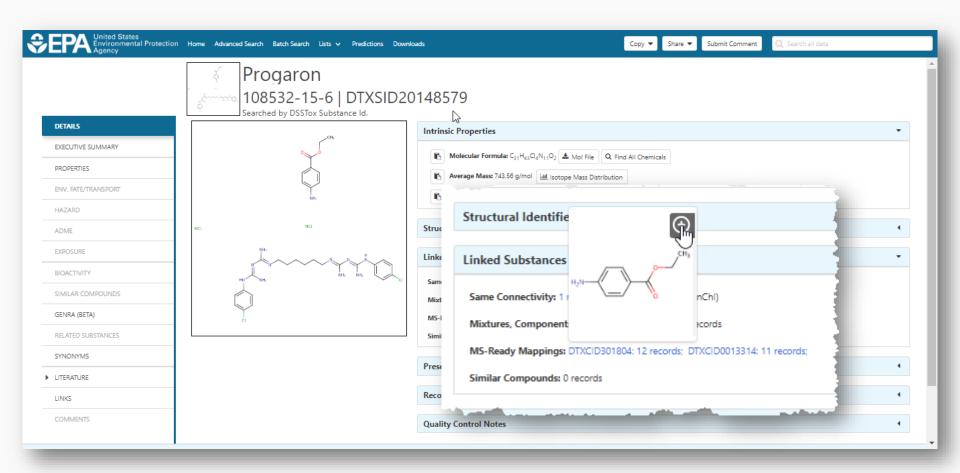
Tox: no | Expo: no | Bioassay: no

"MS-Ready Structures"

https://doi.org/10.1186/s13321-018-0299-2

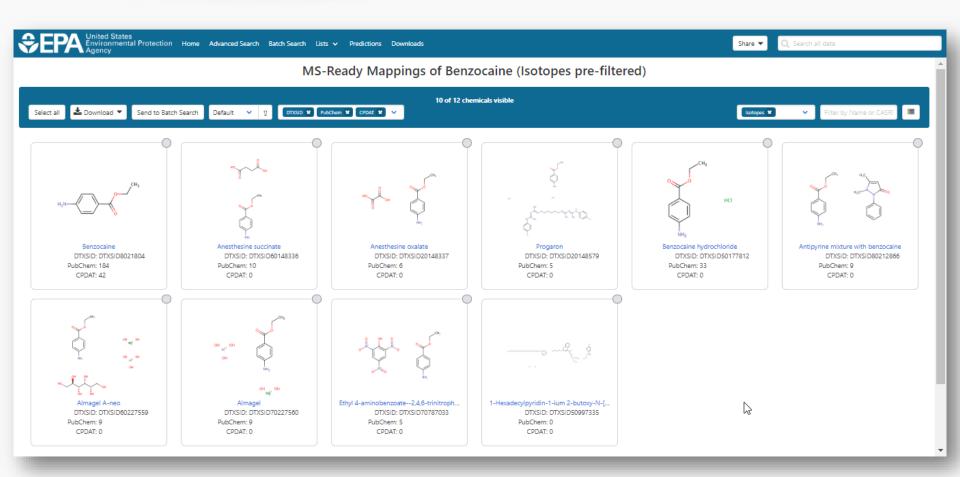
McEachran et al. J Cheminform (2018) 10:45 https://doi.org/10.1186/s13321-018-0299-2

Journal of Cheminformatics

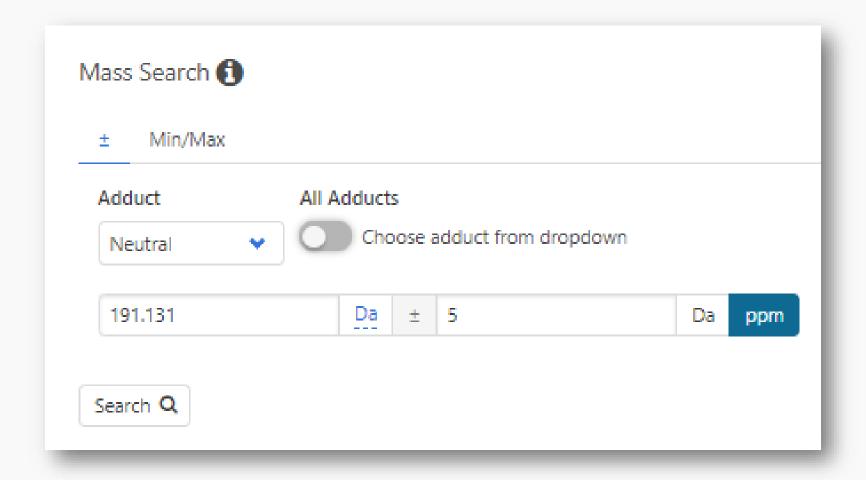

METHODOLOGY

Open Access

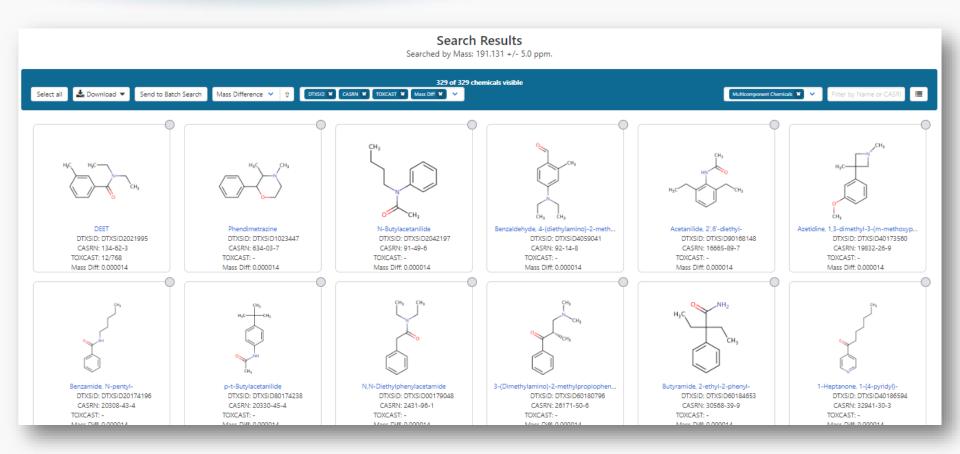
"MS-Ready" structures for non-targeted high-resolution mass spectrometry screening studies

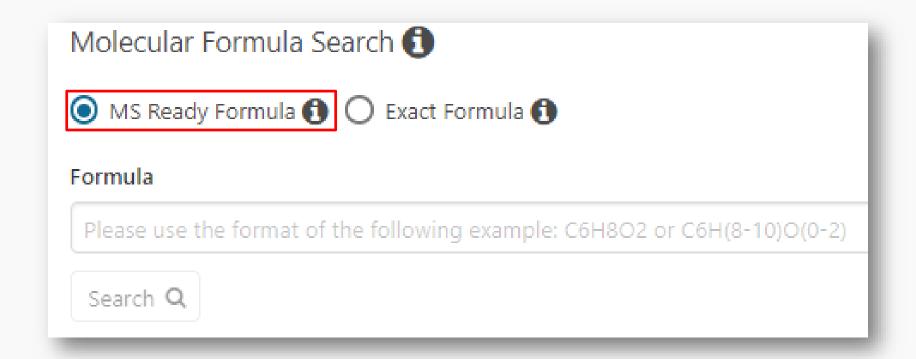

Andrew D. McEachran^{1,2*}, Kamel Mansouri^{1,2,3}, Chris Grulke², Emma L. Schymanski⁴, Christoph Ruttkies⁵ and Antony J. Williams^{2*}

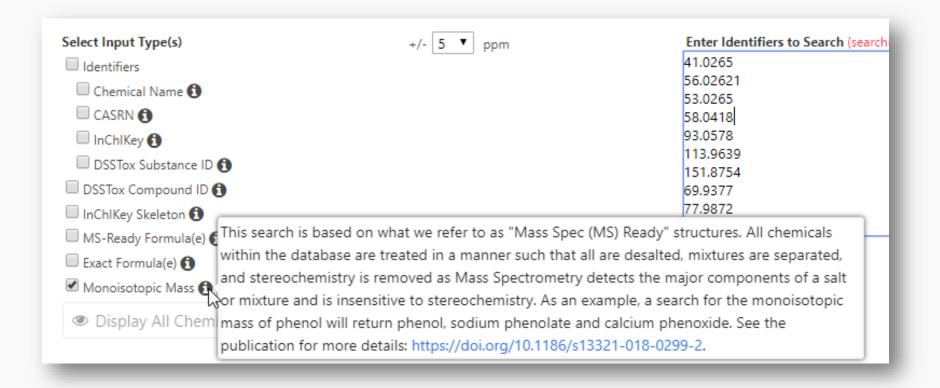
MS-Ready Mappings Set

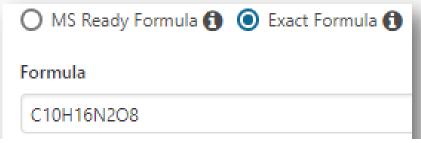


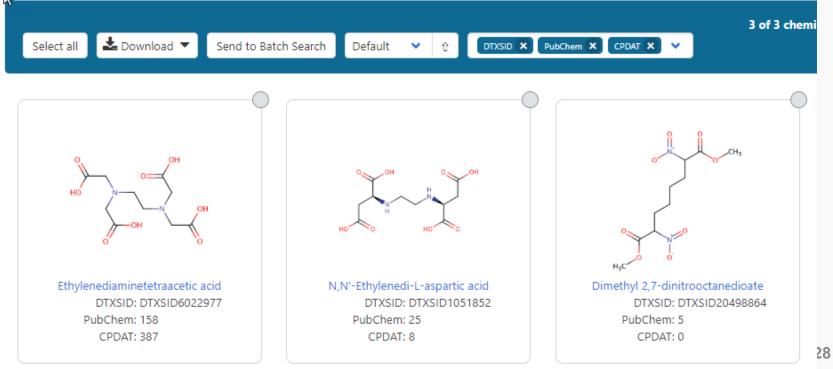
Mass and Formula Searching

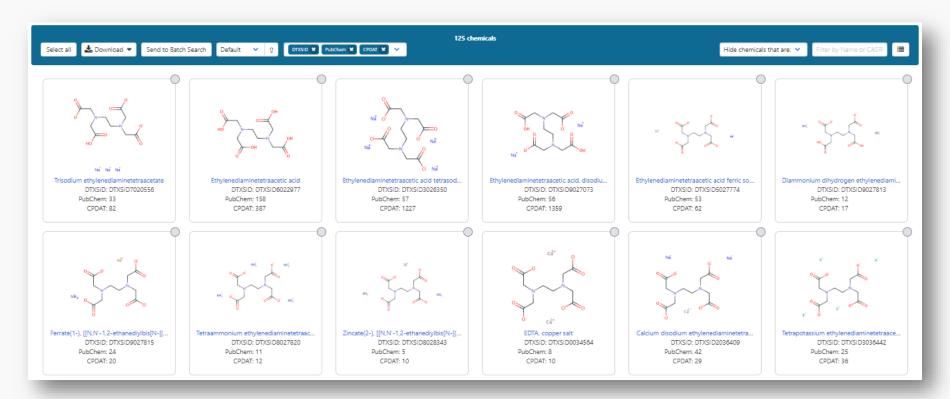

Advanced Searches Mass Search


Advanced Searches Mass Search


MS-Ready Structures for Formula Search


MS-Ready Structures Batch Searches

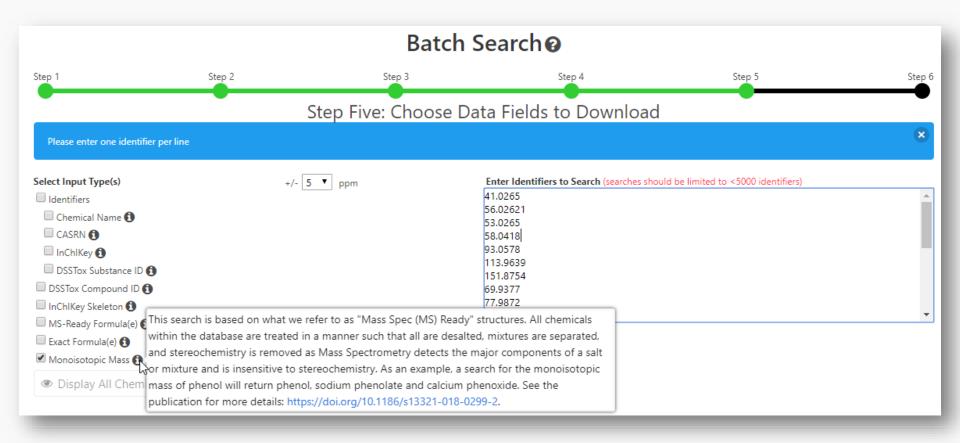



EXACT Formula: C10H16N2O8: 3 Hits

- Same Input Formula: C10H16N2O8
- MS Ready Formula Search: 125 Chemicals

- 125 chemicals returned in total
 - 8 of the 125 are single component chemicals
 - 3 of the 8 are isotope-labeled
 - 3 are neutral compounds and 2 are charged

Batch Searching

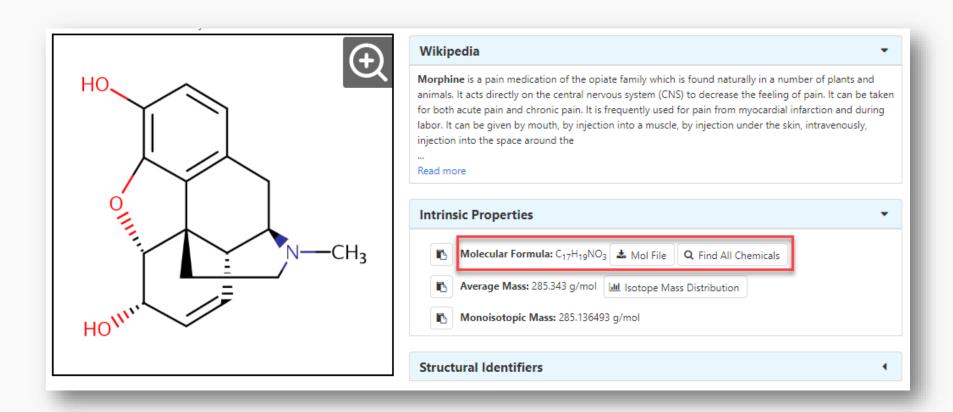

 Singleton searches are useful but we work with thousands of masses and formulae!

Typical questions

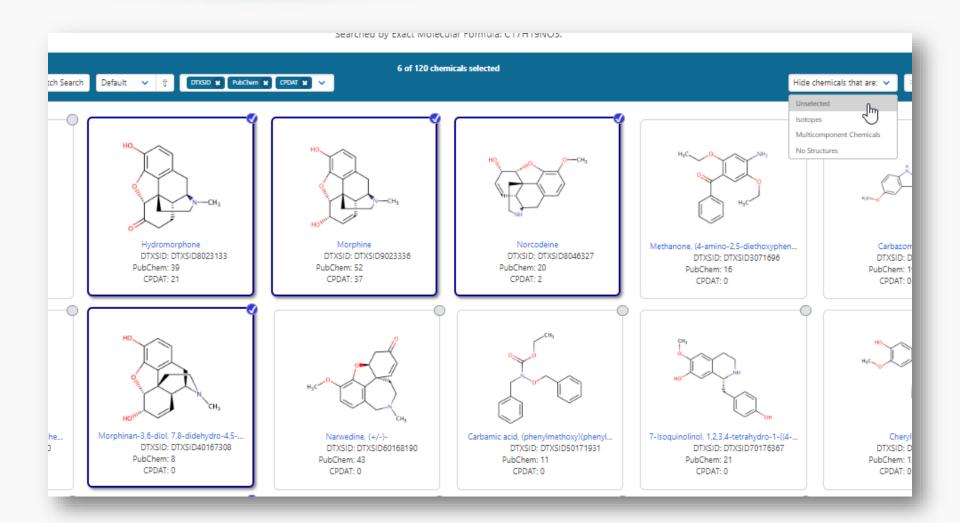
- What is the list of chemicals for the formula C_xH_yO_z
- What is the list of chemicals for a mass +/- error
- Can I get chemical lists in Excel files? In SDF files?
- Can I include properties in the download file?

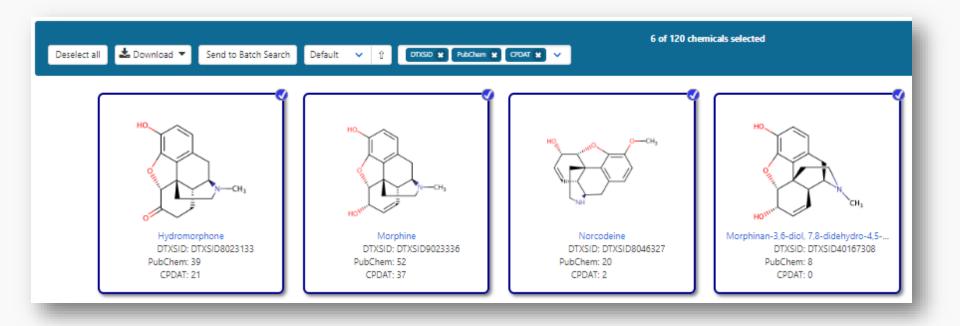
Batch Searching Formula/Mass

Searching batches using MS-Ready Formula (or mass) searching


		<u> </u>	`	i i i a c	o) ocaroning	_	_	
-	4	A	В	С	D	E	F	G
		INPUT	DTXSID	CASRN		MOL FORMULA	MONOISOTOPIC MASS	
		C14H22N2O3	DTXSID2022628	29122-68-7		C14H22N2O3	266.163042576	46
	3	C14H22N2O3	DTXSID0021179	6673-35-4		C14H22N2O3		32
	4	C14H22N2O3	DTXSID4048854	841-73-6		C14H22N2O3		20
	5	C14H22N2O3	DTXSID1045407	13171-25-0		C14H24Cl2N2O3		19
	6	C14H22N2O3	DTXSID0045753	56715-13-0		C14H22N2O3		19
		C14H22N2O3	DTXSID2048531	5011-34-7		C14H22N2O3		14
	8	C14H22N2O3	DTXSID10239405			C14H22N2O3		12
		C14H22N2O3	DTXSID50200634		. , , , , , , , , , , , , , , , , , , ,	C14H22N2O3	266.163042576	7
		C14H22N2O3	DTXSID4020111	51706-40-2	,	C14H23CIN2O3		6
				51963-82-7		C14H22N2O3	266.163042576	5
				154-21-2		C18H34N2O6S		35
			DTXSID7047803	859-18-7		C18H35CIN2O6S		22
			DTXSID20849438		_	C18H35CIN2O6S		1
		C10H12N2O	DTXSID1047576	486-56-6		C10H12N2O		40
		C10H12N2O	DTXSID8075330	50-67-9		C10H12N2O		22
		C10H12N2O	DTXSID8044412	2654-57-1		C10H12N2O		18
		C10H12N2O	DTXSID80165186			C10H13CIN2O		11
		C10H12N2O	DTXSID2048870	29493-77-4	(4R,5S)-4-methyl-5-phenyl-4,5-dihydro-1,3-oxazol-2-amine			10
- 4		C10H12N2O	DTXSID10196105			C10H12N2O		9
		C10H12N2O	DTXSID90185693			C10H12N2O		7
		C10H12N2O	DTXSID40178777			C10H12N2O		7
		C10H12N2O	DTXSID80157026			C10H12N2O		6
		C10H12N2O	DTXSID30205607			C10H12N2O	176.094963014	6
		C14H18N4O3	DTXSID5023900	17804-35-2	•	C14H18N4O3		68
1		C14H18N4O3	DTXSID3023712	738-70-5		C14H18N4O3	290.137890456	51
1		C14H18N4O3	DTXSID40209671			C14H19CIN4O3	326.1145682	8
1		C14H18N4O3	DTXSID70204210		Benzenemethanol, 4-((2,4-diamino-5-pyrimidinyl)methyl)-2,		290.137890456	5
1		C14H18N4O3	DTXSID20152671		6-Methoxy-4-(3-(N,N-dimethylamino)propylamino)-5,8-quina		290.137890456	4
;		C14H18N4O3	DTXSID30213742		1H-1,2,4-Benzotriazepine-3-carboxylic acid, 4,5-dihydro-4-			3
		C14H18N4O3	DTXSID30219608		2,4-Pyrimidinediamine, 5-((3,4,5-trimethoxyphenyl)methyl)-		308.14845514	3
		C14H18N4O3	DTXSID20241155		L-Aspartic acid, compound with 5-((3,4,5-trimethoxyphenyl		423.175398165	3
;	33	C14H18N4O3	DTXSID80241156	94232-28-7	L-Glutamic acid, compound with 5-((3,4,5-trimethoxypheny	C19H27N5O7		3
		C14H18N4O3	DTXSID20143781		1H-Pyrido(2,3-e)-1,4-diazepine-2,3,5-trione, 4-(2-(diethylam	C14H18N4O3		3
:		C12H11N7	DTXSID6021373	396-01-0	Triamterene	C12H11N7		52
:	36	C12H11N7	DTXSID00204465	5587-93-9		C12H11N7	253.107593382	7
:	37	C12H11N7	DTXSID5064621	7300-26-7		C12H9N7		4
	38	C12H11N7	DTXSID00848025	90293-82-6	Sulfuric acid6-phenylpteridine-2,4,7-triamine (1/1)	C12H13N7O4S	351.074973101	1
	39	C12H11N7	DTXSID50575293	92310-83-3		C12H11N7	253.107593382	1
4	40	C8H9NO2	DTXSID2020006	103-90-2	Acetaminophen	C8H9NO2	151.063328534	75
1	11	C8H0NU3	DTYSID6026667	13/1-20-3	Mothyl 2 aminohonzoato	C8H0NU3	151 063338534	E0.

Additional Mass-Spec Functionality


Formula-Based Search


Select Chemicals of Interest

Prune to list of interest

Literature Searching

Morphine

57-27-2 | DTXSID9023336

Searched by Approved Name.

Abstract Sifter

1) Select PubMed starting point query then 2) click on Retrieve. Select a Query Term Retrieve Articles Select a Query Term Hazard Fate and Transport Metabolism/PK/PD Chemical Properties Exposure Mixtures Male Reproduction Androgen Disruption Female Reproduction GeneTox Cancer Clinical Trials Embryo and embryonic development Child (infant through adolescent) Dust and Exposure Food and Exposure Water and Exposure Algae Disaster / Emergency

O	ntionally.	edit the	query	before	retrieving.
\sim	puonuny,	cuit tile	query	DUIDIO	reureving.

"57-27-2" OR "Morphine"

Literature Searching

Child (Intant through adolescent)

Dust and Exposure

Food and Exposure

Water and Exposure

Algae

Disaster / Emergency

Öptionally, edit the query before retrieving.

("57-27-2" OR "Morphine") AND ((water OR groundwater OR drinking water) AND Environmental Exposure)

Literature Searching

37 of 37 articles loaded...

To f	To find articles quickly, enter terms to sift abstracts. 6										
wastewater Spectrometry		EPA		Clear Terms		Download / Send to Download Sifter for	Excel	0			
	wastewater	Spectrometry	EPA	Total	PMID	Year	Title	Authors	Journal	Rev	<u></u>
	4	2	0	6	29274731	2017	Simultaneous analysis of opioid analgesics and thei	Krizman-Matasic; Kostanjevecki; Ahel; Terzic	Journal of chromatography. A		
	0	1	0	1	25768972	2015	Evaluating external contamination of polybrominate	Poon; Aleksa; Carnevale; Kapur; Goodyer; Koren	Therapeutic drug monitoring		
	0	1	0	1	22544551	2012	Spatial distribution of illicit drugs in surface waters o	Vazquez-Roig; Andreu; Blasco; Morillas; Picó	Environmental science and pollution research inter		
	1	1	0	2	20801487	2010	Analysis of llicit and illicit drugs in waste, surface an	Berset; Brenneisen; Mathieu	Chemosphere		
	1	1	0	2	17935751	2007	Illicit drugs, a novel group of environmental contami	Zuccato; Castiglioni; Bagnati; Chiabrando; Grassi;	Water research		
	2	1	1	4	17607391	2007	Using environmental analytical data to estimate lev	Bones; Thomas; Paull	Journal of environmental monitoring : JEM		
	3	1	2	6	17180984	2006	Simultaneous determination of psychoactive drugs	Hummel; Löffler; Fink; Ternes	Environmental science & technology		
	6	0	0	6	30583189	2018	Assessment of drugs of abuse in a wastewater trea	Kumar; Tscharke; O'Brien; Mueller; Wilkins; Padhye	The Science of the total environment		
	0	0	3	3	30488421	2018	Effect of enriched environment during adolescence	Mohammadian; Najafi; Miladi-Gorji	Developmental psychobiology		
	3	0	0	3	29574368	2018	Estimation of the consumption of illicit drugs during	Foppe; Hammond-Weinberger; Subedi	The Science of the total environment		
	1	0	0	1	28787791	2017	Evaluation of in-sewer transformation of selected illi	Gao; Banks; Li; Jiang; Lai; Mueller; Thai	The Science of the total environment		
	9	0	0	9	28472697	2017	Occurrence and fate of illicit drugs and pharmaceuti	Causanilles; Ruepert; Ibáñez; Emke; Hernández; d	The Science of the total environment		
	0	0	0	0	28010888	2016	Dose-dependent effects of morphine on lipopolysac	Mottaz; Schönenberger; Fischer; Eggen; Schirmer;	Environmental pollution (Barking, Essex : 1987)		
	0	0	0	0	27746311	2016	Effects of voluntary exercise on the viability, prolifer	Haydari; Safari; Zarbakhsh; Bandegi; Miladi-Gorji	Neuroscience letters		
	0	0	0	0	27261879	2016	Genotoxic effects induced by the exposure to an en	Parolini; Magni; Castiglioni; Binelli	Ecotoxicology and environmental safety		
	3	0	0	3	27179320	2016	Temporal trends in drug use in Adelaide, South Aus	Tscharke; Chen; Gerber; White	The Science of the total environment		•

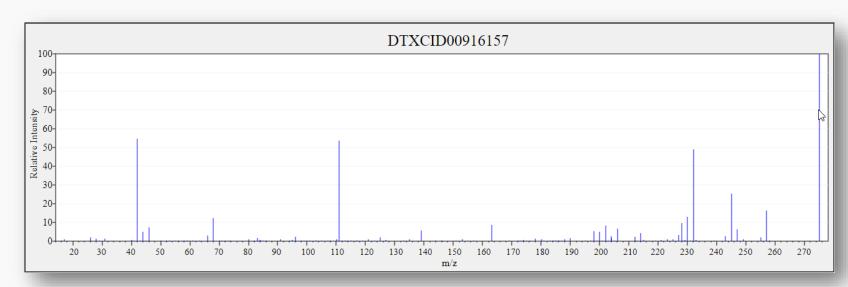
Work in Progress

List Registration Activities

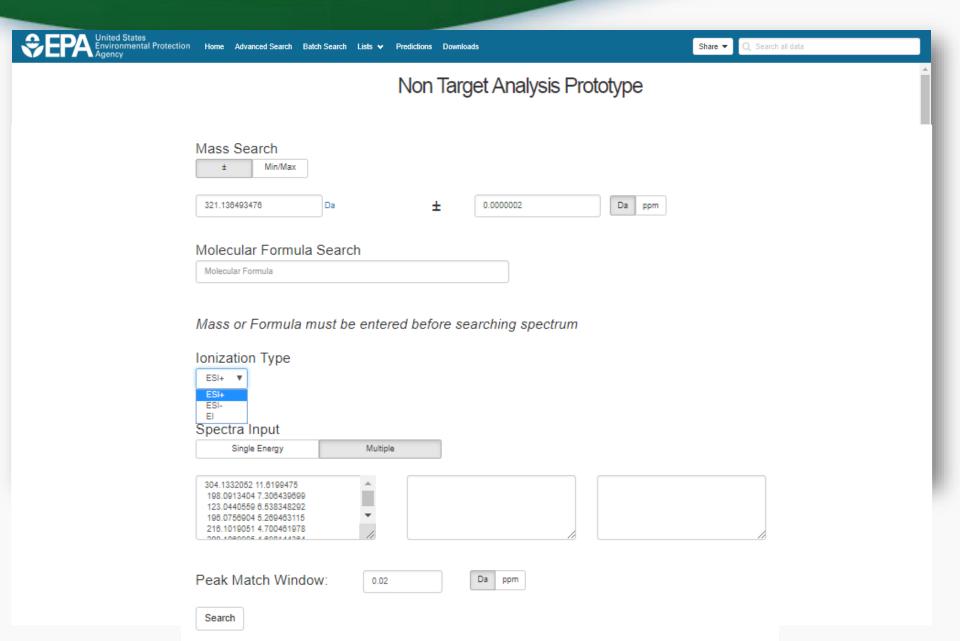
- Registering and curating numerous lists
 - NIST library of chemicals
 - United States Geological Survey chemicals in water
 - Scientific Working Group for the Analysis of Seized Drugs
 - Synthetic Cannabinoids
 - Mycotoxins

Work in Progress

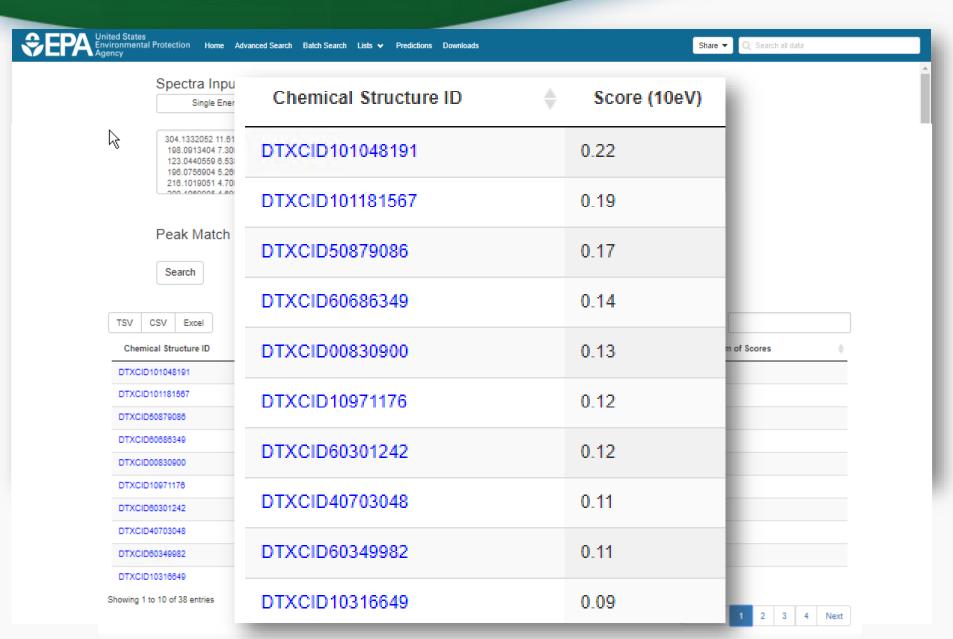
- CFM-ID
 - Viewing and Downloading pre-predicted spectra
 - Search spectra against the database
- Structure/substructure/similarity search
- Access to API and web services

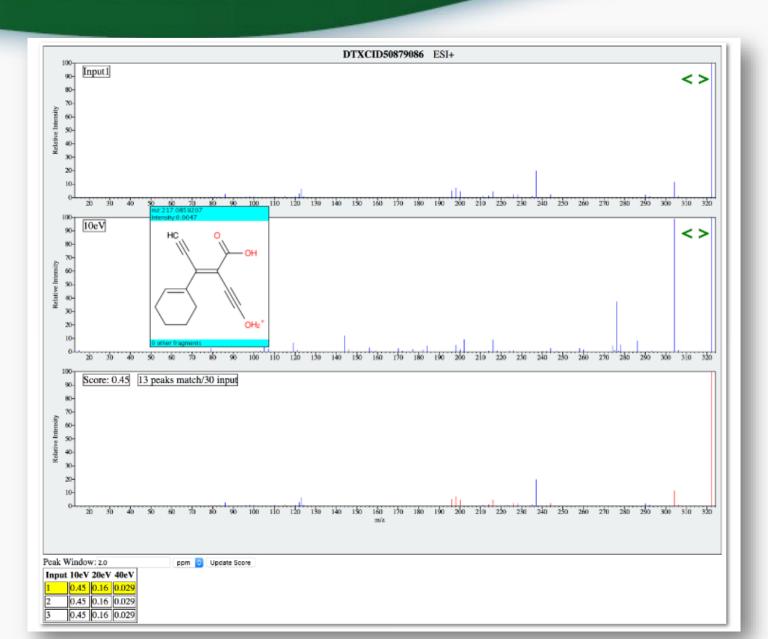

Predicted Mass Spectra

http://cfmid.wishartlab.com/



- MS/MS spectra prediction for ESI+, ESI-, and EI
- Predictions generated and stored for >800,000 structures, to be accessible via Dashboard


Search Expt. vs. Predicted Spectra


Search Expt. vs. Predicted Spectra

Spectral Viewer Comparison

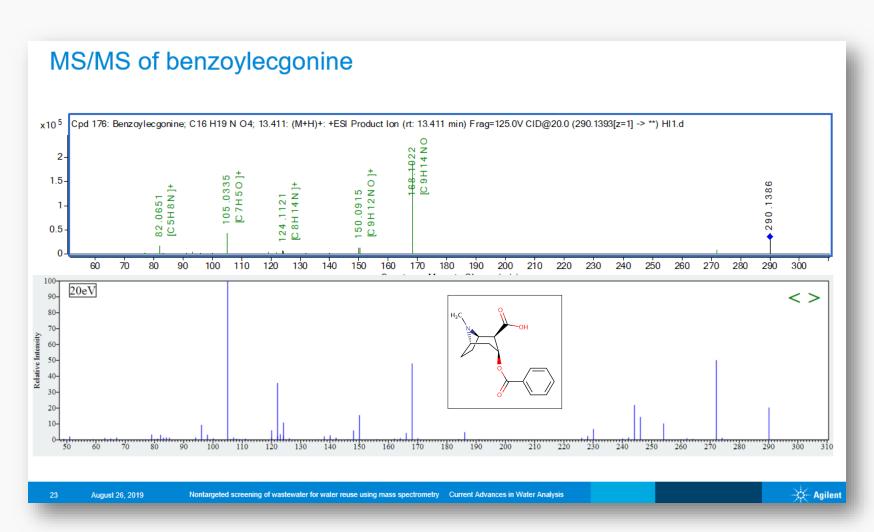
Presented at this meeting

Non-Targeted Screening of Wastewater for Water Reuse using Mass Spectrometry

Prototype development using the US-EPA CompTox Chemicals Dashboard data and CFM-ID Fragment Prediction algorithms

Jerry Zweigenbaum, Agilent, Wilmington DE, Andrew McEachran, Agilent, Santa Clara CA, Alex Chao, Oak Ridge Associated Universities (ORAU), US EPA, National Exposure Research Laboratory, and Antony J. Williams, National Center for Computational Toxicology, US EPA Research Triangle Park NC

ACS Fall 2019 National Meeting & Exposition in San Diego



Example match

Predicted Data Already Public Publication and Data Files

Data Descriptor | OPEN | Published: 02 August 2019

Linking in silico MS/MS spectra with chemistry data to improve identification of unknowns

Andrew D. McEachran [™], Ilya Balabin, Tommy Cathey, Thomas R. Transue, Hussein Al-Ghoul, Chris Grulke, Jon R. Sobus & Antony J. Williams [™]

CFM-ID Paper Data

Dataset posted on 01.03.2019, 08:38 by EPA's National Center for Computational Toxicology

This upload is a zip containing the following files.

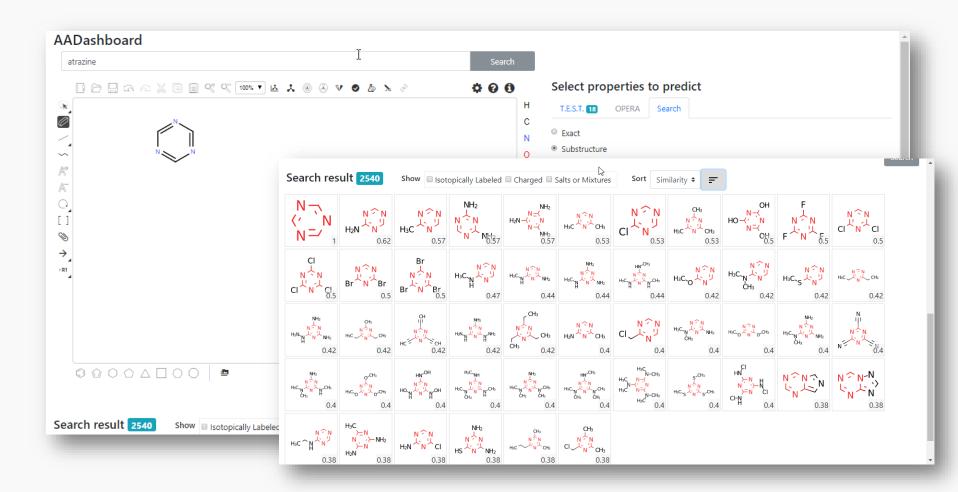
Predicted EI-MS Spectra of CompTox Chemicals Dashboard Structures:

Predicted EI-MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1021/acs.analchem.6b01622). These data are provided in .dat ASCII format.

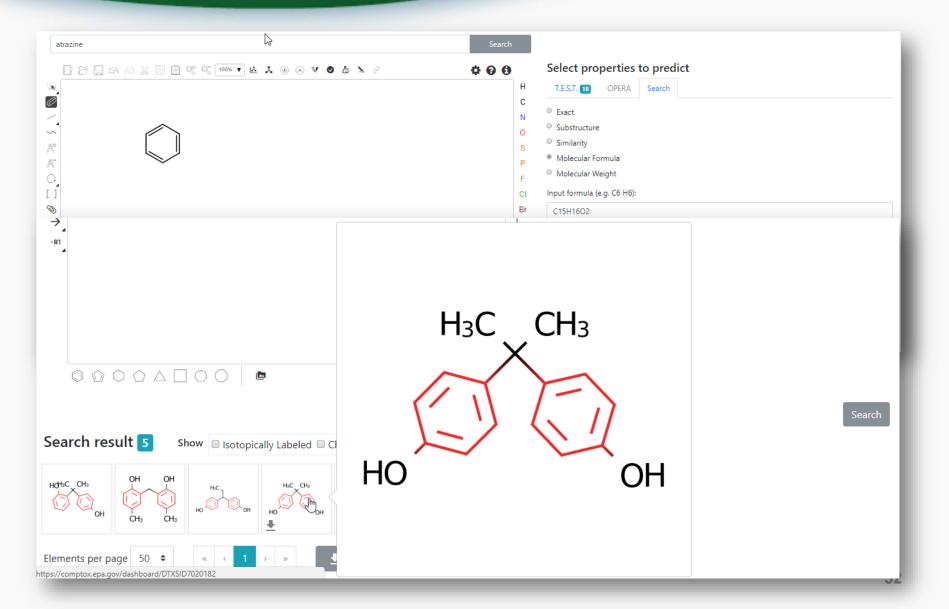
Predicted MS/MS Spectra in ESI-positive mode of CompTox Chemicals Dashboard

Predicted MS/MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1007/s11306-014-0676-4) in ESI-positive mode. These data are provided in .dat ASCII format.

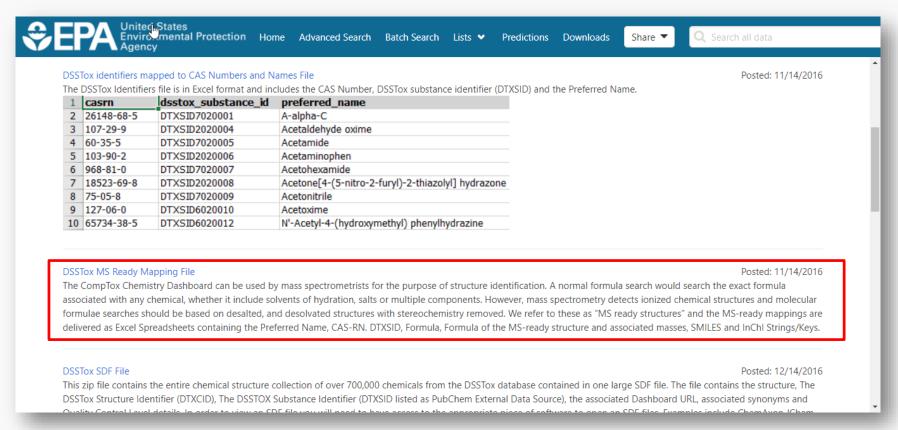
Predicted MS/MS Spectra in ESI-negative mode of CompTox Chemicals Dashboard Structures:


Predicted MS/MS spectra of ~700,000 chemical structures from the CompTox Chemicals Dashboard were generated using the CFM-ID model developed by Allen, et al. (https://doi.org/10.1007/s11306-014-0676-4) in ESI-negative mode. These data are provided in .dat ASCII format.

https://epa.figshare.com/articles/CFM-ID_Paper_Data/7776212/1


Prototype Development

Prototype Development



API services and Open Data

- Web Services https://actorws.epa.gov/actorws/
- Data sets also available for download...

Web Services https://actorws.epa.gov/actorws/

Data in UI, JSON and XML format

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=80-05-7 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=80-05-7

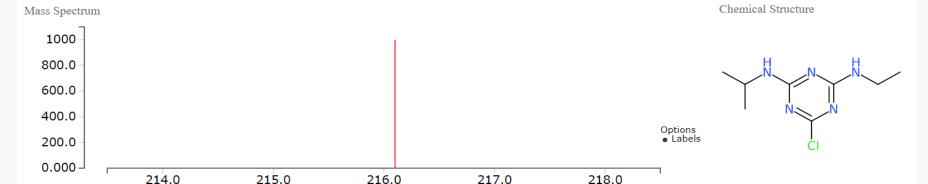
https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=DTXCID60513 https://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=DTXCID60513

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.json?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws.epa.gov/actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFFAOYSA-Nhttps://actorws/dsstox/v02/msready.xml?identifier=UVOFGKIRTCCNKG-UHFAOYSA-N

InChlKey to DTXCIDs

https://actorws.epa.gov/actorws/dsstox/v02/msready?identifier = UVOFGKIRTCCNKG-UHFFFAOYSA-N

Image	DTXCID	Smiles	Image	MsReady DTXCID	MsReady SMILES
H ₃ C — NH ₂ ⁺ CH ₃ CH ₃	DTXCID60513	C[NH2+]C.CN(C)C([S-])=S	H_3C N CH_3	DTXCID0023797	CN(C)C(S)=S
H ₃ C — NH ₂ ⁺ CH ₃ CH ₃	DTXCID60513	C[NH2+]C.CN(C)C([S-])=S	CH ₃ / H ₃ C—NH	DTXCID704057	CNC


MassBank mapping to Dashboard

MassBank Record: EA028808

Home | Search | Record Index | Data Privacy | Imprint | MassBank ID:

Atrazine; LC-ESI-ITFT; MS2; CE: 15%; R=15000; [M+H]+

CH\$NAME: Atrazine

CH\$NAME: 6-chloro-N-ethyl-N'-isopropyl-1,3,5-triazine-2,4-diamine

CH\$NAME: 6-chloranyl-N4-ethyl-N2-propan-2-yl-1,3,5-triazine-2,4-diamine

CH\$COMPOUND CLASS: N/A; Environmental Standard

CH\$FORMULA: C8H14ClN5 CH\$EXACT_MASS: 215.0932

CH\$SMILES: c1(nc(nc(n1)Cl)NCC)NC(C)C

CH\$IUPAC: InChI=1S/C8H14ClN5/c1-4-10-7-12-6(9)13-8(14-7)11-5(2)3/h5H,4H2,1-3H3,(H2,10,11,12,13,14)

CH\$LINK: CAS 1912-24-9 CH\$LINK: CHEBI 15930 CH\$LINK: KEGG C06551

CH\$LINK: PUBCHEM CID: 2256

CH\$LINK: INCHIKEY MXWJVTOOROXGIU-UHFFFAOYSA-N

CH¢LINK: CHEMSPIDER <u>2169</u>

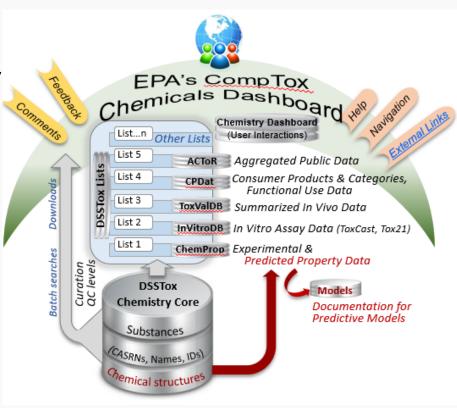
CH\$LINK: COMPTOX DTXSID9020112

When data is openly shared...

NORMAN Suspect List Exchange

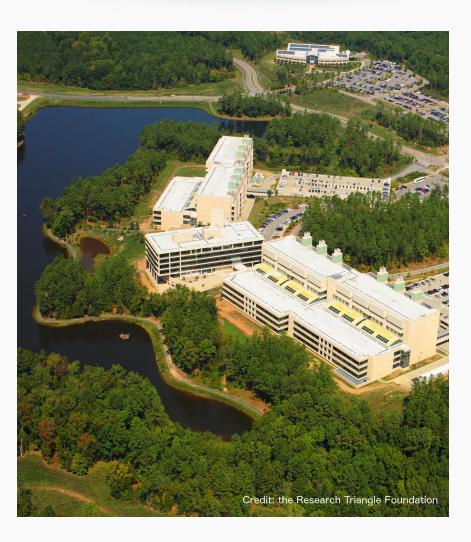
https://www.norman-network.com/?q=node/236

NORMAN


Network of reference laboratories, research centres and related organisations for monitoring of emerging environmental substances

Wastewater Suspect List based on Swedish Product Data	Wastewater Suspect List Original File with Mapped DTXSIDs (12/02/2019)	KEMIWWSUS InChlKeys (12/02/2019)	A prioritized list of 1,123 substances relevant for wastewater based on Swedish product registry data, including scores. Provided by Stellan Fischer, KEMI.
Algal toxins list from CompTox	ALGALTOX XLSX, CSV (14/02/2019) CompTox ALGALTOX List	ALGALTOX InChlKeys (14/02/2019)	List of algal toxins (generated during blooms) from the CompTox Chemicals Dashboard.
CCL 4 Chemical Candidate List	CCL4 XLSX, CSV (14/02/2019) CompTox CCL4 List	CCL4 InChlKeys (14/02/2019)	Contaminants that are not (yet) regulated in the USA but are known or anticipated to occur in public water systems; from CompTox.
Hydrogen Deuterium Exchange (HDX) Standard Set	HDXNOEX XLSX, CSV (14/02/2019) CompTox HDXNOEX List CompTox HDXEXCH List	HDXNOEX InChlKeys (14/02/2019)	Environmental standard set used to investigate hydrogen deuterium exchange in small molecule HRMS (Ruttkies et al. submitted). HDXEXCH list also contains observed deuterated species.
Neurotoxicants Collection from Public Resources	NEUROTOXINS XLSX, CSV (14/02/2019) CompTox NEUROTOXINS List	NEUROTOXINS InChlKeys (14/02/2019)	A list of neurotoxicants compiled from public resources, details on CompTox and Schymanski <i>et al.</i> (submitted).
Statins Collection from Public Resources	STATINS XLSX, CSV (14/02/2019) CompTox STATINS List	STATINS InChlKeys (14/02/2019)	A list of statins (lipid-lowering medications) compiled from public resources, details on CompTox.
Synthetic Cannabinoids and Psychoactive Compounds	SYNTHCANNAB XLSX, CSV (14/02/2019) CompTox SYNTHCANNAB List	SYNTHCANNAB InChlKeys (14/02/2019)	A list of synthetic cannabinoids and psychoactive compounds assembled from public resources, from CompTox.

Conclusion



- Dashboard access to data for ~875,000 chemicals
- MS-Ready data facilitates structure identification
- Related metadata facilitates candidate ranking
- Relationship mappings and chemical lists of great utility
- Curation and mutual sharing of chemical lists is important (e.g. NORMAN)

Acknowledgements

- An enormous team of contributors from NCCT, especially the IT software development team
- Our curation team for their care and focus on data quality
- Many public domain databases and open data contributors
- Emma Schymanski, University of Luxembourg for coordinating curation of NORMAN lists
- Jerry Zeigenbaum and Andrew McEachran, Agilent Inc., for example spectra to test CFM-ID matching

Contact

Antony Williams

NCCT, US EPA Office of Research and Development,

Williams.Antony@epa.gov

ORCID: https://orcid.org/0000-0002-2668-4821

https://doi.org/10.1186/s13321-017-0247-6